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Figure 1: Given an input 3D anatomy template, we propose a system to simulate the effects of muscle, fat, and bone growth. This allows us
to create a wide range of human body shapes.

Abstract

We propose a method to create a wide range of human body shapes
from a single input 3D anatomy template. Our approach is inspired
by biological processes responsible for human body growth. In par-
ticular, we simulate growth of skeletal muscles and subcutaneous
fat using physics-based models which combine growth and elas-
ticity. Together with a tool to edit proportions of the bones, our
method allows us to achieve a desired shape of the human body by
directly controlling hypertrophy (or atrophy) of every muscle and
enlargement of fat tissues. We achieve near-interactive run times by
utilizing a special quasi-statics solver (Projective Dynamics) and by
crafting a volumetric discretization which results in accurate defor-
mations without an excessive number of degrees of freedom. Our
system is intuitive to use and the resulting human body models are
ready for simulation using existing physics-based animation meth-
ods, because we deform not only the surface, but also the entire
volumetric model.
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1 Introduction

Human bodies exhibit large variations in size and shape due to fac-
tors such as height, muscularity, or adiposity. Although modern an-
imations systems such as Weta Tissue can bring realistic digital hu-
mans to life by combining physics-based simulation with detailed
models of 3D anatomy, creating simulation-ready anatomical mod-
els is expensive and typically involves a team of specialized digital
artists experienced in 3D modeling, simulation, and anatomy. This
de facto limits the applicability of realistic human body simulations
to high-budget productions.

In this paper, we propose a method to generate a wide range of
human body shapes which are ready to be simulated using exist-
ing physics-based methods. Our approach is intuitive even to inex-
perienced users, because it is motivated by natural biological pro-
cesses. Inspired by growth laws studied in biomechanics [Taber
1995; Taber 1998; Jones and Chapman 2012; Wisdom et al. 2015],
we propose mathematical models of hypertrophy and atrophy of
skeletal muscles. We devise another model for growth of fat tis-
sues. Our growth models are tightly coupled with a physics-based
simulation system, which accounts for elasticity of the individual
organs, e.g., as the biceps muscle grows due to hypertrophy, it ex-
erts forces on the adjacent tissues, pushing them out of the way. We
combine our models of soft tissue growth with a geometric shape
deformation technique to edit the rest pose of the body, allowing
us to produce human bodies with varied anthropometry, such as
heights and bone lengths.

Our goal is fundamentally different from existing simulators [Lee
et al. 2009] which focus on modeling the motion of the human body
such as walking or lifting an object. Even though our method shares
similar building blocks, e.g., volumetric elasticity and finite ele-
ment methods, we simulate changes of the human body over the
long term. Growth processes such as hypertrophy do not occur in-
stantaneously and lead to quite different shapes than, e.g., muscle
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Figure 2: Voluntary muscle contractions (muscle flexing) occur
over the short-term and preserve volume (b). Muscle hypertrophy
(growth) increases the volume and leads to a different shape (c).

contractions (Figure 2). On a mathematical level, our growth mod-
els are analogous to plasticity, i.e., permanent changes to the rest
pose. Specifically, for muscle hypertrophy (or atrophy), we use an
anisotropic model which expands the muscle perpendicularly to the
direction of muscle fibers. Because individual muscle fibers may
not be modeled in our 3D anatomy template, we provide a method
to estimate the fiber directions by simulating “flow” between ten-
dons, which amounts to solving a Laplace’s equation with care-
fully chosen boundary conditions. We propose a different model
for fat hypertrophy, because the growth of fat tissues is fundamen-
tally different from muscles. Fat behaves as a semi-fluid material
and grows in arbitrary directions in order to minimize stretching of
the skin. Our fat growth model is inspired by the elastic behavior of
inflated rubber balloons which delivers surprisingly realistic obese
body shapes.

Our system aims to provide an interactive experience, because im-
mediate visual feedback is highly advantageous to users who are
designing characters for movies, games, medical visualizations,
or workplace design applications. However, achieving fast com-
putations is challenging, because volumetric body models require
many degrees of freedom to resolve the intricate anatomical struc-
tures, which makes traditional physics-based simulation methods
slow. We achieve a near-interactive performance by 1) employing
a slightly modified “Projective Dynamics” solver [Bouaziz et al.
2014] and 2) carefully crafting our volumetric discretization. We
found it critical to design our tetrahedral mesh so that it contains
a clean interface between the muscles and fat tissue. Using this
“muscle envelope” structure, we were able to reduce our meshes
to only 76k vertices without compromising quality – even after ex-
treme growth – achieving a near-interactive run time experience.

Our resulting body shapes are created by physics-based simulation
which takes into account volume conservation, i.e., after growth
there are no more changes to the volume. This corresponds to the
fact that most soft tissues in the human body can be considered in-
compressible due to their high water content. This also prevents
artifacts such as self-intersections, ensuring that our output models
are ready to be simulated using existing physics-based animation
tools and/or displayed using volumetric rendering techniques, e.g.,
when visualizing individual organs. Our system is intuitive and its
use requires no experience in 3D modeling or knowledge of human
anatomy. In addition to film, games, and visual effects, our method
can be also very useful in educational or training applications to vi-
sualize the effects of muscle training or obesity. To our knowledge,
our system is to first to propose physics-based modeling of human
body growth in computer graphics.

2 Related Work

The laws of physics play a key role in determining the structure
and shape of living organisms [Thompson 1942]. The utility of

anatomically-based modeling in computer graphics was recognized
early on [Wilhelms and Van Gelder 1997; Scheepers et al. 1997]. A
recent survey [Lee et al. 2010] focuses on modeling of skeletal mus-
cles, but provides also a good overview of general anatomically-
based modeling in computer graphics.

Data-driven techniques represent a well-explored approach to cre-
ating a wide range of human bodies, assuming a database of input
body shapes is available [Allen et al. 2003; Seo and Magnenat-
Thalmann 2003]. The SCAPE model [Anguelov et al. 2005] ac-
counts for changes due to both subject shape and pose. Statisti-
cal shape models continue to steadily improve [Hasler et al. 2009;
Chen et al. 2013; Neumann et al. 2013b; Loper et al. 2014]. Recent
methods also capture effects such as isometric muscle contractions
[Neumann et al. 2013a] and soft tissue motion [Loper et al. 2014],
i.e., changes of shape which cannot be explained by pose alone.
Statistical shape models have proven useful in image- and video-
based editing of human bodies [Zhou et al. 2010; Jain et al. 2010].
While popular and powerful, data-driven methods have their limi-
tations. First, the results are only as good as the input data. It may
be difficult to capture a sufficient number of less common body
shapes, such as bodybuilders or extremely obese individuals. Sec-
ond, typical databases contain only surface measurements and lack
information about the internal organs. This means the models are
not ready for physics-based simulation and it is hard or even impos-
sible to request specific anatomically-based changes, e.g., increase
the size of the biceps or the amount of subcutaneous fat in the belly.

Physics-based simulation of the human body is another area which
received considerable attention. Robust methods to simulate skele-
tal muscles and related anatomical structures have been developed,
producing impressive visual results including muscle activations
and bulging [Teran et al. 2003; Sifakis et al. 2005; Teran et al.
2005b; Teran et al. 2005a]. More recent work considered a com-
prehensive biomechanical upper body model including control [Lee
et al. 2009], efficient numerical techniques for fast elasticity com-
putations [Patterson et al. 2012], and muscle-actuated full body
control for various types of gait [Geijtenbeek et al. 2013; Lee et al.
2014] and swimming [Si et al. 2015]. It is important to distinguish
muscle hypertrophy from bulging due to activations (such as when
lifting a heavy object): when a muscle is activated, the fibers con-
tract and bulge due to incompressibility, i.e., the overall volume of
the muscle is preserved [Fan et al. 2014]. In our system, we simu-
late hypertrophy, a long term growth process which changes the vol-
ume of the muscle (Figure 2). Even though our model shares simi-
lar building blocks, such as volumetric elasticity and finite element
methods, modeling of growth introduces new challenges, such as
finding suitable mathematical growth models. In addition to mus-
cles, we simulate also the growth of fat. An additional challenge
specific to growth simulation is that significant changes of volume
are more sensitive to the underlying volumetric discretization.

Even though most previous work uses traditional Lagrangian ap-
proaches to elasticity, recently introduced Eulerian methods to sim-
ulate elastic solids show great promise [Pai et al. 2014]. In particu-
lar, the combination of Eulerian and Lagrangian viewpoints seems
to be particularly well suited for simulation of musculoskeletal sys-
tems [Fan et al. 2014]. In our current system, we continue to rely
on the classical Lagrangian approach, in particular because it al-
lows us to directly apply a recently introduced fast physics solver
(Projective Dynamics) [Bouaziz et al. 2014]. However, we believe
that exploring Eulerian approaches to growth simulation could be a
fruitful direction in the future.

Growth of living tissues plays an important factor in nature [Fung
1990]. Our growth models are based on related work in biome-
chanics [Rodriguez et al. 1994; Taber 1995; Taber 1998; Jones and
Chapman 2012; Wisdom et al. 2015], however, it is important to
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Figure 3: Overview of our system: starting with a template anatomy model (a), we propose physics-based models for muscle (b) and fat
growth (c). Complemented with a geometric shape editing tool to change the lengths of the limbs (d), we are able to generate a wide variety
of human body shapes (e).

note that their goals are quite different from ours. Biomechanics
aims to explain the growth processes as accurately as possible, of-
ten on the microscopic level and focusing only on certain types of
tissue. Skeletal muscle growth has been also studied in the context
of bodybuilding [D’Antona et al. 2006]. We developed our growth
laws specifically for applications in computer graphics, with pri-
mary design decisions being visual quality, ease of use, and com-
putational efficiency.

Modeling tools commonly used in computer graphics are typically
oriented on modeling of polygonal surfaces [Sorkine et al. 2004],
even though some methods also support volumetric deformations
[Botsch et al. 2007; Chao et al. 2010]. Non-uniform stretching was
studied in the context of man-made shapes [Kraevoy et al. 2008]
and, more generally, skinned models [Jacobson and Sorkine 2011].
One of the challenges in human body deformations is the fact that
it combines materials ranging from almost rigid (bones) to very
supple (fat), mandating specialized shape deformation techniques
[Popa et al. 2006]. The above mentioned modeling tools assume the
user controls the deformation directly, typically by manipulating a
set of handles. Even though expert users can use these techniques
to create realistic human body shapes, this assumes the users are
knowledgeable of anatomy, because they rely solely on their imag-
ination when manipulating the control handles; it is easy to cre-
ate unrealistic shapes. Instead, our system provides physics-based
growth laws, which are intuitive to understand because they mimic
natural growth processes well-known from the real world.

A special type of human body deformations was explored by Rein-
ert et al. [2012], who proposed a method to create a Homunculus – a
human figure where the size of each body part is proportional to an
input distribution, e.g., neural density. However, internal anatom-
ical structures are not modeled. The Anatomy Transfer system
[Ali-Hamadi et al. 2013] can deform an input anatomical template
(similar to the one we are using) to conform to an arbitrary target
surface. However, Anatomy Transfer assumes that the target body
shape is already known, including its full correspondences with the
template skin. Instead, our system allows us to create brand new
body shapes.

3 Method

The input to our system are 3D polygonal models representing
bones, major muscles, and skin. In our experiments we use the
commercially available Zygote body with 111 muscles and 204
bones, see Figure 1. The main component of our system is physics-
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Figure 4: Our simulation mesh allows a tetrahedron to be occupied
by multiple materials. The resulting deformation of the tetrahedron
averages the contributions of the individual elements.

based simulation of the growth of soft tissues. We differentiate
three types of volumetric soft tissues: 1) muscles, 2) fat, and 3)
generic soft tissues which represent the remaining parts of the body,
such as the internal organs or the blood vessels. We devise growth
laws only for the muscles and subcutaneous fat, the remaining soft
tissues are deformed as non-growing elastic solids. During our
growth simulation, the bones are treated as static rigid bodies. We
use a geometric shape deformation process in order to change the
lengths and proportions of individual body parts (Figure 3(d)). This
“bone editing” process changes the lengths and shapes of the bones
and deforms the rest of the anatomical template accordingly, pro-
ducing a new rest pose for the subsequent physics-based simulation
of soft tissue growth.

Somewhat counter-intuitively, we do not take gravity into account
during our physics-based growth simulation, as if we were simu-
lating growth in a zero-gravity environment. We assume that our
resulting body model will be used as input of traditional simulation
of musculoskeletal motion [Lee et al. 2009] which will introduce
the effects of gravity. We implement a light-weight version of this
simulator to allow users to preview our resulting body shapes after
adding gravity (Figure 3(e)).

Our soft-tissue simulation solves quasi-statics elasticity to account
for the fact that grown tissues compete for space, have discrete



boundaries, and push each other out of the way. We are aiming
for interactive run time speeds, which is challenging because non-
linear elasticity is computationally expensive. We found that care-
fully crafted volumetric discretization is critical for achieving fast
and visually pleasing results. Specifically, we use irregular tetrahe-
dral meshes conforming to the input skin. We also experimented
with tet-meshes conforming to the shape of the internal organs,
but their resolution is prohibitively high, even for coarsely tesse-
lated bones and muscles. Instead, we allow each tetrahedron to be
occupied by multiple materials and we average their contributions
(Figure 4). Previous work has shown this approach to be effective
[Sifakis et al. 2005; Lee et al. 2009]. Unfortunately, without fur-
ther precautions this leads to visible artifacts due to the non-smooth
boundaries between individual organs (Section 3.2). These artifacts
are analogous to aliasing, well-known in rendering. We found that
the key to obtaining nice results is to introduce degrees of freedom
to smoothly separate muscles from fat. We call the interface be-
tween muscles and fat the “muscle envelope,” which is a polygon
mesh similar to shrunken skin. By creating a tet-mesh conforming
to both the skin and the muscle envelope, we successfully elimi-
nated the aliasing artifacts without introducing too many elements:
our final tet-mesh has only 76,087 vertices, which facilitates near-
interactive growth simulation.
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Figure 5: Our skeletal muscle growth model decomposes the de-
formation gradient F in two parts: Fg which corresponds to pure
growth and Fe which accounts for the effects of elasticity. Muscle
growth occurs perpendicularly to the muscle fiber direction.

3.1 Muscle Growth Model

Our muscle growth model comprises plastic and elastic compo-
nents. Even though plasticity is typically applied to simulate
non-reversible changes in material structure due to deformation
[Bargteil et al. 2007], the same mathematical model has also been
used in biomechanics to simulate soft tissue growth [Rodriguez
et al. 1994; Ben Amar and Goriely 2005; Jones and Chapman
2012]. Our method applies the same principle even though it does
not aspire to predictive simulations or biomechanical accuracy. We
use linear finite elements defined on tetrahedra [Sifakis and Barbic
2012]. The deformation gradient F ∈ R3×3 is a linear transfor-
mation between the rest-pose state of a tetrahedron and its current
(deformed) configuration. We decompose the deformation gradient
F into F = FeFg , where Fg ∈ R3×3 is the growth component
and Fe ∈ R3×3 is the elastic component (Figure 5). Our method
first determines Fg using our growth model, which simulates the
effect of hypertrophy or atrophy of a single muscle without consid-
ering the elastic response of the adjacent soft tissues, such as other
muscles which may also be growing. To account for this elastic be-

havior, Fe is defined as Fe = FF−1
g , assuming that Fg is constant.

In the following we define an elastic energy as a function of Fe and
find its minimum, i.e., a quasi-static solution. An important compo-
nent of this elastic energy is quasi-incompressibility, requiring that
det(Fe) is close to 1. This ensures that the volume of the muscles
is not changed in the quasi-static phase and is entirely controlled by
the growth model.

We assume that each muscle has been segmented into areas de-
noted as the muscle belly and tendon regions. The key compo-
nents of the muscle belly are fibers that induce muscle contraction,
producing forces that generate motion of the bones. It is impor-
tant to distinguish between muscle activations (flexion) and mus-
cle hypertrophy (growth). When the muscles are activated, the
fibers contract and muscles bulge due to incompressibility. Be-
cause muscle tissue has a high water content, the volume does not
change during motion, e.g., bicep flexion. However, when mus-
cles grow due to hypertrophy, the volume does change – an effect
coveted by bodybuilders. Specifically, muscle hypertrophy (or at-
rophy) changes muscle volume in a plane perpendicular to muscle
fiber directions [Taber 1998]. This makes sense intuitively, because
muscles cannot change their length if they are to remain functional.
For now, let us now assume that a vector field of fiber directions is
known for all muscles (we describe our fiber direction estimation
process in Section 3.1.1). Let D ∈ SO(3) be a rotation that aligns
the x-axis with the fiber direction. Our muscle growth model can
be then expressed as

Fg(α) = DT

 1 0 0
0 α 0
0 0 α

D (1)

where α is a parameter controlling hypertrophy (α > 1) or atrophy
(α < 1) of a given muscle. This achieves the desired effect of
expanding (or shrinking) muscle tissues perpendicularly to the fiber
direction. The growth is only applied to the belly of the muscle, the
tendon does not grow.

To achieve interactive run times, the tetrahedra of our volumetric
discretization do not conform to the geometry of the muscles. Con-
sequently, each tetrahedron can be occupied by more than one mus-
cle and we blend their individual growth contributions. To compute
the growth deformation gradient Fg for a tetrahedron, we first com-
pute a deformation gradient Fm

g which corresponds to growth only
due to muscle m for each of the contained muscles m. Second, we
blend the deformation gradients Fm

g with weights corresponding to
the fraction of volume the muscle m occupies in the tetrahedron
(Figure 4). Note that an element does not have to be occupied en-
tirely by muscles; the fraction corresponding to generic soft tissues
or bones does not grow and therefore is represented by an identity
matrix. We do not need to account for blending with fat because
our discretization cleanly separates muscles from subcutaneous fat
(Section 3.2).

We estimate the fraction of muscle volume in a tetrahedron using
Monte-Carlo sampling. Instead of the straightforward linear blend-
ing of matrices Fm

g , we found it is more accurate to use non-linear
matrix interpolation based on polar decomposition [Shoemake and
Duff 1992]. In particular, we compute polar decomposition of all
input matrices Fm

g , and blend the rotation components using quater-
nions (blending the quaternions linearly and re-normalizing [Kavan
and Zara 2005]).

After computing the growth deformation gradients Fg , the next step
is to define an elastic energy and find its minimum, i.e., a quasi-
static solution. The classically applied Newton’s method is time
consuming because it requires us to compute second order deriva-
tives of the energy and solve a new system of linear equations at
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Figure 6: Without volume preservation, corotated elasticity loses
17% of the total volume, canceling a significant fraction of the sim-
ulated muscle growth (left). Our method achieves incompressibility
up to an error of 1.5% (right).

each iteration. We obtained a much more responsive simulator by
using a “Projective Dynamics” solver, which employs local-global
alternation instead of the traditional Newton’s method [Bouaziz
et al. 2014]. The trade-off of Projective Dynamics is that it requires
a special form of elastic energies: assuming deformation gradient F
as the main building block, only energies of the form ||F−P(F)||2F
are allowed, where P : R3×3 → R3×3 is a projection operator. A
wide choice of projection operators is possible as long as we can
provide their efficient implementation (derivatives are not neces-
sary). In a nutshell, the Projective Dynamics solver alternates be-
tween projections (local step) and solving a constant linear system
(global step). We refer the reader to Bouaziz et al. [2014] for more
details.

In the following, we formulate our elastic energies in a form suit-
able for Projective Dynamics. As discussed above, we use only the
elastic component of the deformation gradient Fe = FF−1

g . Be-
cause we assume that Fg is fixed, Fe is a linear function of the
current state x ∈ R3n×1, where n is the number of vertices of our
volumetric mesh. We start with corotational elasticity:

Erot(x) = ‖Fe − PSO(3)(Fe)‖2
F

(2)

where PSO(3) is an operator which projects on the closest rota-
tion. We accomplish this by computing the signed Singular Value
Decomposition which guarantees that U,V ∈ SO(3) [McAdams
et al. 2011]. This leads to Fe = USVT and we clamp all of the
singular values to one, resulting in PSO(3)(Fe) = UVT. We do
not use any Poisson term because corotational elasticity does not
ensure volume preservation for large deformations [Patterson et al.
2012]. Instead, we use the following volume preservation term:

Evol(x) = ‖Fe − PSL(3)(Fe)‖2
F

(3)

where PSL(3) is an operator which projects on SL(3), i.e., a group
of matrices with determinant one. This projection is slightly more
involved; if S are the signed singular values as before, we need to
solve:

PSL(3)(Fe) = argmin
P

||S−P||2F subj. to P11P22P33 = 1 (4)

where P ∈ R3×3 is a diagonal matrix with elements P11, P22, P33.
Even though the constraint P11P22P33 = 1 is non-convex, an ef-
fective strategy is to linearize it and solve the resulting convex ap-
proximation of Equation (4) iteratively [Boyd and Vandenberghe
2009], where each iteration amounts to a small linear system solve.
In fact, we found that in our case only one iteration is sufficient,
because the global step does not require an exact solution; a more
accurate result will be achieved during the course of multiple local-
global iterations.

Finally, we need to account for positional constraints due to bones.
As illustrated in Figure 4, we uniformly sample the surface of each
bone. At each sample point, we compute a vector of barycentric

coordinates bi ∈ Rn×1 such that (bT
i ⊗ I3)x retrieves the coordi-

nates of this point (⊗ denotes Kronecker product and I3 ∈ R3×3 is
identity). We attach each of these points to a fixed location by zero
rest-length springs, leading to the following energy term:

Ebone(x) =
∑
i

‖(bT
i ⊗ I3)x− ti‖

2
(5)

where ti ∈ R3 are the target positions. This formulation accounts
for the fact that due to limited resolution, bones cannot be resolved
as hard boundary conditions.

Our final potential energy of one element has the following form:

Emuscle(x) = wrotErot(x) + wvolEvol(x) + wboneEbone(x) (6)

where wrot, wvol, and wbone are the weights for each term. In
our examples, we use wrot = 100 for muscles and generic soft
tissues, wrot = 1000 for tendons, and wrot = 30 for fat. We
set wbone = 100. To achieve sufficient incompressibility, we use
wvol = 1000. We sum volume-weighted Emuscle(x) over all tetra-
hedrons and minimize the resulting energy using Projective Dy-
namics, starting from the rest pose as an initial guess.

The most time-consuming part of the Projective Dynamics solver
is computing sparse Cholesky factorization of the Hessian used in
the global step. Even though this Hessian does not depend on the
current deformed configuration x (which is the main advantage of
Projective Dynamics), it does, unfortunately, depend on the growth
deformation gradients Fg . This means that we would have to re-
compute the sparse Cholesky factorization every time we change
the growth parameters, hampering interactivity. To avoid this prob-
lem, we first observe the global step of Projective Dynamics can be
interpreted as one iteration of Newton’s method, which is sufficient
to produce a perfect solution, because the global step is a convex
quadratic problem. Next, we replace the Newton step with a quasi-
Newton one, i.e., proposing an “approximate global step.” Instead
of the correct growth-dependent Hessian, we simply use the Hes-
sian of the rest pose (without any growth). This way, we avoid the
expensive sparse Cholesky factorization when changing the growth
parameters. The trade-off is that this quasi-Newton step no longer
solves the global step perfectly. This is not a big problem, because
the subsequent iterations of the local/global process will correct this
error at a cost of extra iterations. In our experiments, we observed
that using this approximate global step increases the number of it-
erations only slightly, while the time savings by avoiding repeated
Cholesky factorizations are quite significant, see Section 4.

3.1.1 Fiber Estimation
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Figure 7: We solve for fiber directions by modeling a hypothetical
flow from one tendon (∂Ωin) to another (∂Ωout). There is no flow
through the epimysium (∂Ωepi), which forms the muscle boundary.



Figure 8: Our Laplacian-based fiber estimation method is applica-
ble not only to simple parallel muscles (right-bottom), but also to
fusiform (right-top) and bipennate muscles (left).

Fiber directions play a key role in both muscle contractions as well
as muscle growth. However, typical 3D anatomical models usu-
ally lack fiber information. Accurate fiber directions can be recon-
structed using medical imaging [Levin et al. 2011]. An alternative
proposed for computer graphics applications is B-spline interpola-
tion [Agur et al. 2003; Teran et al. 2005a]. However, this requires
tuning interpolation parameters which vary from muscle to muscle.
We propose a simple yet effective method to estimate fiber direc-
tions inspired by recent work in biomechanics [Choi and Blemker
2013]. The key observation is that fibers seem to point in the same
directions as gradients of a hypothetical flow from one tendon to
another, i.e., from one end of the muscle to the other, see Figure 7.
We can find this “flow” by solving a Laplace’s equation with mixed
boundary conditions. Specifically, at the outer surface of muscle
belly (epimysium), we require the normal derivative of our scalar
field φ to vanish, i.e., there is no flow through the epimysium. This
amounts to Neumann boundary conditions. At the input tendon,
we impose Dirichlet boundary condition fixing φ to zero and at the
output tendon, we fix φ to one. Formally, we solve:

∆φ(p) = 0, ∀p ∈ int(Ω)

subject to

φ(p) = 0, ∀p ∈ ∂Ωin

φ(p) = 1, ∀p ∈ ∂Ωout

∂φ

∂n
(p) = 0, ∀p ∈ ∂Ωepi

where Ωin denotes the input tendon, Ωout denotes the output tendon,
and Ωepi denotes the epimysium, as shown in Figure 7. The choice
of input and output tendons is arbitrary because we only need the
gradient of φ (the constants 0 and 1 used as Dirichlet boundary
conditions are also arbitrary). We define our fiber directions as the
normalized gradient of φ, i.e., ∇φ/||∇φ||. Note that we do not re-
quire ∂Ωin or ∂Ωout to be contiguous, the same formulation works
also for more complex muscles as shown in Figure 8. In our im-
plementation, we tet-mesh each muscle individually to precompute
the fiber directions. These individual meshes are then discarded,
and we store only the average fiber direction for each tetrahedron.

3.2 Volumetric Discretization

Ideally, our tetrahedral mesh would conform to the input polygonal
models of bones, muscles, and skin. We tried this approach ini-
tially but found that it results in a prohibitive number of degrees
of freedom, even with a relatively coarse tessellation of the input

402,136
tetrahedrons

1,013,564
tetrahedrons

375,187
tetrahedrons

(muscle envelope)

Figure 9: Volumetric discretization non-conforming to muscles re-
sults on aliasing-like artifacts on the skin (left). Increasing the res-
olution helps, but does not completely remove the problem, even at
the cost of much slower simulation (middle). Our “muscle enve-
lope” removes the artifacts without using too many tetrahedrons.

meshes. Instead, we use volumetric discretization which conforms
only to the skin. This implies that tetrahedra can be occupied by
multiple organs, which we resolve using material blending (Sec-
tion 3.1). Unfortunately, in spite of the blending, growth simulation
with tetrahedral meshes conforming only to the skin produces arti-
facts, see Figure 9 (left). The problem is that during muscle growth,
the interface between the growing and non-growing tissues is not
smooth, because the tet-mesh generator is unaware of the internal
structures. This results in artifacts analogous to aliasing. Increas-
ing the resolution helps, however, even with one million tetrahedra,
some artifacts are still noticeable (Figure 9, middle).

We propose a method to avoid these problems without using ex-
cessively many degrees of freedom. The key idea is to create a
“muscle envelope” — a well-behaved polygonal mesh that sepa-
rates the two conforming tetrahedral meshes for the subcutaneous
fat and the rest of the body. We use constrained Delauney tetrahe-
dralization [Si 2011] to ensure the resulting discretization conforms
to both the skin and the muscle envelope. The resulting tet-mesh
cleanly separates muscles from the subcutaneous fat without pro-
hibitively many elements. Specifically, our final mesh has 76,087
vertices and 375,187 tetrahedra and produces visually pleasing re-
sults even after significant growth (Figure 9, right).

We create the muscle envelope by progressively shrinking the skin
mesh until it reaches the muscles or bones. To implement this skin
shrinking process, we re-use some of the components of our muscle
growth system (see Section 3.1). Specifically, we use our volumet-
ric discretization conforming to the skin and we craft an elastic en-
ergy corresponding to uniform shrinking by setting each growth de-
formation gradient Fg = βI, where β < 1 is the shrinking param-
eter and I ∈ R3×3 is the identity. Defining Fe = FF−1

g as before,
we use the corotated elastic energy (Equation (2)), augmented with
a Tikhonov regularization term which guarantees a unique solution
despite the translation and rotation invariance of the corotated elas-
ticity. In our system, we use wrot = 100.0 and wreg = 10.0 and
we minimize the elastic energy using Projective Dynamics (with-
out any modifications as speed is not critical in this pre-processing
phase). Once the quasi-static solution has been computed, we check
whether any vertex of the shrunken skin collided with a muscle or
a bone. If a collision has been detected, we constrain the offending
vertex to the point of its first intersection and keep this constraint
active for all subsequent shrinking iterations. We also experimented
with sliding, but we found it is typically undesirable because we do
not want the muscle envelope to deviate too much from the skin.
At every iteration, we use β = 0.9 so that the muscle envelop



Figure 10: Our “muscle envelope” (top-middle) is created by
shrinking the input skin (top-left) until it reaches the muscles and
the bones. We assume the space between the muscle envelope and
the skin corresponds to subcutaneous fat (top-right). As a result, the
envelope cleanly separates subcutaneous fat (green) from muscles
(red) and generic soft tissues (blue).

shrinks gradually. We stop the process after 10 iterations. The re-
sulting muscle envelope is a well-behaved mesh tightly wrapping
the muscles and bones; embedding it in our volumetric discretiza-
tion creates a clean interface between subcutaneous fat and muscles
(Figure 10).

3.3 Fat Growth

In this section we describe our model of fat hypertrophy. The first
step is to segment out the volumetric region corresponding to sub-
cutaneous fat. The muscle envelope discussed in the previous sec-
tion facilitates this process, because we can simply select the tetra-
hedra which are outside of the muscle envelope. Note that our
model grows only this region, corresponding to subcutaneous fat.
Other types of adipose tissues are treated as generic soft tissues and
are not subject to growth.

Inspired by the success of the shrinking process used to establish the
muscle envelope, we initially tried to employ an analogous model
for fat growth. Specifically, we set the growth deformation gradi-
ents corresponding to the fat tetrahedra to Fg = βI, with β > 1,
and we find the quasi-static solution of a corotated elastic energy,
as in Section 3.2. Even though this process successfully increases
the volume of our subcutaneous fat region, the results do not look
very realistic (see Figure 11 left). The reason is that the mechanical
properties of fat are fundamentally different from muscles, because
fat is very supple and exhibits semi-fluid behavior [Wolfram-Gabel
et al. 1996]. Intuitively, when a subject is gaining weight, the fat
fills any areas that are available in order to minimize stretching of
the skin. The fact that subcutaneous fat “smooths out” muscle def-
initions is well-known to bodybuilders who strive to reduce it as
much as possible.

We achieve the desired semi-fluid behavior of fat by a physics-
based model inspired by the elastic behavior of pressured rubber
balloons [Skouras et al. 2012]. Effectively, we treat the fat as fluid,
but we introduce a regularization term preventing large displace-
ments. Recall that in our system, we simulate growth without the
presence of gravity and, therefore, the increased fat mass does not

Figure 11: Modeling fat as a solid elastic material does not yield
the desired effect (left). Our system models fat as semi-fluid, achiev-
ing much more natural results (right).

have any impact on the adjacent soft tissues. We can thus assume
that during fat growth, the volume of the body under the muscle
envelope is fixed. Our fat growth model is based on the fact that
an increase of fat volume introduces pressure on the skin. The skin
resists this pressure with a restoring force which prevents it from
stretching too much. Specifically, given a fat growth parameter
γ > 0, we define the pressure potential on vertex xi, i = 1, . . . , n
as:

pi(xi) = γ(xi − x̃i)
Tñi (7)

where x̃i and ñi is the rest pose position and normal of vertex i. We
use area-weighted normals. The stretching resistance of the skin is
modeled using 2D corotated elasticity, applied to each skin triangle
t:

Eskin,t(x) = ‖Ft − PSO(2)(Ft)‖2F (8)

where Ft ∈ R2×2 is the in-plane deformation gradient. For each
vertex we add a regularization term analogous to a zero rest-length
spring, ||xi − x̃i||2, which prevents each vertex from departing too
far from its rest pose. We define our final energy as:

wstretch

∑
t

Eskin,t(x) +
∑
i

(wpresspi(xi) + wreg||xi − x̃i||2) (9)

where t sums over all triangles and i over all vertices. We solve
for quasi-static equilibrium using (unmodified) Projective Dynam-
ics, which gives us the positions of the skin vertices. Subsequently,
we interpolate interior vertices of the subcutaneous fat region us-
ing harmonic coordinates [Joshi et al. 2007], treating the skin and
the muscle envelope as boundary conditions. We found the fol-
lowing parameters work well: wstretch = 15.0, wpress = 1.0,
wreg = 10.0/γ, producing very interesting uniform fat growth re-
sults.

To obtain more realistic non-uniform results, we need to account
for the distribution of fat cells inside the human body, which varies
largely between individuals and explains why different bodies have
different preferential locations of fat storage, e.g., some people
more easily gain fat in the abdomen, while others in the hip or chest
areas. Common 3D anatomy models, including ours, correspond to
lean individuals and lack information about the distribution of fat
cells. Therefore, we add this information using a scalar function
f defined on the skin. For vertex i, fi ∈ [0, 1] tells us how much
fat growth occurs near this vertex, which is, roughly speaking, pro-
portional to the number of fat cells on a ray originating at x̃i with
direction ñi. We use the value fi to modulate the pressure and reg-
ularization terms in Equation (9), effectively creating skin regions
which are more or less prone to fat growth. In our system, the
scalar function fi is designed by the user, who can use it to control



Figure 12: Our system simulates fat growth without the presence
of gravity (middle, the input model is on the left). We allow the user
the preview the body after adding gravity (right).

(a)
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Figure 13: We change the shape of bones using bounded bihar-
monic weights with point handles placed on each bone head (a).
Small bones use only one handle and are grouped together (b). The
resulting deformations do not change the shape of the joints (c).

the desired fat distribution. The scalar parameter γ (Equation (7))
controls the amount of fat growth.

Even though this model is a gross simplification of real fat growth
processes in the human body, it produces surprisingly realistic
visual results, especially after we apply gravity in the motion-
simulation phase, which allows the fat to sag in a natural way,
see Figure 12. We also experimented with fat growth with grav-
ity, adding gravitational potential to Equation (9). This approach
is better justified physiologically, because human bodies naturally
grow in a gravitational field. One complication is that we would
ultimately have to cancel the effect of gravity before simulation
[Chen et al. 2014], because simulation reintroduces gravity along
with other effects such as inertia. We prefer to avoid these compli-
cations by decoupling the effects of growth and gravity.

3.4 Bone Growth

The process of bone growth is substantially different from soft-
tissue growth, which we have discussed in the previous sections.
While the volume of muscles and subcutaneous fat can change sig-
nificantly during the life of an adult subject, bone growth occurs

Figure 14: Bone growth can be used to adjust the height of the
body and the lengths of the limbs.

only during childhood and adolescence. Even though simulating
the growth of a child would be an extremely interesting research
direction, the goal of this paper is a body shape modeling tool for
computer graphics. Therefore, we base our bone growth model on
geometric shape deformation techniques. We start by modeling the
desired skeleton size and shape, ignoring the soft tissues. Subse-
quently, we fix the re-shaped skeleton and deform the adjacent soft
tissues to obtain a full volumetric model.

We can use any shape deformation technique to edit the shape of
the bones, such as applying an affine transformation to each bone
[Ali-Hamadi et al. 2013]. However, to obtain more realistic and
animatable results, we need to avoid non-uniform scaling of the
bones, which would lead to unrealistically deformed bone heads.
Also, we must preserve the structure of the joints, i.e., the bone
heads meeting at a joint must be deformed in a coherent way, other-
wise we may obtain abnormal joint shapes or even self-intersecting
bones. We found that these constraints can be met by linear blend
skinning, if we introduce point handles at each bone head, see Fig-
ure 13(b). To deform the bones, we define a transformation Tj at
each handle j, consisting only of translation and uniform scaling.
We transform each rest pose bone vertex ṽ by linear blend skinning,
i.e., v =

∑
j wjTj ṽ, where the skinning weightswj are computed

using bounded biharmonic weights [Jacobson et al. 2011], see Fig-
ure 13(a). This way, we preserve the structure of the joints because
the blending of transformations occurs only in the middle parts of
the bones, see Figure 13(c). For extremities such as the hands and
feet, we create only one point handle at each small bone, transform-
ing the entire part uniformly. Even though we could use the same
method to change the length of the fingers and toes, we focus on
the whole body and defer detailed modeling of hand, feet, and the
head to future work.

Having obtained the desired shape and size of the skeleton, we need
to propagate these changes to the adjacent soft tissues. We achieve
this by minimizing a corotated elastic energy (Equation (2)) subject
to position constraints (zero rest-length springs) corresponding to
the new bones. We use the same uniform sampling of the bones as
in Section 3.1, where we set the target positions ti in Equation (5)
according to the new bones. We do not include any volume preser-
vation terms, because the volume of the soft tissues is expected to



Figure 15: Muscle growth can be used to simulate both atrophy
(left) as well as hypertrophy (right). Compare with our input model
in the middle.

Figure 16: The user can control the growth parameters of every
muscle individually. Here, we grow only one part of the body to
exaggerate this effect.

change. We minimize our energy using our modified Projective Dy-
namics (see Section 3.1), producing a new rest pose model which
is ready for simulation of muscle and fat growth. Even though the
corotated elastic energy does not guarantee non-inverted tetrahedra
[Schüller et al. 2013], we did not obtain any self-intersections even
when creating very tall or short subjects, see Figure 14.

4 Results

Our muscle growth model can simulate the effects of both hyper-
trophy and atrophy. This is controlled by changing the parameter
α in Equation (1), see Figure 15. In all of our results, we produce
not only the skin of the target character, but also its full volumet-
ric deformations. To visualize the muscles, as in Figure 15, we
barycentrically embed our polygonal muscle models in the tetra-
hedral mesh. An important practical consequence is that our re-
sulting body shapes are ready for motion simulation using standard

Figure 17: Our system allows the user to provide a function which
specifies how much each part of the body is prone to fat accumula-
tion (left), achieving different types of obese bodies (right).

physics-based techniques [Lee et al. 2009].

Excessive parameter tuning is not necessary. In fact, we obtain vi-
sually plausible results even if we set all muscle growth parameters
α to the same value. However, our system allows the user to con-
trol every muscle individually, which enables us to design almost
arbitrary body shapes, see Figure 16. To achieve a reasonable com-
promise between flexibility and the number of parameters, in our
experiments we divided the muscles into 12 groups, consisting of
major muscle groups (e.g., quadriceps, abdomen, forearm) and im-
portant individual muscles (e.g., biceps and deltoid). Tuning the
resulting 12 parameters is quite entertaining and even without any
anatomy or bodybuilding expertise, the process is very fast. The
longest example (Figure 15 right) took us about 5 minutes.

Fat hypertrophy is another important factor contributing to the
shape of the human body. Because the distribution of fat varies dra-
matically between individuals, we allow the user to specify a scalar
function on the surface of the body which specifies how much each
body part is prone to fat accumulation. We show fat growth results



Figure 18: In our pipeline, we first adjust the lengths of the bones
and the adjacent soft tissues. Subsequently, we apply muscle growth
and fat growth.

Figure 19: Our system produces musculoskeletal models which are
ready for simulation.

for three different types of fat distributions in Figure 17. We created
these functions with a simple 3D painting interface. The design of
each fat body took us around 15 minutes, with a significant portion
of the time spent in previewing the results. We did not experiment
with fat atrophy because our input anatomy model is already quite
lean.

Our physics-based growth models are combined with a simple
yet effective geometric shape deformation technique to adjust the
height of the skeleton and the lengths of the individual bones. We
start by specifying global uniform scaling for the whole body, fol-
lowed by non-uniform adjustments to the trunk and the skull. Sub-
sequently, we manipulate the limbs using control points at each
bone head, see Figure 13. We group all of the small bones in the
hands and the feet and we control them as a whole. The deforma-
tions of the skeleton are immediately propagated to the whole body
and the user previews the final result as shown in Figure 14. The
entire bone modeling session typically takes no more than 5 min-
utes.

Our complete workflow is illustrated in Figure 18. First, the user
adjusts the size of the skeleton and the lengths of the limbs. This
produces a rest-pose ready for our physics-based simulation of mus-
cle and fat growth. Our system first simulates muscle growth, fol-
lowed by fat growth, and finally we add the effect of gravity to pro-
duce natural sagging of the fat (the effect of gravity on muscles is
barely noticeable). We found that this decoupling also makes sense
from the modeling perspective, because it is intuitive to design the
human body one layer at a time, starting from the inside. We show
that our resulting human body models are ready for physics-based
simulation of motion. We experimentally verified this by simulat-
ing jumping of an obese subject and weight training of a muscular
subject, see Figure 19 and the accompanying video. The main bot-
tleneck of our run time is solving for quasi-static equilibrium using
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Figure 20: Applying the exact Hessian in our local/global solver
(red curve) leads to only slightly faster convergence than our ap-
proximate but constant Hessian (blue curve). The latter avoids slow
matrix factorization when changing growth parameters.

Projective Dynamics. In particular, its global step involves solving
linear systems. However, our technique of approximating the true
growth-dependent Hessian with a constant rest pose Hessian (see
Section 3.1) helps significantly. Even though in theory the approx-
imate Hessian provides inferior descent directions (analogously to
quasi-Newton methods), we found that in our case the rest pose
Hessian is an excellent approximation of the exact Hessian. This is
demonstrated by our experiment in Figure 20, where we compare
muscle growth simulation with our approximate Hessian and the
exact one.

Sparse Cholesky factorization of the Hessian takes 5.51 seconds on
a quad-core Intel Core i7 2.90GHz CPU using the Eigen library.
However, this is done only once during initialization. At run time,
each iteration of the local-global process takes 0.196 seconds on
average – the local steps are quite fast even with our volume preser-
vation terms. The user can preview intermediate results after every
iteration. Typically, 10 iterations of the local/global process lead to
sufficient visual quality.

The simulation of fat growth operates only on the subcutaneous
fat region and therefore each iteration of the local-global process
takes only 0.04 seconds. However, we use more iterations (typi-
cally 50) to accurately resolve the increase of volume of our obese
body shapes. Even though our current prototype is missing many
optimization opportunities, we found the performance sufficient to
achieve near-interactive user experience. This makes the process
of designing different body shapes fast and enjoyable. Please see
Figure 1 for several examples of human body models created using
our system.

5 Limitations and Future Work

Our models relies only on a crude simplification of the biological
processes responsible for growth of living tissues. For example,
when simulating obesity, we ignore the increase of volume of vis-
ceral fat and organs such as the liver. Our model of bone growth
does not even attempt to be realistic, because in reality, the bone
grows only from a small growth plate close to the bone head. In
our system we chose to trade simplicity and fast computations for
accuracy. We believe that the choice of our methods is well suited
for applications in computer graphics.

Our work opens up many questions in the area of human body
growth modeling. In our system, we rely only on a single anatom-



ical template with ad hoc material parameters. One avenue to im-
prove both quality and accuracy of our models would be to use more
data acquired e.g. using MRI scanning [Fan et al. 2014]. Combin-
ing our models with data-driven techniques would open a lot of
possiblities. For example, statistical shape models of internal or-
gans such as liver or kidneys could be incorporated to our models
using example-based materials [Martin et al. 2011]. Conversely,
our model could be used to generate input for data-driven body
modeling methods. Although we focus on growth starting from our
lean human body template, simulating weight loss of obese sub-
jects would also be very interesting because skin typically does not
shrink back. We did not develop detailed models for growth of the
skull, hands, and feet. Growth modeling of the skull is a particu-
larly important direction of future work because it could help us un-
derstand and treat pathological conditions such as craniosynostosis.
Even though we experimented only with a human body model, we
believe that our methods should be directly generalizable to other
vertebrates and – with some modifications – to other animals. The
main hurdle in these experiments is the availability of 3D anatomi-
cal models, even though recent methods such as Anatomy Transfer
[Ali-Hamadi et al. 2013] aspire to alleviate this.

6 Conclusion

We presented a system to create a variety of human body shapes
using a single anatomical model as input. To our knowledge, our
work is the first to simulate physics-based growth processes of hu-
man tissues in computer graphics. We believe that our system will
be instrumental in reducing the often prohibitive costs of human
body modeling and will find applications even beyond the tradi-
tional realms of computer graphics, such as film, games, and visual
effects. For example, we envision visualization applications use-
ful in bodybuilding, ergonomic analysis, or to illustrate the adverse
effects of obesity. At a higher level, we hope that our work will
inspire new synergies between computer graphics and biomechan-
ics.
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