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We present a shape deformation algorithm that unfolds any given 3D shape
into a canonical pose that is invariant to non-rigid transformations. Unlike
classical approaches, such as least-squares multidimensional scaling, we
preserve the geometric details of the input shape in the resulting shape,
which in turn leads to a content-based non-rigid shape retrieval application
with higher accuracy. Our optimization framework, fed with a triangular or
a tetrahedral mesh in 3D, tries to move each vertex as far away from each
other as possible subject to finite element regularization constraints. Intu-
itively this effort minimizes the bending over the shape while preserving the
details. Avoiding geodesic distances in our computation renders the method
robust to topological noise. Compared to state-of-the-art approaches, our
method is simpler to implement, faster, more accurate in shape retrieval,
and less sensitive to topological errors.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

General Terms: Shape Representation, Shape Retrieval

Additional Key Words and Phrases: Canonical pose, detail preservation,
non-rigid shape retrieval

1. INTRODUCTION

3D shapes are the building blocks of many computer graphics and
vision applications ranging from interpolation [Freifeld and Black
2012] to deformation [Nealen et al. 2006]. Consequently it is im-
portant to find the best representation of these shapes tailored to the
specific application in mind. In this paper, we will introduce a new
canonical representation that is shown to be more advantageous for
the shape retrieval application.

Thanks to the increasing sizes and numbers of 3D model repos-
itories, the task of fast and robust retrieval of shapes never loses
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attention [Li et al. 2014]. Our new canonical shape representation
facilitates a scalable search algorithm that is shown to be effective
on 3D shape databases of articulated, or equivalently non-rigid, ob-
jects. Existing approaches essentially address this problem by per-
forming 3D non-rigid shape comparisons using i) descriptors, ii)
global intrinsic properties, or iii) canonical forms, where the last
option is the most promising one as the canonical form can easily
be integrated into a simpler and well-studied rigid shape retrieval
process. Despite this advantage, there has been few canonical forms
proposed in the literature. Moreover, all but the most recent one
[Lian et al. 2013] are based on embedding procedures that intro-
duce serious distortions (Fig. 1). The feature-preserving canonical
form of [Lian et al. 2013] has obtained significantly better retrieval
accuracy than the state-of-the-art canonical methods. This is due
to the fact that semantically similar objects with varying geomet-
ric details could not be well distinguished by a canonical pose that
distorts details. Our algorithm, compared to this closest work [Lian
et al. 2013], is simpler to implement, faster, more accurate in shape
retrieval, and less sensitive to topological noise. In addition to this
main contribution, our canonical pose simplifies texture mapping
and allows geodesic distance approximation by revealing the ex-
trinsic properties of the shapes.

In order to compute the detail-preserving canonical pose from a
given arbitrary pose, we formulate an optimization problem whose
solution separates each mesh vertex as far as possible while pre-
serving the geometric details of the original shape such as the
bumps and cavities on the surface. Hence we promote a pose with
minimum bending and maximum geometric detail.

The source code and the executables for the method
that we present in this paper are publicly available at
http://www.ceng.metu.edu.tr/∼ys/pubs.

2. RELATED WORK

Shape retrieval is an important problem coming in various scenar-
ios based on the query paradigms as well as the supported deforma-
tions between the query and the database models [Tangelder and
Veltkamp 2008]. The former includes query-by-keyword, query-
by-sketch, query-by-example, or a combined usage, whereas the
latter determines the similarity measure to be considered while
matching the query with the database models; popular ones be-
ing rigid matching and non-rigid matching. We address 3D shape
retrieval with non-rigid matching and query-by-example setting,
meaning that an example shape in arbitrary pose will be non-rigidly
matched to the database models with the hope of returning the se-
mantically similar objects to the user.

Shape representation issue is closely related to the shape re-
trieval problem. One may represent the exemplar query shape and
the database shapes with global descriptors to convert the problem
into a lower-dimensional and hence simpler descriptor matching
problem. The popular descriptors that are invariant to rigid trans-
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formations, i.e., translations and rotations, for rigid shape retrieval
are spin images [Johnson and Hebert 1999; Assfalg et al. 2007],
wavelets [Paquet et al. 2000], statistical moments [Zhang and Chen
2001; Novotni and Klein 2003], shape contexts [Belongie et al.
2002], shape distributions [Osada et al. 2002], spherical harmonics
[Funkhouser et al. 2003; Kazhdan et al. 2003], and lightfield de-
scriptor [Chen et al. 2003]. Note that, [Funkhouser et al. 2003] and
[Chen et al. 2003] allow sketch queries as part of their example-
based retrieval engines for rigid shapes. Alternatively rigid shape
retrieval problem may be solved by efficiently registering the query
to each database models in the low-dimensional space of rigid
transformations [Besl and Mckay 1992]. The initial guess for [Besl
and Mckay 1992] can always be improved by the fast PCA-based
alignment [Kazhdan 2007]. A simple correspondence based on the
closest points of the registered pair would then yield a cost descrip-
tor that is useful for retrieval purposes.

For the non-rigid shape retrieval, which is more generic than
the rigid counterpart, the existing methods are based on i)
articulation-invariant descriptors, ii) global intrinsic properties, or
iii) articulation-invariant postures, a.k.a. the canonical poses. The
descriptors here are invariant to non-rigid transformations, i.e.,
rigid transformations plus bending. Laplace-Beltrami differential
operator is used extensively in the formulation of these descriptors
[Reuter et al. 2006; Sun et al. 2009; Zaharescu et al. 2009; Bron-
stein and Kokkinos 2010; Raviv et al. 2010; Bronstein et al. 2011].
A global intrinsic property for all non-rigid shapes is the geodesic
distance, which is consequently a good clue for non-rigid matching.
Many algorithms exploit the preservation of geodesic distances un-
der non-rigid transformations in order to utilize descriptors [Mah-
moudi and Sapiro 2009] or graphs [Hilaga et al. 2001; Barra and
Biasotti 2013] for non-rigid shape retrieval. Another important us-
age of the geodesic distances is the creation of canonical poses that
are invariant to non-rigid transformations. In the canonical pose,
the Euclidean distance between any two surface points approxi-
mates the geodesic distance between the corresponding vertices in
the original pose. This idea is realized with the classical multidi-
mensional scaling (MDS) method [Gower 1966; Jain and Zhang
2007] where the leading eigenvectors of the geodesic affinity ma-
trix define the canonical pose. A similar pose is achieved with the
least-squares MDS where a similar objective function is minimized
[Elad and Kimmel 2003; Au et al. 2010]. Both of these MDS pro-
cedures require dense geodesic distance computations [Crane et al.
2013] which render them inappropriate for high-resolution meshes.
[de Silva and Tenenbaum 2002; Panozzo et al. 2013] address this
issue by finding geodesics only for the few landmark points and in-
terpolating the result for the remaining data points. Another prob-
lem with the geodesic-based MDS methods is their vulnerability to
the topological noise as a small modification on shape connectivity
may change geodesics, i.e., the shortest paths, drastically. To rem-
edy this problem [Rustamov 2007] proposes a canonical pose based
on Laplace-Beltrami eigenfunctions, whose sign and order switch
issue, however, poses another problem. [Lipman and Funkhouser
2009] also avoids the use of geodesic distances by conformally
mapping shapes with sphere topology into the extended complex
plane via Möbius embedding. All these canonical poses exhibit
significant distortions as it is impossible to satisfy all pairwise dis-
tances simultaneously in the restricted flat Euclidean space [Bron-
stein et al. 2008]. In order to eliminate the distortion, [Bronstein
et al. 2006] proposes to embed one of the shapes to be matched into
the surface of the other via the generalized MDS, which requires
minimization of a non-convex stress function. Due to the heavy
computational complexity involved, generalized MDS is presented
as a solution for the shape correspondence problem that deals with

only two shapes, rather than the problem of shape retrieval from
large databases. Given plenty of execution time, generalized MDS,
as well as the other non-rigid shape correspondence algorithms
[Jain and Zhang 2006; Ovsjanikov et al. 2010; Sahillioğlu and
Yemez 2012; 2013], may be utilized to address the retrieval prob-
lem as the correspondence cost defines a plausible similarity mea-
sure.

Among the three types of non-rigid shape retrieval methods
discussed above, namely i) descriptor-based, ii) intrinsic-based,
and iii) canonical, the last one is generally promoted as the most
promising approach because by definition all shapes of the same
class converges to the same canonical pose up to rigid transfor-
mations. This makes all the simpler and well-acknowledged rigid
retrieval techniques available for the non-rigid retrieval problem,
which is a big win. It is then natural to seek for improvements on
the detail-oblivious canonical representation as objects of the same
class with varying geometric details could not be distinguished suf-
ficiently in the original setting. The first work addressing this is-
sue to some extent is [Lian et al. 2013], which deforms near-rigid
mesh segments towards the corresponding components on the dis-
torted least-squares MDS canonical pose. Although details are pre-
served to some extent, segmentation errors on the surface cause
problems on the output shape (Fig. 12). Besides the computational
cost is too expensive for real search engines and the method is sen-
sitive to topological errors. Their resulting detail-preserving canon-
ical pose, on the other hand, performs much better than the detail-
oblivious canonical poses for non-rigid shape retrieval purposes, as
expected. We are inspired by this improvement and introduce our
detail-preserving 3D canonical posing algorithm which produces a
smoother and more accurate unfolding in a smaller amount of time
than that of [Lian et al. 2013], hence improving their good retrieval
performance even further. We also note that we avoid geodesic dis-
tances in our computations for a scalable method that is also robust
to topological noises. Thanks to the simple closed form of our de-
formation model, our algorithm is not only efficient but also easy to
implement. We finally note that in a concurrent work [Sahillioglu
2015] obtains a detail-preserving canonical form by treating the
vertices of the Landmark MDS embedding [de Silva and Tenen-
baum 2002] as handles to deform the original shape. However,
their work employs the problematic geodesic distances and a sim-
pler yet faster deformation regularization energy. Instead, we do not
use geodesics and achieve regularization with a more sophisticated
scheme based on springs and the finite element method, which in
turn achieves more accurate results in terms of element inversions
and retrieval performance.

Our method is based on shape deformation, which allows us to
explicitly control the geometric details of the shapes, a property
that is lacking in all the embedding-based canonical pose creation
methods. There are different deformation energies that guide shape
deformation by measuring the difference between the current de-
formed configuration and the initial fixed rest-pose [Nealen et al.
2006; Botsch and Sorkine 2008]. The most basic one is the Dirich-
let energy [Bonet and Wood 1997] that penalizes rotations and
consequently allows only small deviations from the initial pose.
Green’s strain energy [Bonet and Wood 1997] allows not only the
proper rotations but also the improper ones, i.e., reflections, which
in turn enables a better separation from the initial pose while per-
mitting undesired element inversions. This problem is handled in
the state-of-the-art deformation energies that facilitate large defor-
mations with no or very few inverted elements [Irving et al. 2004;
Muller et al. 2005; Sorkine and Alexa 2007; Liu et al. 2008; Chao
et al. 2010; Stomakhin et al. 2012].
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Deformation energies become more interesting when they are
coupled with positioning and regularization constraints. In interac-
tive shape deformation, for instance, user specifies the position of
the manipulation handles as the positioning constraints that work
against the deformation energy [Sorkine et al. 2004]. Regulariza-
tion constraints, on the other hand, try to keep the mesh in good
shape during the whole deformation process. They essentially help
the deformation energy term by additional soft or hard specifica-
tions on some regional properties such as angle, area, and volume
[Muller et al. 2004; Irving et al. 2007; Adams et al. 2008; Schuller
et al. 2013]. We adapt the composite element approach of [Irving
et al. 2007] which enforces constant volume in one-ring of each
vertex.

Finally, we mention the special poses in the literature that are
used for tasks other than shape retrieval. A commonality of all
these poses is that the geometric details are preserved. [Mitra et al.
2007], for instance, strives to bring a given arbitrary pose into a
special pose, which is in their case the symmetrized pose that en-
hances Euclidean symmetries present in the input. They find the
symmetrizing transformation based on a set of corresponding sym-
metric point pairs computed by a curvature-based search algorithm.
[Twigg and Kac̆ić-Alesić 2011] approximately compensates the
mesh sagging effect under gravity by estimating rest-length param-
eters of a spring-mass system. Inverse design methods in [Skouras
et al. 2012; Chen et al. 2014] aim to compute a rest-shape for 3D
printing, which can deform into the desired target shape under spec-
ified forces when fabricated. Based on the concepts of electrostat-
ics, [Wang et al. 2013] achieves spherical surface parameterization
for shapes with arbitrary topology.

3. ALGORITHM

In this section we describe our shape deformation algorithm for
canonical pose optimization. Deformation is defined as a change in
the shape or pose of an object due to applied forces. In other words,
deformation is a mapping from Rm to Rm, where we consider m =
3 in this work.

The input to our system is an elastic 2D triangular surface em-
bedded in R3. For more realistic results, we consider volumetric
elasticity, which requires tetrahedralizing the entire volume of the
input surface [Jacobson et al. 2013]. After this preprocessing, we
denote with V = {1, 2, .., n} and E = {1, 2, .., e} the set of ver-
tex and edge indices, respectively. The position of vertex i of our
tetrahedral mesh M is given by vi.

Our task is to bring M into its canonical pose, which can be re-
alized by minimizing the bending on it while conserving the shape
details. The problem can then be formulated as a search over all
possible vertex locations so as to minimize a convenient energy
functional E(v):

v∗ = argmin
v

E(v). (1)

The search space is reduced by exploiting the fact that the optimal
locations v∗ for a bending-free pose move every vertex as far away
from each other as possible while keeping M in good shape with
full original details. This is equivalent to detail-preserving unfold-
ing of the input mesh. In the following we derive our E(v) that
addresses this requirement.

3.1 Canonical Pose Optimization Energy

We start with the simplest energy function:

E(v) =
∑
i<j

(||vi − vj || − g(i, j))2, (2)

where g(., .) is the geodesic distance between two vertices on a
given surface. This is a mass-spring system, arguably the simplest
deformation model consisting of point masses connected together
by massless springs. Spring forces are governed by Hooke’s law.
See [Nealen et al. 2006] for a more detailed discussion. Our mass-
spring system in Eq. 2 consists of V as masses and the so-called
geodesic springs that run between all pairs of vertices {(i, j)|i <
j} ∈ V . Minimization of this energy makes the lengths of the
geodesic springs close to the corresponding pairwise geodesic dis-
tances, which effectively separates any given point by the amount
of the geodesic distance in between. This is indeed a well-known
Euclidean embedding method, Multidimensional Scaling (MDS),
that comes in least-squares form [Elad and Kimmel 2003]. The
primary purpose of the MDS methods is to represent the pairwise
(dis)similarity data, e.g., geodesic distances, as Euclidean distances
in a low-dimensional space in order to make it accessible to vi-
sual inspection and further exploration. Since MDS methods do not
utilize any information other than the pairwise data, they are very
likely to lose the geometric details of the input in the resulting em-
bedding, as exemplified in Fig. 1 (see also Figures 7-9 and 12 for
outputs of different types of MDS method).

Fig. 1. Original shapes (top row) unfolded by minimization of Eq. 2, or
equivalently, by the least-squares MDS method [Elad and Kimmel 2003]
(bottom row). Note the loss of details.

In order to alleviate the detail-preservation problem of Eq. 2, we
add new springs to our existing mass-spring system:

E(v) =
1

2

∑
(i,j)∈G∪E

kij(||vi − vj || − rij)
2, (3)

where the spring set is the union of the geodesic springs G (between
all pairs of vertices {(i, j)|i < j} ∈ V ) and the so-called edge
springs E (between connected pairs of vertices (i, j) ∈ E), and
kij is the spring stiffness. The rest length rij takes the value of
geodesic distance (for geodesic springs) or original edge length (for
edge springs).
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The problem with Eq. 3 is its dependence on the original
geodesic distances and the pure spring-based approach to capture
volumetric elasticity (see Fig. 2-b). Geodesic distances require sig-
nificant time and storage complexity for high-resolution meshes.
More importantly, since we expect some stretching in the un-
folded pose that we aim for, original geodesic distances should al-
ter in an unpredictable manner. Therefore, we remove geodesic dis-
tances entirely from our system and employ a charge-based method
(Eq. 4). With springs, on the other hand, it is very difficult to con-
trol the compressibility of a tetrahedron, and also impossible to de-
tect inversions. Setting stiffness parameters for non-uniformly tes-
selated meshes is yet another issue. Therefore, we add the support
for the finite element method, representing a principled approach
to address these problems (Eqs. 5 and 6).

Fig. 2. Original mesh (a) and its canonical pose due to Eq. 3 (b), Eq. 4 (c),
and Eq. 4 with constraints (d). Inverted or highly-distorted parts are zoomed
in.

Our proposed energy function for the canonical pose computa-
tion is as follows:

E(v) =
1

2
(
∑

(i,j)∈C

−kij ||vi−vj ||2+α
∑

(i,j)∈E

kij(||vi−vj ||−rij)
2),

(4)
where C denotes the charge springs (between all pairs of vertices
{(i, j)|i < j} ∈ V ), E is the set of edge springs as before, kij
is the spring stiffness, and α is a tuning parameter controlling the
effect of the edge springs. Spring stiffness value kij is always 1 in
this paper. We control the regularization effect with α parameter,
and elaborate on the choice of α in Sec. 4.2.2. The rest length rij is
the original edge length for edge springs, and equal to 0 for charge
springs. The charge springs essentially maximize the distance be-
tween vertex pairs by minimizing the negative distance between
them. The name charge comes from the fact that identically charged
particles repulse each other in electric fields, just like our vertices
V repulsing each other. To summarize, edge springs help detail-
preservation whereas charge springs are responsible for the unfold-
ing operation. The main reason of the success of the proposed en-
ergy function (Eq. 4) over the original one (Eq. 2) is the elimination
of unpredictable geodesic distances in the unfolded pose. Another
advantage is time and storage efficiency as well as topological noise
robustness (Fig. 13) obtained by ruling out geodesic computations.
We visualize the charge and edge springs on a didactic example in
Fig. 3. See also Fig. 2-c and Fig. 6-right to see an input pose and
the resulting canonical pose based on these springs.

Although our final energy in Eq. 4 is free of geodesic distances
and hence the associated problems, it still involves regularization
problems due to springs as shown in Fig. 2-c (see also Fig. 6-right).
We address this issue by minimizing Eq. 4 subject to finite element

Fig. 3. A 2D mesh with 5 vertices and 8 edges has
(5
2

)
= 10 charge

springs (red) and 8 edge springs (bold green). Edge springs are generally
stiffer to better control the repulsing effect of the charge springs, e.g., edge
springs prevent the vertical charge spring (the longest one) from separating
the top and the bottom vertices by infinite distance.

constraints. The first set of constraints is responsible for preserving
local volume around each vertex:

ci(v) :
∑

t∈η(i)

vol(t) = li ∀i ∈ V, (5)

where η(i) are the tetrahedra indices in the one-ring neighborhood
of vertex i, function vol(t) measures the volume of t, and li is the
initial local volume around i in the original pose. Note that this is
the one-ring composite element constraint in [Irving et al. 2007],
which avoids locking, i.e., the inability of a given overconstrained
finite element space to approximate solutions. The second set of
constraints are inequalities to prevent inversions:

ct(v) : vol(t) > ϵ ∀t ∈ T, (6)

where T is the set all tetrahedra indices and ϵ is a small constant
for numerical inaccuracies, being one-hundredth of the minimum
volume of all the original tetrahedra. These two sets of constraints
along with the edge springs achieve a nice regularization effect,
which we visualize in Fig. 2-d (see also Fig. 6-middle). Note that,
edge springs are still a fundamental part of our formulation as they
prevent constraints from being satisfied with arbitrary edge lengths.
In addition to or in place of Eqs. 5 and 6, we have also tried another
constraint candidate, which preserves the local edge length summa-
tion around each vertex, i.e., sum of lengths of the edges incident
to a vertex is preserved, and yet not observed any improvement.
For an efficient solution of our nonlinear constrained optimization
problem, we have employed the interior-point method implemented
in a state-of-the-art KNITRO solver [Byrd et al. 2006]. Specifically,
we solve the following constrained optimization problem:

minimize
v

E(v)

subject to ci(v), ∀i ∈ V and ct(v), ∀t ∈ T.

4. EXPERIMENTAL RESULTS

4.1 Datasets

We demonstrate the potential of our detail-preserving mesh unfold-
ing algorithm in a content-based non-rigid shape retrieval applica-
tion. To this end, we use Watertight [Giorgi et al. 2007], McGill
[Siddiqi et al. 2008], and SCAPE [Anguelov et al. 2005] datasets,
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union of which forms a large database of 507 models with articulat-
ing parts. We query this database using random individual models
selected from the database itself. The part that we have used from
the Watertight benchmark consists of glasses, ant, chair, octopus,
table, fish, rope, armadillo, and fourleg classes of cardinality 20
each. The remaining 11 classes have been omitted due to uninter-
esting type and/or pose of their constituent elements. We have used
all the 256 articulated models in the McGill database consisting of
various classes ranging from humans to spiders. SCAPE dataset,
on the other hand, is a reconstructed sequence of a human actor in
71 different fixed-connectivity poses. Models in both datasets are
non-uniformly sampled. We have also used the hand model from
[Panozzo et al. 2013] to compare with their embedding result. As
a side application, we also demonstrate our geodesic distance ap-
proximation capability on the SCAPE and Watertight models.

4.2 Evaluation Criteria

We evaluate the quality of our resulting canonical poses visually
(Figures 4-8) and quantitatively, namely in terms of the amount of
stretching (Table I-first row), geodesic distance approximation ac-
curacy (Fig. 9, Table I-second row), and non-rigid retrieval perfor-
mance (Figures 10-11, Tables II-IV). We also compare our canon-
ical poses and their retrieval performance with the state-of-the-art
approaches in Sec. 4.2.3.

4.2.1 Visual Evaluation. In Figures 4-5, we see the detail-
preserving unfolding of example models from various Watertight
classes, whereas in Fig. 6 we show the benefit of our local volume
preservation and inversion prevention constraints. The embedding
step in the framework of [Panozzo et al. 2013] is based on Metric
MDS [Cox and Cox 2000] and least-squares meshes [Sorkine and
Cohen-Or 2004], and aims to unfold the input mesh without dis-
torting the original triangles significantly. Since this is exactly what
we want to achieve in our canonical poses, we find it meaningful to
compare our result with their embedding. Our result (Fig. 7-fourth
row) respects the original shape details much more than [Panozzo
et al. 2013] does (Fig. 7-third row), which implies that their algo-
rithm can be improved by employing our unfolding technique. We
also show another unfolding by the well-known Landmark MDS
method [de Silva and Tenenbaum 2002], which led to the worst
result in terms of shape preserving (Fig. 7-second row).

4.2.2 Quantitative Evaluation. We measure the percentage of
stretching (S) by comparing the maximum geodesic distances be-
fore (g0) and after (g1) our canonical pose computation:

S =

⌈
100

g1 − g0
g0

⌉
. (7)

Due to the nature of the unfolding task, we observe stretching to
a certain extent that is controlled by parameter α in Eq. 4 (see Ta-
ble I). We fix this value to 5K in most of the experiments while
noting that the lower values allow further stretches. Models of
the glasses class, for instance, overstretch with the usual value of
α = 5K. We consequently obtain a more plausible unfolding with
more powerful edge springs imposed by α = 20K, as illustrated
in Fig. 8. Note that, the executable of our algorithm takes this tun-
ing parameter α from the command prompt, which enables users to
progressively update the value if necessary.

We also measure the similarity between the pairwise Euclidean
distances at the computed canonical pose (E) and the correspond-

Fig. 6. SCAPE (top) and armadillo (meshes) at left are brought to their
canonical poses with (middle) and without (right) the finite element con-
straints in Eqs. 5 and 6. Absence of constraints causes detail loss (chests)
and distortion (heads) as well as additional stretching.

Fig. 7. Original hand model (top) is unfolded with, from top to bottom,
[de Silva and Tenenbaum 2002], [Panozzo et al. 2013], and our method.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.



6 • Sahillioğlu and Kavan

Fig. 4. Two examples of input mesh (top) and its resulting canonical pose (bottom) for each non-animal class of Watertight dataset.

Fig. 5. Two examples of input mesh (top) and its computed canonical pose (bottom) for each animal class of Watertight dataset.

ing geodesic distances on the manifold (G) via:

A = || E

||E||F
− G

||G||F
||F , (8)

where values close to 0 imply a good geodesic approximation
as the difference is taken between unit matrices. Visual inspec-

tion of this approximation is made in Fig. 9 by running [de Silva
and Tenenbaum 2002] based on the standard affinity matrix G,
i.e., pairwise geodesic distances, and our affinity matrix E, i.e.,
pairwise Euclidean approximations of geodesic distances. Namely,
Gi,j = g(i, j) and Ei,j = ||vi − vj ||. Recall that [de Silva and
Tenenbaum 2002] uses M leading eigenvectors of the affinity ma-
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Fig. 8. Original glasses model (top) understretches with α = 100K (sec-
ond row), overstretches with α = 5K (fourth row), and unfolds well with
α = 20K (third row).

Table I. Stretching percentages S and geodesic approximation
error A after canonical pose optimization. A: glasses, B: ant,

C: chair, D: octopus, E: table, F: fish, G: rope, H: armadillo, I:
fourleg, J: SCAPE, K: hand.

Aa B C D E F G H I J K
S 11 13 4 7 7 12 14 13 11 14 6
A .55 .46 .71 .74 .66 .50 .40 .51 .57 .44 .62

trix to obtain an M -dimensional spectral embedding of landmark
points, and then computes embedding coordinates for the remain-
ing data points based on their distances from the landmarks. Visual
similarity between the middle and left columns of Fig. 9 is there-
fore another sign that Euclidean distances in our resulting canoni-
cal pose efficiently approximate geodesic distances locally on the
manifold. Finally, the correlation between S and A suggests that
the more we allow stretching, the better the geodesic distances are
approximated.

Fig. 9. Landmark MDS embeddings [de Silva and Tenenbaum 2002] of
the input pose (left) based on affinity matrices E (our geodesic approxima-
tion, middle) and G (original geodesics, right).

Our resulting canonical poses are invariant to non-rigid trans-
formations, that is, all articulated shapes are expected to converge
to the poses that may differ by purely rigid transformations. This
fact encourages us to implement a simple shape correspondence
method that takes two shapes S and T , unfolds them with our
method, resolves the rigid transformation ambiguity by PCA align-
ment [Kazhdan 2007] followed by standard ICP [Besl and Mckay

1992], and matches the closest points between the aligned shapes.
We demonstrate the moderate quality of a resulting correspondence
in Fig. 10-top row, and note that one may infer more correspon-
dences from the unfolded pairs of Figures 4-5. We also define the
following ground-truth distortion D to measure the deviation of a
correspondence ϕ : S → T from the ground-truth:

D(ϕ) =
1

|ϕ|
∑

(i,j)∈ϕ

g(ϑ(i), j), (9)

where ϑ(i) stands for the ground-truth correspondence of source
vertex i ∈ S on target T as known a priori for the SCAPE dataset.
The maximum geodesic distance on the target model is normalized
to 1 in order to simplify the interpretation of this measure. We ob-
serve average D = 0.178 for 20 random pairs from the SCAPE,
which is worse than the state-of-the-art non-rigid correspondence
algorithms [Ovsjanikov et al. 2010; Sahillioğlu and Yemez 2013],
yet accurate enough to initiate a pose-independent shape retrieval
technique. After representing the query and database shapes with
their canonical poses, we perform pairwise matchings between
query and database as described above. We then measure shape
similarities using the correspondence cost descriptor of [Jain and
Zhang 2007], which is,

D′(ϕ) =
1

|ϕ|
∑

(i,j)∈ϕ

||vi − vj ||, (10)

where query vertex i maps to the database model vertex j after
pairwise matching, and the maximum term in the summation is
normalized to 1. These similarity scores, as shown under Fig. 10,
intuitively take smaller values when matching a query to seman-
tically equivalent articulated shapes since the canonical pose rep-
resentations of both shapes in this scenario will be very similar.
Ranking based on D′ yields the result set for pose-independent
shape retrieval (Fig. 10). By comparing the middle and bottom
rows of Fig. 10, we verify the main motivation of this paper. As we
claimed in Sec. 1, similar objects with varying geometric details,
such as a human and an armadillo, could not be well distinguished
by a canonical pose that distorts details, such as least-squares MDS
[Elad and Kimmel 2003] (Fig. 10-bottom row).

In addition to the correspondence cost descriptor (Eq. 10) for
solving the pose-independent retrieval problem, we employ a
compact shape descriptor extracted from the resulting canonical
form. Specifically, we implement the visual-similarity based Clock
Matching Bag-of-Features (CM-BOF) approach [Lian et al. 2010]
in order to i) make the comparisons in Sec. 4.2.3 fair and ii) achieve
faster retrieval performance than the original correspondence-based
approach. For shape similarity comparison with CM-BOF, we be-
gin with the same PCA-based pose normalization [Kazhdan 2007]
between the canonically-posed query and the canonically-posed
database model. Since each database model is already equipped
with an histogram of visual word occurrences in an off-line process,
the only task remaining is to extract the corresponding histogram on
the query shape. To this end, SIFT features [Lowe 2004] computed
on each of the several different views of the query is quantized
against the visual vocabulary, which in turn represents the query as
a histogram of visual word occurrences, and enables comparison
with the database histogram. Once canonical forms are computed,
a pair of shapes with 9K tetrahedra is compared with CM-BOF
approach in only a few milliseconds, whereas the correspondence-
based approach takes about a second. Both approaches achieve sim-
ilar and satisfactory performances in retrieval accuracy (Tables II
and III).
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Fig. 10. Shape correspondence (top row) and retrieval (middle row) appli-
cations based on the computed canonical poses. Notice the distortion in the
transfer of colors based on the computed correspondences. This inaccuracy
can, however, be compensated in a retrieval application. Notice also the ad-
vantage of using our detail-preserving canonical pose (middle row) over a
detail-oblivious canonical pose [Elad and Kimmel 2003] (bottom row) in
discriminating an armadillo and a man.

Table II. Retrieval performances in terms of NN, 1-tier, and 2-tier
metrics on our large database of 507 models. Query and database

models are compared via Eq. 10.
Canonical Pose Creation NN 1-tier 2-tier
Our method 99.1 90.2 97.3
Least-squares MDS [Elad and Kimmel 2003] 96.4 82.8 87.5
Classical MDS [Elad and Kimmel 2003] 91.4 75.8 79.9

The average execution time of our canonical pose optimization
algorithm on a 2.53GHz PC for SCAPE dataset, whose models
have 45K tetrahedra, is 985 seconds. The hand model with 51K tets
takes 1684 seconds to get unfolded into its canonical pose. When
the number of tets drops to 35K, 20K, 9K, and 3K for various Wa-
tertight models, our method demands 575, 280, 21, and 4 seconds,
respectively. Note that the number of iterations, and hence the ex-
ecution times, depend highly on the spatial distance between the
original pose and the canonical pose to be computed.

4.2.3 Visual and Quantitative Comparisons. We first evaluate
our non-rigid retrieval accuracy on our large database of 507 mod-
els using three commonly used performance metrics, namely the
Nearest Neighbor (NN), which is the percentage of the first-closest
matches that belong to the query class, and the First Tier (1-tier),
which is the ratio of the relevant matches to the size of the query
class C when the number of retrieved models, i.e., top K matches,
is |C|. We relax K = 2|C| to obtain the Second Tier (2-tier) metric.
The retrieval method leading to the results in Table II converts each
shape to its detail-preserving (Table II-first row) or detail-oblivious
(Table II-second and third rows) canonical poses and then compares
query with the database rigidly via Eq. 10. Our high NN value indi-
cates the potential of our algorithm in a classification application.
Table III is created the same way as Table II except CM-BOF is
used instead of Eq. 10 for shape comparison.

Table III. Retrieval performances in terms of NN, 1-tier, and 2-tier
metrics on our large database of 507 models. Query and database

models are compared via CM-BOF.
Canonical Pose Creation NN 1-tier 2-tier
Our method 99.2 89.9 97.5
Least-squares MDS [Elad and Kimmel 2003] 96.1 82.4 87.6
Classical MDS [Elad and Kimmel 2003] 91.2 75.1 79.7

Table IV. Retrieval performances in terms of NN, 1-tier, and 2-tier
metrics on the McGill database.Query and database models are

compared via CM-BOF.
Canonical Pose Creation NN 1-tier 2-tier
Our method 99.7 92.1 98.6
[Lian et al. 2013]’s method 99.6 86.6 95.3
Least-squares MDS [Elad and Kimmel 2003] 98.1 80.9 86.9
Classical MDS [Elad and Kimmel 2003] 95.2 75.1 80.9

We next pass to the McGill database in order to make fair
comparisons with the only other detail-preserving canonical pose
method in the literature [Lian et al. 2013]. Since we are unable
to reproduce the complicated algorithm described in [Lian et al.
2013], we directly import their visuals and quantifications obtained
on the McGill database. In their comprehensive comparisons with
the existing methods, they outperform the state-of-the-art of the
non-rigid retrieval approaches that utilize MDS canonical poses,
which implies that performing better than [Lian et al. 2013] would
put us in front of those methods as well. We employ the same
performance metrics, which are NN, 1-tier, 2-tier, and Precision-
Recall, and use the same shape comparison protocol, namely the
CM-BOF approach (Table IV). For the Precision-Recall plots in
Fig. 11, the vertical axis is the Precision, which is the ratio of the
relevant matches to the number of retrieved models, whereas the
horizontal axis is the Recall, which is the ratio of relevant matches
to the size of the query class. Ideally, this curve should be a hori-
zontal line at unit precision. In addition to the plot associated with
our method, we provide plots for the other canonical-based retrieval
methods, namely [Lian et al. 2013] and least-squares MDS. These
retrieval methods all apply the same protocol described in the first
paragraph of this section. We also provide the plot of a descriptor-
based method, which directly compares the low-dimensional heat-
kernel signatures [Sun et al. 2009] of the query and database mod-
els, as done in [Bronstein et al. 2011]. The lower performance of
the descriptor-based approach supports our claim in the Sec. 1 that
canonical-based methods are more promising than descriptor-based
counterparts as the canonical form can easily be integrated into a
simpler and well-studied rigid shape retrieval process.

The main reason of our success over the closest work [Lian et al.
2013] is our resulting canonical pose that is more smooth and accu-
rate in terms of unfolding the object, as shown in Fig. 12. We also
note that the reported execution time of [Lian et al. 2013] for canon-
ical pose creation of a model with 10K triangles is 243 seconds,
whereas we perform the same task in about 10 seconds on a similar
computer, which effectively makes our method more scalable. Fi-
nally, we are more robust to topological noise, e.g., a “short circuit”
in the feet, than [Lian et al. 2013] as we avoid the use of geodesic
distances. We empirically show this robustness by adding 10 vir-
tual edges between random point pairs of each McGill model and
re-running our retrieval method, which achieved almost the same
performance in Table IV. Besides we display the effect of topolog-
ical noise on a SCAPE model in Fig. 13, where we also demon-
strate the unfolding result on a low-resolution and non-uniformly
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Fig. 11. Precision-recall plot of the retrieval methods.

sampled mesh (1.5K irregular tetrahedra) in an attempt to show
that different versions of a 3D mesh with different resolutions can
have similar canonical poses using the proposed method with the
same parameters and settings, e.g., α = 5K in Eq. 4. As verified
in Fig. 13-bottom, neither the amount (resolution) nor the quality
(sampling) of the tetrahedra in the input mesh degrades the perfor-
mance of our method.

Fig. 12. Unfolding of two objects (top rows of the left and right columns)
using our method (second row), [Lian et al. 2013] (third row), least-squares
MDS (fourth row), and classical MDS (fifth row). Third row images are
taken from [Lian et al. 2013].

4.3 Limitations

Regardless of the original pose we start with, our algorithm always
converges to an unfolded canonical pose that may facilitate ap-
plications such as pose-independent shape retrieval, geodesic dis-
tance approximation, and texture mapping [Zigelman et al. 2002],
to name a few. However, we have to note that our regularization
scheme makes the method slightly sensitive to the original pose in
that one may observe global and/or local effects of the input on
the output (Fig. 14), which decreases the performance of a poten-
tial shape correspondence algorithm. We, however, show that such
a loose correspondence can still be very useful in a shape retrieval
framework.

5. CONCLUSION

We have introduced a shape deformation algorithm that aims to un-
fold a given deformable model without distorting its geometric de-
tails. This detail-preserving unfolding leads to a canonical pose that

Fig. 13. (Top row) SCAPE model with topological noise on hands and
feet (left) is unfolded to a model (middle) that is close to the unfolding of a
noise-free input (right). (Bottom row) Low-resolution mesh with irregular
tetrahedra (left and right) is unfolded to a model (right) that is close to the
unfolding of a high-resolution input (top row-right).

Fig. 14. Global (left pair) and local (right pair) similarities between origi-
nal and canonical poses.

is invariant to non-rigid transformations and consequently suitable
for non-rigid shape retrieval. We compute this canonical pose by
minimizing an energy functional whose solution moves each mesh
point as far away from each other as possible with respect to some
regularization constraints. Our method proves useful, not only for
detail-preserving mesh unfolding, but also for pose-independent
shape retrieval as well as efficient approximation of geodesic dis-
tances. It is also less sensitive to topological noise and works for
models of arbitrary genus. A potential application for future work
may be handling different scenarios of the shape retrieval problem,
such as real-time or partial retrieval. As another future work, we
plan to incorporate semantic parameters into our framework so as
to create more specific poses such as the Vitruvian Man pose that
suggests, for instance, foot to be one-seventh of the height of a man.
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SAHILLIOĞLU, Y. AND YEMEZ, Y. 2013. Coarse-to-fine isometric shape
correspondence by tracking symmetric flips. Computer Graphics Fo-
rum 32, 1, 177–189.

SCHULLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-HORNUNG,
O. 2013. Locally injective mappings. Computer Graphics Forum (Proc.
SGP) 32, 5.

SIDDIQI, K., ZHANG, J., MACRINI, D., SHOKOUFANDEH, A., BOUIX,
S., AND DICKINSON, S. 2008. Retrieving articulated 3-d models using
medial surfaces. Machine Vision and Applications 19, 4, 261–275.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS, M.
2012. Computational design of rubber balloons. Computer Graphics
Forum 31, 2, 835–844.

SORKINE, O. AND ALEXA, M. 2007. As-rigid-as-possible surface model-
ing. Computer Graphics Forum (Proc. SGP), 109–116.

SORKINE, O. AND COHEN-OR, D. 2004. Least-squares meshes. Proc.
Shape Modeling International, 191–199.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., ROSSL, C.,
AND SEIDEL, H.-P. 2004. Laplacian surface editing. Proc. Eurograph-
ics/ACM SIGGRAPH Symposium on Geometry Processing, 179–188.

STOMAKHIN, A., HOWES, R., SCHROEDER, C., AND TERAN, J. 2012.
Energetically consistent invertible elasticity. Proc. SCA.

SUN, J., OVSJANIKOV, M., AND GUIBAS, L. 2009. A concise and prov-
ably informative multi-scale signature based on heat diffusion. Computer
Graphics Forum 28, 5.

TANGELDER, J. AND VELTKAMP, R. 2008. A survey of content based 3d
shape retrieval methods. Multimedia tools and applications 39, 3, 441–
471.
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