
23

Quasi-Newton Methods for Real-Time Simulation
of Hyperelastic Materials

TIANTIAN LIU
University of Pennsylvania
SOFIEN BOUAZIZ
École polytechnique fédérale de Lausanne
and
LADISLAV KAVAN
University of Utah

We present a new method for real-time physics-based simulation supporting
many different types of hyperelastic materials. Previous methods such as
Position-Based or Projective Dynamics are fast but support only a limited
selection of materials; even classical materials such as the Neo-Hookean
elasticity are not supported. Recently, Xu et al. [2015] introduced new
“spline-based materials” that can be easily controlled by artists to achieve
desired animation effects. Simulation of these types of materials currently
relies on Newton’s method, which is slow, even with only one iteration per
timestep. In this article, we show that Projective Dynamics can be interpreted
as a quasi-Newton method. This insight enables very efficient simulation of
a large class of hyperelastic materials, including the Neo-Hookean, spline-
based materials, and others. The quasi-Newton interpretation also allows
us to leverage ideas from numerical optimization. In particular, we show
that our solver can be further accelerated using L-BFGS updates (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm). Our final method
is typically more than 10 times faster than one iteration of Newton’s method
without compromising quality. In fact, our result is often more accurate than
the result obtained with one iteration of Newton’s method. Our method is
also easier to implement, implying reduced software development costs.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation

General Terms: Physics-based Animation

Additional Key Words and Phrases: Physics-based animation, material mod-
els, numerical optimization

Authors’ addresses: L. Kavan (correspondence author), School of Com-
puting, University of Utah, Salt Lake City, UT; email: ladislav.kavan@
gmail.com.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permission
and/or a fee. Permissions may be requested from Publications Dept., ACM,
Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1
(212) 869-0481, or permissions@acm.org.
c© 2017 ACM 0730-0301/2017/05-ART23 $15.00

DOI: http://dx.doi.org/10.1145/2990496

ACM Reference Format:

T. Liu, S. Bouaziz, and L. Kavan. 2017. Quasi-newton methods for real-time
simulation of hyperelastic materials. ACM Trans. Graph. 36, 3, Article 23
(May 2017), 16 pages.
DOI: http://dx.doi.org/10.1145/2990496

1. INTRODUCTION

Physics-based animation is an important tool in computer graphics,
even though creating visually compelling simulations often requires
a lot of patience. Waiting for results is not an option in real-time
simulations, which are necessary in applications such as computer
games and training simulators (e.g., surgery simulators). Previous
methods for real-time physics such as Position-Based Dynamics
[Müller et al. 2007] or Projective Dynamics [Bouaziz et al. 2014]
have been successfully used in many applications and commercial
products, despite the fact that these methods support only a re-
stricted set of material models. Even classical models from contin-
uum mechanics, such as the Neo-Hookean, St. Venant-Kirchoff, or
Mooney-Rivlin materials, are not supported by Projective Dynam-
ics. We tried to emulate their behavior with Projective Dynamics,
but despite our best efforts, there are still obvious visual differences
when compared to simulations with the original nonlinear materials.

The advantages of more general material models were nicely
demonstrated in the recent work of Xu et al. [2015], who pro-
posed a new class of spline-based materials particularly suitable for
physics-based animation. Their user-friendly spline interface en-
ables artists to easily modify material properties in order to achieve
desired animation effects. However, their system relies on Newton’s
method, which is slow, even if the number of Newton’s iterations
per frame is limited to one. Our method enables fast simulation
of spline-based materials, combining the benefits of artist-friendly
material interfaces with the advantages of fast simulation, such as
rapid iterations and/or higher resolutions.

Physics-based simulation can be formulated as an optimiza-
tion problem where we minimize a multivariate function g. New-
ton’s method minimizes g by performing descent along direction
−(∇2g)−1∇g, where ∇2g is the Hessian matrix, and ∇g is the gra-
dient. One problem of Newton’s method is that the Hessian ∇2g can
be indefinite, in which case Newton’s direction could erroneously
increase g. This undesired behavior can be prevented by so-called
definiteness fixes [Teran et al. 2005; Nocedal and Wright 2006].
While definiteness fixes require some computational overheads, the
slow speed of Newton’s method is mainly caused by the fact that

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:2 • T. Liu et al.

Fig. 1. Our method enables fast simulation of many different types of hyperelastic materials. Compared to the commonly applied Newton’s method, our
method is about 10 times faster, while achieving even higher accuracy and being simpler to implement. The polynomial and spline-based materials are models
recently introduced by Xu et al. [2015]. Spline-based material A is a modified Neo-Hookean material with stronger resistance to compression; spline-based
material B is a modified Neo-Hookean material with stronger resistance to tension.

the Hessian changes at every iteration; that is, we need to solve a
new linear system for every Newton step.

The point of departure for our method is the insight that Projec-
tive Dynamics can be interpreted as a special type of quasi-Newton
method. In general, quasi-Newton methods [Nocedal and Wright
2006] work by replacing the Hessian ∇2g with a linear operator A,
where A is positive definite and solving linear systems Ax = b is
fast. The descent directions are then computed as −A−1∇g (where
the inverse is of course not explicitly evaluated—in fact, A is of-
ten not even represented with a matrix). The tradeoff is that if A
is a poor approximation of the Hessian, the quasi-Newton method
may converge slowly. Unfortunately, coming up with an effective
approximation of the Hessian is not easy. We tried many previous
quasi-Newton methods, but even after boosting their performance
with L-BFGS [Nocedal and Wright 2006], we were unable to obtain
an effective method for real-time physics. We show that Projective
Dynamics can be reformulated as a quasi-Newton method with
some remarkable properties; in particular, the resulting Aour ma-
trix is constant and positive definite. This reformulation enables us
to generalize the method to hyperelastic materials not supported
by Projective Dynamics, such as the Neo-Hookean or spline-based
materials. Even though the resulting solver is slightly more com-
plicated than Projective Dynamics (in particular, we must employ a
line search to ensure stability), the computational overhead required
to support more general materials is rather small.

The quasi-Newton formulation also allows us to further improve
convergence of our solver. We propose using L-BFGS, which uses
curvature information estimated from a certain number of previ-
ous iterates to improve the accuracy of our Hessian approximation

Aour. Adding the L-BFGS Hessian updates introduces only a small
computational overhead while accelerating the convergence of our
method. However, the performance of L-BFGS highly depends on
the quality of the initial Hessian approximation. With previous
quasi-Newton methods, we observed rather disappointing conver-
gence properties (see Figure 7). The combination of our Hessian
approximation Aour with L-BFGS is quite effective and can be in-
terpreted as a generalization of the recently proposed Chebyshev
Semi-Iterative method for accelerating Projective Dynamics [Wang
2015].

The L-BFGS convergence boosting is compatible with our first
contribution, that is, fast simulation of complex non-linear ma-
terials. Specifically, we can simulate any materials satisfying the
Valanis-Landel assumption [Valanis and Landel 1967], which in-
cludes many classical materials, such as St. Venant-Kirchhoff, Neo-
Hookean, Mooney-Rivlin, and also the recently proposed spline-
based materials [Xu et al. 2015] (none of which is supported by
Projective Dynamics). In summary, our final method achieves faster
convergence than Projective Dynamics while being able to simulate
a large variety of hyperelastic materials.

2. RELATED WORK

The work of Terzopoulos et al. [1987] pioneered physics-based
animation, nowadays an indispensable tool in feature animation
and visual effects. Real-time physics became widespread only more
recently, with the first success stories represented by real-time rigid
body simulators, commercially offered by companies such as Havok
since early 2000s. Fast simulation of deformable objects is more

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:3

challenging because they feature many more degrees of freedom
than rigid bodies. Fast simulations of deformable objects using
shape matching [Müller et al. 2005; Rivers and James 2007] paved
the way toward more general Position-Based Dynamics methods
[Müller et al. 2007; Stam 2009]. The past decade witnessed rapid
development of Position-Based methods, including improvements
of the convergence [Müller 2008; Kim et al. 2012], robust simulation
of elastic models [Müller and Chentanez 2011], generalization to
fluids [Macklin and Müller 2013] and continuum-based materials
[Müller et al. 2014; Bender et al. 2014a], unified solvers including
multiple phases of matter [Macklin et al. 2014], and, most recently,
methods to avoid element inversion [Müller et al. 2015]. We refer to
a recent survey [Bender et al. 2014b] for a more detailed summary
of Position-Based methods.

A new interpretation of Position-Based methods was offered by
Liu et al. [2013], observing that Position-Based Dynamics can be in-
terpreted as an approximate solver for Implicit Euler time-stepping.
The same paper introduces a fast local/global solver for mass-spring
systems integrated using Implicit Euler. This method was later gen-
eralized to Projective Dynamics [Bouaziz et al. 2014] by combining
the ideas of Liu et al. [2013] with a shape editing system “Shape-
Up” [Bouaziz et al. 2012]. Recently, a Chebyshev Semi-Iterative
method [Wang 2015] has been proposed to accelerate convergence
of Projective Dynamics while also exploring highly parallel GPU
implementations of real-time physics. Concurrently to our work,
Narain et al. [2016] interpreted Projective Dynamics as a special
case of the Alternating Direction Method of Multipliers (ADMM),
leading to another way to enable simulation of more general elastic
materials.

Multigrid methods represent another approach to accelerate
physics-based simulations [Georgii and Westermann 2006; Müller
2008; Wang et al. 2010; McAdams et al. 2011; Tamstorf et al.
2015]. Multigrid methods are attractive especially for highly de-
tailed meshes where sparse direct solvers become hindered by high
memory requirements. However, constructing multiresolution data
structures and picking suitable parameters is not a trivial task. An-
other way to speed up FEM is by using subspace simulation, where
the nodal degrees of freedom are replaced with a low-dimensional
linear subspace [Barbič and James 2005; An et al. 2008; Li et al.
2014]. These methods can be very efficient; however, deformations
that were not accounted for during the subspace construction may
not be well represented. A variety of approaches have been de-
signed to address this limitation while trying to preserve efficiency
[Harmon and Zorin 2013; Teng et al. 2014, 2015]. Simulating at
coarser resolutions is also possible, while crafting special data-
driven materials that avoid the loss of accuracy typically is associ-
ated with lower resolutions [Chen et al. 2015].

The concept of constraint projection, which appears in both
Position-Based and Projective Dynamics, is also central to the
Fast Projection method [Goldenthal et al. 2007] and strain-limiting
techniques [Thomaszewski et al. 2009; Narain et al. 2012]. The
Fast Projection method and Position-Based Dynamics formulate
physics simulation as a constrained optimization problem that
is solved by linearizing the constraints in the spirit of sequen-
tial quadratic programming [Macklin et al. 2014]. The resulting
Karush-Kuhn-Tucker (KKT) equation system is then solved us-
ing a direct solver [Goldenthal et al. 2007] or an iterative method
such as Gauss-Seidel [Müller et al. 2007; Stam 2009; Fratarcangeli
and Pellacini 2015], Jacobi [Macklin and Müller 2013], or their
under-/overrelaxation counterparts [Macklin et al. 2014]. By using
a constrained optimization formulation, the Fast Projection method
and Position-Based Dynamics are designed for solving infinitely
stiff systems but are not appropriate to handle soft materials. This

problem can be overcome by regularizing the KKT system [Servin
et al. 2006; Tournier et al. 2015], leading to approaches that can
accurately handle extremely high tensile forces (e.g., string of a
bow) but also support soft (compliant) constraints. However, these
methods are slower than Projective Dynamics because a new linear
system has to be solved at each iteration.

The idea of quasi-Newton methods in elasticity is not new and
was studied for a long time before real-time simulations were feasi-
ble. Several research papers have been done to accelerate Newton’s
method in FEM simulations by updating the Hessian approxima-
tion only once every frame [Bathe and Cimento 1980; Fish et al.
1995]. However, even one Hessian update is usually so computa-
tionally expensive that it cannot fit into the computing time limit
of real-time applications. Deuflhard [2011] minimizes the number
of Hessian factorizations by carefully scheduled Hessian updates.
But the update rate will heavily depend on the deformation. A good
Hessian approximation suitable for real-time applications should be
easy to refactorize or capable of prefactorization. One straightfor-
ward constant approximation that is good for prefactorization is the
Hessian evaluated at the rest pose (undeformed configuration). The
rest-pose Hessian is positive semidefinite and its use at any configu-
ration enables prefactorization. Unfortunately, the actual Hessian of
deformed configurations is often very different from the rest-pose
Hessian, and this approximation is therefore not satisfactory for
larger deformations [Müller et al. 2002].

To improve on this, Müller et al. [2002] introduced per-vertex
“stiffness warping” of the rest-pose Hessian, which is more accu-
rate and can still leverage prefactorized rest-pose Hessian. Unfor-
tunately, the per-vertex stiffness warping approach can introduce
nonphysical ghost forces that violate momentum conservation and
can lead to instabilities [Müller and Gross 2004]. This problem
was addressed by per-element stiffness warping [Müller and Gross
2004], which avoids the ghost forces, but unfortunately, the per-
element-warped stiffness matrices need to be refactorized, intro-
ducing computational overheads that are prohibitive in real-time
simulation. For corotated elasticity, Hecht et al. [2012] proposed
an improved method that can reuse previously computed Hessian
factorization. Specifically, the sparse Cholesky factors are updated
only when necessary and also only where necessary. This spatiotem-
poral staging of Cholesky updates improves runtime performance;
however, the Cholesky updates are still costly and their schedul-
ing can be problematic, especially in real-time applications, which
require approximately constant per-frame computing costs. Also,
the frequency of Cholesky updates depends on the simulation: fast
motion with large deformations will require more frequent updates
and thus more computation or risk ghost forces and potential in-
stabilities. Neither is an option in real-time simulators. Recently,
Kovalsky et al. [2016] introduced the idea of quadratic proxies to
accelerate optimization problems arising in geometry processing.
The “quadratic proxy” can be seen as replacing the exact Hessian
matrix with the Laplacian matrix of the mesh; their method can
therefore also be categorized as a quasi-Newton method, closely
related to our method.

Our reformulation of Projective Dynamics as a quasi-Newton
method reveals relationships to so-called Sobolev gradient methods,
which have been studied since the 1980s in the continuous setting
[Neuberger 1983]; see also the more recent monograph [Neuberger
2009]. The idea of quasi-Newton methods appears already in Des-
brun et al. [1999] and Hauth and Etzmuss [2001] in the context of
mass-spring systems and, more recently, in Martin et al. [2013] in
the context of geometry processing. Martin et al. [2013] also propose
multiscale extensions and discuss an application in physics-based
simulation, but they consider only the case of thin shells and their

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:4 • T. Liu et al.

numerical method alters the physics of the simulated system. Quasi-
Newton methods are also useful in situations where computation of
the Hessian would be expensive or impractical [Nocedal and Wright
2006]. In character animation, Hahn et al. [2012] used BFGS to sim-
ulate physics in “Rig Space,” which is challenging because the rig
is a black-box function and its derivatives are approximated using
finite differences.

3. BACKGROUND

Projective Dynamics. We start by introducing our notation and
recapitulating the key concepts of Projective Dynamics. Let x ∈
R

n×3 be the current (deformed) state of our system containing n
nodes, each with three spatial dimensions. Projective Dynamics
requires a special form of elastic potential energies, based on the
concept of constraint projection. Specifically, Projective Dynamics
energy for element number i is defined as

Ei(x) = min
pi∈Mi

Ẽi(x, pi), Ẽi(x, z) = ‖Gix − z‖2
F , (1)

where ‖ · ‖F is the Frobenius norm, Mi is a constraint manifold, pi

is an auxiliary “projection variable,” and Gi is a discrete differential
operator represented, for example, by a sparse matrix. For example,
if element number i is a tetrahedron, Mi is SO(3), and Gi is a
deformation gradient operator [Sifakis and Barbič 2012], we obtain
the well-known as-rigid-as-possible material model [Chao et al.
2010]. Another elementary example is a spring, where the element
is an edge, Mi is a sphere, and Gi subtracts two endpoints of the
spring. If all elements are springs, Projective Dynamics becomes
equivalent to the work of Liu et al. [2013]. The key property of
Gi is that constant vectors are in its nullspace, which makes Ei

translation invariant. The total energy of the system is

E(x) =
∑

i

wiEi(x), (2)

where i indexes elements and wi > 0 is a positive weight, typically
defined as the product of undeformed volume and stiffness.

Time integration. As discussed by Martin et al. [2011], Back-
ward Euler time integration can be expressed as a minimization of

g(x) = 1

2h2
tr((x − y)TM(x − y))︸ ︷︷ ︸

inertia

+E(x)︸︷︷︸
elasticity

, (3)

where y is a constant depending only on previously computed states,
M is a positive definite mass matrix (typically diagonal—mass
lumping), and h > 0 is the time step (we use fixed h corresponding
to the frame rate of 30fps, i.e., h = 1/30s). The trace (tr) reflects
the fact that there are no dependencies between the x, y, z coordi-
nates, which enables us to work only with n×n matrices (as opposed
to more general 3n × 3n matrices). This is somewhat moot in the
context of the mass matrix M, but it will be more important in the
following. The constant y is defined as y := 2ql −ql−1 +h2M−1fext,
where ql ∈ R

n×3 is the current state, ql−1 is the previous state, and
fext ∈ R

n×3 are external forces such as gravity. The minimizer of
g(x) will become the next state, ql+1. Intuitively, the first term in
Equation (3) can be interpreted as “inertial potential,” attracting
x toward y, where y corresponds to state predicted by Newton’s
first law—motion without the presence of any internal forces. The
second term penalizes states x with large elastic deformations. Min-
imization of g(x) corresponds to finding a balance between the two
terms. Note that many other implicit integration schemes can also
be expressed as minimization problems similar to Equation (3). In

particular, we have implemented Implicit Midpoint, which has the
desirable feature of being symplectic [Hairer et al. 2002; Kharevych
et al. 2006]. Unfortunately, in our experiments, we found Implicit
Midpoint to be markedly less stable than Backward Euler and,
therefore, we continue to use Backward Euler despite its numerical
damping.

Local/global solver. The key idea of Projective Dynamics is to
expose the auxiliary projection variables pi , taking advantage of
the special energy form according to Equation (1). To simplify
notation, we stack all projection variables into p ∈ R

c×3 and define
binary selector matrices Si such that pi = Sip, where c is the
dimensionality of each constraint; for example, a spring corresponds
to c = 1 and a tetrahedron to c = 3. Projective Dynamics uses the
augmented objective

g̃(x, p) = 1

2h2
tr((x − y)TM(x − y)) +

∑
i

wiẼ(x, Sip), (4)

which is minimized over both x and p, subject to the constraint
p ∈ M, where M is a Cartesian product of the individual con-
straint manifolds. The optimization is solved using an alternating
(local/global) solver. In the local step, x is assumed to be fixed;
the optimal p are given by projections on individual constraint
manifolds, for example, projecting each deformation gradient (a
3 × 3 matrix) on SO(3). In the global step, p is assumed to be fixed
and we rewrite the objective g̃(x, p) in matrix form:

1

2h2
tr((x − y)TM(x − y)) + 1

2
tr(xTLx) − tr(xTJp) + C, (5)

where L := ∑
wiGT

i Gi , J := ∑
wiGT

i Si , and Gi is a linear map-
ping from state vector x to an element-wise deformation represen-
tation, for example, deformation gradient in finite element methods.
Gi only depends on the mesh topology and the rest-pose shapes of
all elements. The constant C is irrelevant for optimization. For a
fixed p, the minimization of g̃(x, p) can be accomplished by finding
x with a vanishing gradient, that is, ∇xg̃(x, p) = 0. Computing the
gradient yields some convenient simplifications (the traces disap-
pear):

∇xg̃(x, p) = 1

h2
M(x − y) + Lx − Jp. (6)

Equating the gradient to zero leads to the solution

x∗ = (M/h2 + L)−1(Jp + My/h2). (7)

The matrix M/h2 + L is symmetric positive definite and therefore
x∗ is a global minimum (for fixed p). The key computational ad-
vantage of Projective Dynamics is that M/h2 + L does not depend
on x, which allows us to precompute and repeatedly reuse its sparse
Cholesky factorization to quickly solve for x∗, which is the result af-
ter one local and global step. The local and global steps are repeated
for a fixed number of iterations (typically 10 or 20).

4. METHOD

As described in the previous section, Projective Dynamics relies
on the special type of elastic energies according to Equation (1).
Let us now describe how Projective Dynamics can be interpreted
as a quasi-Newton method. The first step is to compute the gra-
dient of the objective g(x) from Equation (3). The energy E(x)
used in this objective contains constrained minimization over the
projection variables pi ∈ Mi (see Equation (1) and Equation (2)).
Equivalently, we can interpret the pi as functions of x realizing the
projections, according to Equation (1). Nevertheless, the gradient

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:5

Fig. 2. Animating jiggly squirrel head. The squirrel head is driven by a gentle keyframed motion in the top row, and by a faster, impulsive motion
in the bottom row. Soft Projective Dynamics material (left column) creates nice secondary motion but does not prevent large distortions of the shape.
If we stiffen the Projective Dynamics material (middle column), we prevent the distortions but also kill the secondary motion. Our polynomial material
a(x) = μ(x − 1)4, b(x) = 0, c(x) = 0 (right column) achieves the desired effect of jiggling without large shape distortions.

∇g(x) can still be computed easily—in fact, it is exactly equivalent
to ∇xg̃(x, p) from Equation (6), where we assumed that p is con-
stant. This at first surprising fact has been observed in previous work
[Chao et al. 2010; Bouaziz et al. 2012]. Intuitively, the reason is that
if we infinitesimally perturb x, its projection pi(x) can move only
in the tangent space of Mi , and therefore, the differential δpi(x)
has no effect on δ‖x−pi(x)‖2. As an intuitive explanation, imagine
that x is a space shuttle projected to its closest point on Earth pi(x);
to first order, the distance of the space shuttle from Earth does not
depend on the tangent motion δpi(x). Please see the appendix for a
more formal discussion. In summary, the gradient of Equation (3)
is

∇g(x) = 1

h2
M(x − y) + Lx − Jp(x), (8)

where p(x) is a function stacking all of the individual projec-
tions pi(x). Newton’s method would proceed by computing second
derivatives, that is, the Hessian matrix ∇2g(x), and use it to com-
pute a descent direction −(∇2g(x))−1∇g(x). Note that definiteness
fixes may be necessary to guarantee that this will really be a descent
direction [Gast et al. 2015].

What happens if we modify Newton’s method by using M/h2+L
instead of the Hessian ∇2g(x)? Simple algebra reveals

(M/h2 + L)−1∇g(x) = x − (M/h2 + L)−1(Jp(x) + My/h2).

However, the latter term is equivalent to the result of one iteration
of the local/global steps of Projective Dynamics; see Equation (7).
Therefore, (M/h2 + L)−1∇g(x) = x − x∗, and we can interpret
dPD := −(M/h2 + L)−1∇g(x) as a descent direction (this time
there is no need for any definiteness fixes). Projective Dynamics
can be therefore understood as a quasi-Newton method that com-
putes the next iterate as x + dPD. Typically, quasi-Newton methods

use line search techniques [Nocedal and Wright 2006] to find pa-
rameter α > 0 such that x + αdPD reduces the objective as much as
possible. However, with Projective Dynamics energies according to
Equation (1), the optimal value is always α = 1.

4.1 More General Materials

The interpretation of Projective Dynamics as a quasi-Newton
method suggests that a similar optimization strategy might be ef-
fective for more general elastic potential energies. First, let us fo-
cus on isotropic materials, deferring the discussion of anisotropy to
Section 4.4. The assumption of isotropy (material-space rotation in-
variance) together with world-space rotation invariance means that
we can express the elastic energy density function � as a function
of singular values of the deformation gradient [Irving et al. 2004;
Sifakis and Barbič 2012]. In the volumetric case, we have three sin-
gular values σ1, σ2, σ3 ∈ R, also known as “principal stretches.” The
function �(σ1, σ2, σ3) must be invariant to any permutation of the
principal stretches, for example, �(σ1, σ2, σ3) = �(σ2, σ1, σ3) and
so forth. Because directly working with such functions � could be
cumbersome, we instead use the Valanis-Landel hypothesis [Valanis
and Landel 1967], which assumes that

�(σ1, σ2, σ3) = a(σ1) + a(σ2) + a(σ3)

+ b(σ1σ2) + b(σ2σ3) + b(σ1σ3) + c(σ1σ2σ3),
(9)

where a, b, c : R → R. Many material models can be written
in the Valanis-Landel form, including linear corotated material
[Sifakis and Barbič 2012], St. Venant-Kirchhoff, Neo-Hookean, and
Mooney-Rivlin. The recently proposed spline-based materials [Xu
et al. 2015] are also based on the Valanis-Landel assumption. How
can we generalize Projective Dynamics to these types of materials?
Invoking the quasi-Newton interpretation discussed previously, our

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:6 • T. Liu et al.

method will minimize the objective g by performing descent along
direction d(x) := −(M/h2 + L)−1∇g(x). The mass matrix M and
step size h are defined as before, and computing ∇g(x) is straight-
forward. But how to define a matrix L for a given material model?
This matrix can still have the form L := ∑

wiGT
i Gi , but the ques-

tion is how to choose the weights wi . In Projective Dynamics, we
assumed the weights are given as wi = Viki , where Vi > 0 is
rest-pose volume of ith element, and ki > 0 is a stiffness parameter
provided by the user. In our case, the user instead specifies a mate-
rial model according to Equation (9) from which we have to infer
the appropriate ki value. In the following, we drop the subscript i
for ease of notation.

For linear materials (Hooke’s law), stiffness is given as the second
derivative of elastic energy. Therefore, it would be tempting to set k
equal to the second derivative of � at the rest pose (corresponding
to σ1 = σ2 = σ3 = 1), which evaluates to a′′(1) + 2b′′(1) +
c′′(1), regardless of whether we differentiate with respect to σ1,
σ2, or σ3. Even though this method would produce suitable k for
some materials (such as corotated elasticity), it does not work,
for example, for a polynomial material defined as a(x) = μ(x −
1)4, b(x) = 0, c(x) = 0. Already this relatively simple material
can facilitate certain animation tasks, such as creating a cartoon
squirrel head that jiggles, but does not overly distort its shape; see
Figure 2. However, with this material, the second derivatives at
x = 1 evaluate to zero regardless of the value of μ, which would
lead to zero stiffness, which is obviously not a good approximation.
The problem is that the second derivative takes into account only
an infinitesimally small neighborhood of x = 1, that is, the rest
pose. However, we need a single value of k that will work well in
the entire range of deformations expected in our simulations. To
capture this requirement, we define an interval [xstart, xend] where
we expect our principal stretches to be. We consider the following
stress function:

f (σ1) = ∂�

∂σ1

∣∣∣∣
σ2=1,σ3=1

= a′(σ1) + 2b′(σ1) + c′(σ1), (10)

and define our k as the slope of the best linear approximation of
Equation (10) at [xstart, xend]. Formally:

k := argmin
k

∫ xend

xstart

(k(x − 1) − f (x))2dx. (11)

Note that due to the symmetry of the Valanis-Landel assumption,
we would obtain exactly the same result if we differentiated with
respect to σ2 or σ3 (instead of σ1 as earlier). We study different
choices of [xstart, xend] intervals in Section 5. In summary, the results
are not very sensitive on the particular choice of xstart and xend. The
key fact is that regardless of the specific setting of xstart and xend,
spatial variations of μ are correctly taken into account; that is,
softer and stiffer parts of the simulated object will have different
μ coefficients (e.g., in our squirrel head we made the teeth more
stiff). Even though all elements have the same [xstart, xend] interval,
the resulting matrices L and J properly reflect the spatially varying
stiffness.

Line search. With Projective Dynamics materials (Equation (1)),
the line search parameter α = 1 is always guaranteed to decrease
the objective g (Equation (3)). Unfortunately, this is no longer true
in our generalized quasi-Newton setting, where it is easy to find
examples where g(x+d(x)) > g(x); that is, taking a step of size one
actually increases the objective. This can lead to erroneous energy
accumulation, potentially resulting in catastrophic failure of the
simulation (“explosions”), as shown in Figure 3. Fortunately, thanks
to the fact that M/h2 + L is positive definite, d(x) is guaranteed to

Fig. 3. Without line search, the squirrel head animation using our polyno-
mial material (as in Figure 2) quickly becomes unstable.

ALGORITHM 1: Quasi-Newton Solver

1 x1 := y; g(x1) := evalObjective(x1)
2 for k = 1, . . . , numIterations do
3 ∇g(xk) := evalGradient(xk)
4 d(xk) := −(M/h2 + L)−1∇g(xk)
5 α := 2
6 repeat
7 α := α/2
8 xk+1 := xk + αd(xk)
9 g(xk+1) := evalObjective(xk+1)

10 until g(xk+1) ≤ g(xk) + γα tr((∇g(xk))Td(xk));
11 end

be a descent direction. Therefore, there exists α > 0 such that g(x+
αd(x)) ≤ g(x) (unless we are already at a critical point ∇g(x) = 0,
at which point the optimization is finished). In fact, we can ask
for even more; that is, we can always find α > 0 such that g(x +
αd(x)) ≤ g(x) + γα tr((∇g(x))Td(x)) for some constant γ ∈ (0, 1)
(we use γ = 0.3). This is known as the Armijo condition, which
expresses the requirement of “sufficient decrease” [Nocedal and
Wright 2006], preventing the line search algorithm from reducing
the objective only by a negligible amount. Another requirement
for robust line search is to avoid too small steps α even though
they might satisfy the Armijo condition. We tested two possible
strategies: (1) backtracking line search algorithm that satisfies only
the Armijo condition and (2) line search algorithm that satisfies both
the Armijo condition and the “curvature condition” (collectively
known as “Wolfe conditions”). The details of our experiments can
be found in Section 5; in summary, we found that both methods
lead to comparable error reduction, but the backtracking line search
is faster. In our final algorithm, we therefore use the backtracking
line search. Specifically, we set the initial α to 1 and multiply it by
0.5 after every failed attempt. This line search strategy is used in all
our experiments.

Algorithm 1 summarizes the process of computing one frame
of our simulation. The outer loop (lines 2–11) performs quasi-
Newton iterations, and the inner loop (lines 6–10) implements the
line search. What is the extra computational cost required to support
more general materials? With Projective Dynamics energies (Equa-
tion (1)), we do not need the line search, because α = 1 always
works. Indeed, if we drop the line search from Algorithm 1, the al-
gorithm becomes equivalent to a generalized local/global process,
as discussed in Section 3 (which is unstable for non-Projective-
Dynamics energies). Rejected line search attempts, that is, addi-
tional iterations of the line search, represent the main computational
overhead of our method. Fortunately, we found that in practical
simulations, the number of extra line search iterations is relatively
small. For example, in the squirrel head example in Figure 2 using

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:7

the polynomial material, we need only 4,280 line search iterations
for the entire sequence with 400 frames, 10 quasi-Newton iterations
per frame; that is, the average number of line search iterations per
quasi-Newton iteration is only 1.07. Even though in most cases the
full step (α = 1) succeeds, the Armijo safeguard is essential for sta-
bility; if we drop it, the simulation can quickly explode, as shown
in Figure 3.

4.2 Accelerating Convergence

The connection between Projective Dynamics and quasi-Newton
methods allows us to take advantage of further mathematical op-
timization techniques. In this section, we discuss how to accel-
erate convergence of our method using L-BFGS (Limited-memory
BFGS). The BFGS algorithm (Broyden-Fletcher-Goldfarb-Shanno)
is one of the most popular general-purpose quasi-Newton methods;
its key idea is to approximate the Hessian using curvature infor-
mation calculated from previous iterates, that is, x1, . . . , xk−1. The
L-BFGS modification means that we will use only the most recent m
iterates, that is, xk−m, . . . , xk−1, the rationale being that too distant
iterates are less relevant in estimating the Hessian at xk .

In Algorithm 1, the matrix M/h2 + L in line 4 can be inter-
preted as our initial approximation of the Hessian. This matrix is
constant, which on one hand enables its prefactorization, but on
the other hand, M/h2 + L may be far from the Hessian ∇2g(xk),
which is the reason for slower convergence compared to Newton’s
method [Bouaziz et al. 2014]. L-BFGS allows us to develop a more
accurate, state-dependent Hessian approximation, leading to faster
convergence without too much computational overhead (in our ex-
periments the overhead is typically less than 1% of the simulation
time, see Table I). The key to fast iterations of L-BFGS is the fact
that the progressively updated approximate Hessian Ak is not stored
explicitly, which would require us to solve a new linear system
Akd(xk) = −∇g(xk) each iteration, implying high computational
costs. Instead, L-BFGS implicitly represents the inverse of Ak , that
is, linear operator Bk , such that the desired descent direction can be
computed simply as d(xk) = −Bk∇g(xk). The linear operator Bk

is not represented using a matrix (which would have been dense),
but instead as a sequence of dot products, known as the L-BFGS
two-loop recursion; see Algorithm 2. For a more detailed discussion
of BFGS and its variants, we refer to Chapters 6 and 7 of Nocedal
and Wright [2006].

Algorithm 2 requires us to provide an initial Hessian approxima-
tion A0, ideally such that the linear system A0r = q can be solved
efficiently (line 7). In our method, we use M/h2 + L as the initial
Hessian approximation. At first, it may seem the initialization of

ALGORITHM 2: Descent Direction Computation with L-BFGS

1 q := −∇g(xk)
2 for i = k − 1, . . . , k − m do
3 si := xi+1 − xi ; ti := ∇g(xi+1) − ∇g(xi); ρi := tr(tT

i si)
4 ζi := tr(sT

i q)/ρi

5 q := q − ζiti
6 end
7 r := A−1

0 q // A0 is initial Hessian approximation
8 for i = k − m, . . . , k − 1 do
9 η := tr(tT

i r)/ρi

10 r := r + si(ζi − η)
11 end
12 d(xk) := r // resulting descent direction

the Hessian is perhaps not too important and the L-BFGS itera-
tions quickly approach the exact Hessian. However, this intuition
is not true. In Section 5, we experiment with different possible ini-
tializations of the Hessian and show that our particular choice of
M/h2 +L outperforms alternatives such as Hessian of the rest pose
and many others. In short, the reason is that the L-BFGS updates use
only a few gradient samples, which provide only a limited amount
of information about the exact Hessian. The appeal of the L-BFGS
strategy is that it is very fast—the compute cost of the two for-loops
in Algorithm 2 is negligible compared to the cost of solving the
linear system in line 7 with our choice of A0 = M/h2 + L. This
is true even for high values of m. In other words, the linear solve
using M/h2 + L (line 7) is still doing the “heavy lifting,” while
the L-BFGS updates provide an additional convergence boost at the
cost of minimal computational overhead.

Upgrading our method with L-BFGS is simple: we only need to
replace line 4 in Algorithm 1 with a call of Algorithm 2. Note that
for m = 0, Algorithm 2 returns exactly the same descent direction
as before, that is, d(xk) := −(M/h2 + L)−1∇g(xk). What is the
optimal m, that is, the size of the history window? Too small m
will not allow us to unlock the full potential of L-BFGS. The main
problem with too high m is not the higher computational cost of the
two loops in Algorithm 2, but the fact that too distant iterates (such
as xk−100) may contain information irrelevant for the Hessian at xk

and the result can be even worse than with a shorter window. We
found that m = 5 is typically a good value in our experiments.

The recently proposed Chebyshev Semi-Iterative methods for
Projective Dynamics [Wang 2015] can also be interpreted as a
special type of quasi-Newton method that utilizes two previous
iterates, that is, corresponding to m = 2. Indeed, in our experi-
ments, L-BFGS with m = 2 exhibits a similar convergence rate as
the Chebyshev method; see Figure 7 and further discussion in Sec-
tion 5. Finally, we note that even though the Wolfe conditions are the
recommended line search strategy for L-BFGS, we did not observe
any significant convergence benefit compared to our backtracking
strategy. However, evaluating the Wolfe conditions increases the
computational cost per iteration, and therefore, we continue to rely
on the backtracking strategy as described in Algorithm 1.

4.3 Collisions

A classical approach to enforcing nonpenetration constraints be-
tween deformable solids is to (1) detect collisions and (2) resolve
them using temporarily instantiated repulsion springs, which bring
the volume of undesired overlaps to zero [McAdams et al. 2011;
Harmon et al. 2011]. However, in Projective Dynamics, the pri-
mary emphasis is on computational efficiency and therefore only
simplified collision resolution strategies have been proposed by
Bouaziz et al. [2014]. Specifically, Projective Dynamics offers two
possible strategies. The first strategy is a two-phase method, where
collisions are resolved in a separate postprocessing step using pro-
jections, similar to Position-Based Dynamics. The same strategy
was employed also by Liu et al. [2013]. The drawback of this ap-
proach is the fact that collision projections are oblivious to elasticity
and inertia of the simulated objects. The second approach used in
Projective Dynamics is more physically realistic but introduces ad-
ditional computational overhead. Specifically, temporarily instan-
tiated repulsion springs are added to the total energy. This leads
to physically realistic results, but the drawback is that the matrix
M/h2 + L needs to be refactorized whenever the set of repulsion
springs is updated—typically at the beginning of each frame.

Our quasi-Newton interpretation invites a new approach to col-
lision response that is physically realistic but avoids expensive

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:8 • T. Liu et al.

Fig. 4. Our method is capable of simulating complex collision scenarios,
such as squeezing the Big Bunny through a torus. The Big Bunny uses
corotated elasticity with μ = 5 and λ = 200.

refactorizations. Specifically, for each interpenetration found by
collision detection, we introduce an energy term Ecollision(x) =
((Sx − t)Tn)2, where S is a selector matrix of the collided ver-
tex, t is its projection on the surface, and n is the surface normal.
This constraint pushes the collided vertex to the tangent plane. It is
important to add this term to our total energy E(x) only if the vertex
is in collision or contact. Whenever the relative velocity between
the vertex and the collider indicates separation, the Ecollision(x) term
is discarded (otherwise, it would correspond to unrealistic “glue”
forces). This is done once at the beginning of each iteration (just
before line 3 in Algorithm 1). The rest of our algorithm (lines 6–10
of Algorithm 1) is unaffected by these updates; that is, the unilateral
nature of the collision constraints is handled correctly without any
further processing.

The key idea of our approach is to leverage the quasi-Newton
approximation for collision processing. In particular, we account for
the Ecollision(x) terms when evaluating the energy and its gradients,
but we ignore their contributions to the M/h2 + L matrix. This
means that we form a somewhat more aggressive approximation
of the Hessian, with the benefit that the system matrix will never
need to be refactorized. The line search process (lines 6–10 in
Algorithm 1) guarantees that energy will decrease in spite of this
more aggressive approximation. The only tradeoff we observed in
our experiments is that the number of line search iterations may
increase, which is a small cost to pay for avoiding refactorizations.
We observed that even in challenging collision scenarios, such as
when squeezing a Big Bunny through a torus, the approach behaves
robustly and successfully resolves all collisions; see Figure 4.

4.4 Anisotropy

Our numerical methods, including the L-BFGS acceleration, can be
directly applied also to anisotropic material models. We verified this
on an elastic cube model with corotated base material (μ = 10, λ =
100, referring to the notation of Sifakis and Barbič [2012]) enhanced
with the additional anisotropic stiffness term κ

2 (‖Fd‖ − 1)2, where
F is the deformation gradient and d is the (rest-pose) direction of
anisotropy. This corresponds to the directional reinforcement of
the material that is common, for example, in biological soft tissues
containing collagenous fibers. The result of our method with κ = 50
can be seen in Figure 5.

5. RESULTS

Our method supports standard elastic materials, such as corotated
linear elasticity, St. Venant-Kirchhoff, and the Neo-Hookean model;
see Figure 1. None of these materials is supported by Projective Dy-
namics (note that Projective Dynamics supports a special subclass
of corotated linear materials, specifically ones with λ = 0). Our
method also supports the recently introduced spline-based materi-
als proposed by Xu et al. [2015], as shown in Figure 1 and Figure 6.

Fig. 5. Dropping an elastic cube on the ground. Left: Deformation using
isotropic elasticity (linear corotated model). Right: The result after adding
anisotropic stiffness.

Fig. 6. Elastic sphere with spline-based materials [Xu et al. 2015], simu-
lated using our method. Spline-based material A is a modified Neo-Hookean
material that resists compression more; material B is a modified Neo-
Hookean material that resists tension more. The strain-stress curves are
shown on the left.

Table I reports our testing scenarios and compares the runtime of
our method with Newton’s method, both executed on an Intel i7-
4910MQ CPU at 2.90GHz. All scenarios are produced with a fixed
timestep of 1/30 seconds. Because Newton’s method is not guar-
anteed to work with indefinite Hessians, we employ the standard
definiteness fix [Teran et al. 2005]; that is, we project the Hessian of
each element to its closest positive definite component. We found
that this method works better than other definiteness fixes, such as
adding a multiple of the identity matrix [Martin et al. 2011], which
affects the entire simulation even if there are just a few problematic
elements. The approximately 100 times faster runtime of one itera-
tion of our method compared to one iteration of Newton’s method is
due to the following facts: (1) we use precomputed sparse Cholesky
factorization, because our matrix M/h2 + L is constant; (2) the
size of our matrix is n × n, whereas the Hessian used in New-
ton’s method is a 3n × 3n matrix—that is, the x, y, z coordinates
are no longer decoupled; (3) the computation of SVD derivatives,
necessary to evaluate the Hessians of materials based on principal
stretches [Xu et al. 2015], is expensive. Note that our method is also
simpler to implement, as no SVD derivatives or definiteness fixes
are necessary.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:9

Table I. Performance of All Testing Senarios
Our Method (10 Iterations) Newton (1 Iteration)

Line Search L-BFGS Per-Frame Relative Per-Frame Relative
Model #Ver. #Ele. Material Model Iterations Overhead Time Error Time Error
Thin sheet 660 1932 Polynomial 10.8 0.026ms 4.4ms 2.7 × 10−8 184ms 8.8 × 10−4

Sphere 889 1821 Spline-based A 24.5† 0.155ms 21.2ms 2.7 × 10−7 188ms 6.9 × 10−4

Sphere 889 1821 Spline-based B 21.8 0.156ms 19.7ms 6.9 × 10−6 187ms 2.5 × 10−4

Shaking bar 574 1647 Corotated 10.1 0.193ms 7.2ms 1.6 × 10−4 171ms 4.4 × 10−3

Ditto 1454 4140 Neo-Hookean 11.7 0.203ms 17.8ms 3.0 × 10−5 305ms 1.6 × 10−3

Hippo 2387 8406 Corotated 11.9 0.555ms 40.6ms 2.2 × 10−3 640ms 3.7 × 10−2

Twisting bar 3472 10441 Neo-Hookean 10.6 0.945ms 45.6ms 9.4 × 10−5 681ms 7.9 × 10−3

Cloth 6561 32160 Mass-Springs 10.0 1.20ms 42.3ms 9.3 × 10−4 798ms 1.2 × 10−2

Big Bunny 6308 26096 Corotated 49.2‡ 2.19ms 623ms 9.8 × 10−2 2700ms 2.8 × 10−1

Squirrel 8395 23782 Polynomial 10.7 1.41ms 153ms 8.3 × 10−8 2400ms 9.1 × 10−6

Squirrel 33666 125677 Polynomial 10.5 6.38ms 706ms 1.5 × 10−5 15800ms 5.4 × 10−5

In all examples, we execute 10 iterations of our method per frame, accelerated with L-BFGS with history window m = 5. Newton’s method uses one iteration per frame.
The “line search iterations” reports the average number of line search iterations per frame. The “L-BFGS overhead” is the runtime overhead of L-BFGS, that is, timing
of Algorithm 2 without line 7 (m = 5). The reported per-frame time for our method accounts for all 10 iterations. One iteration of our method is approximately 100
times faster than one iteration of Newton’s method. We use 10 iterations of our method, which reduces the error more than one iteration of Newton’s method while being
about 10 times faster. †The higher number of line search iterations is due to the high nonlinearity of the spline-based materials and large deformations of the sphere. ‡In
this case, the higher number of line search iterations is caused by nonlinearities due to collisions (Section 4.3).

Fig. 7. Convergence of our method with different L-BFGS history settings, compared to Chebyshev Semi-Iterative method and Newton’s method (baseline).
The model is “Twisting bar” with Neo-Hookean elasticity, which is a representative example of large deformations with the nonlinear material model. For
consistency, we use the exact same model in our following experiments.

Comparison to Chebyshev Semi-Iterative method. We com-
pared the convergence of our method with various lengths of the L-
BFGS window to the recently introduced Chebyshev Semi-Iterative
method [Wang 2015]. We also plot results obtained with Newton’s
method as a baseline; see Figure 7.

Even though the Chebyshev method was originally proposed
only for Projective Dynamics energies, our generalization to ar-
bitrary materials is compatible with the Chebyshev Semi-Iterative
acceleration; see Algorithm 3. Algorithm 3 computes a descent di-
rection that can be used in line 4 of Algorithm 1. As discussed by
Wang [2015], the Chebyshev acceleration should be disabled dur-
ing the first S iterations, where the recommended value is S = 10.
Another parameter that is essential for the Chebyshev method is an
estimate of spectral radius ρ, which is calculated from training sim-
ulations [Wang 2015]. This parameter must be estimated carefully,
because underestimated ρ can lead to the Chebyshev method pro-
ducing ascent directions (as opposed to descent directions). Without
line search, the ascent directions manifest themselves as oscillations
[Wang 2015]. For the purpose of comparisons, we implemented the
Chebyshev method with a direct solver, which is the fastest method
on the CPU [Wang 2015].

ALGORITHM 3: Descent Direction Computation Using
Chebyshev Semi-Iterative Method [Wang 2015]

1 // S . . . Chebyshev disabled for the first S iterates, default S = 10
2 // ρ . . . approximated spectral radius
3 q := −(M/h2 + L)−1∇g(xk)
4 x̂k+1 := xk + q
5 if k < S then ωk+1 := 1;
6 if k = S then ωk+1 := 2/(2 − ρ2);
7 if k > S then ωk+1 := 4/(4 − ρ2ωk);
8 d(xk) := ωk+1(x̂k+1 − xk−1) + xk−1 − xk

We compare the convergence of all methods using relative error,
defined as

g(xk) − g(x∗)

g(x0) − g(x∗)
, (12)

where x0 is the initial guess (we use x0 := y for all methods), xk is
the kth iterate, and x∗ is the exact solution computed using Newton’s
method (iterated until convergence). The decrease of relative error

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:10 • T. Liu et al.

Fig. 8. Convergence comparison of L-BFGS methods (all using m = 5) initialized with different Hessian approximations, along with Newton’s method
(baseline). The model is “Twisting bar” with Neo-Hookean elasticity.

for one example frame is shown in Figure 7, where all methods
are using the backtracking line search outlined in Algorithm 1. As
expected, descent directions computed using Newton’s method are
the most effective ones, as can be seen in Figure 7 (right). However,
each iteration of Newton’s method is computationally expensive,
and therefore other methods can realize faster error reduction with
respect to computational time, as shown in Figure 7 (left). All of the
remaining methods are based on the constant Hessian approxima-
tion M/h2+L, which leads to much faster convergence. Out of these
methods, classical Projective Dynamics converges the slowest. The
Chebyshev Semi-Iterative method improves the convergence; we
also confirmed that disabling the Chebyshev method during the first
10 iterations indeed helps, as recommended by Wang [2015]. Our
method aided with L-BFGS improves convergence even further. Al-
ready with m = 2 (where m is the size of the history window), we
obtain slightly faster convergence than with the Chebyshev method.
One reason is that it is not necessary to disable L-BFGS in the first
several iterates, because L-BFGS is effective as soon as the previ-
ous iterates become available. Also, we do not have to estimate the
spectral radius, which is required by the Chebyshev method. With
L-BFGS, we can also increase the history window, for example, to
m = 5, obtaining even more rapid convergence.

L-BFGS with different initial Hessian estimates. Our method
can be interpreted as providing a particularly good initial estimate
of the Hessian for L-BFGS. Therefore, it is important to compare to
other possible Hessian initializations. In a general setting, Nocedal
and Wright [2006] recommend to bootstrap L-BFGS using a scaled
identity matrix:

A0 := tr(sT
k−1yk−1)

tr(yT
k−1yk−1)

I. (13)

We experimented with this approach, but we found that our choice
A0 := M/h2 + L leads to much faster convergence, trumping the
computational overhead associated with solving the prefactorized
system A0r = q (see Figure 8, blue graph).

Another possibility would be to set A0 equal to the rest-pose
Hessian (formally, A0 := M/h2 + ∇2g(x0)), which is also a con-
stant matrix that can be prefactorized. As shown in Figure 8 (yellow
graph), this is a slightly better approximation than scaled iden-
tity, but still not very effective. This is because the actual Hessian
depends on world-space rotations of the model, deviating signif-
icantly from the rest-pose Hessian. Figure 9 shows an example
illustrating the drawbacks of the rest-pose Hessian. Configuration
1 shows an elastic cube released from a slightly stretched state.

Fig. 9. Convergence comparison of L-BFGS methods with different con-
figurations. Configuration 1 is the simulation of an elastic cube with Neo-
Hookean elasticity, released from a horizontally stretched pose, close to the
rest pose. Configuration 2 is the same configuration rotated by 90 degrees.
Using the rest-pose Hessian as an initial Hessian approximation does not
work well in Configuration 2. Our method is rotation invariant and therefore
performs equally well in both configurations.

In this configuration, setting A0 to the rest-pose Hessian results in
faster error reduction than our method (red graph), because the ini-
tial configuration is close to the rest pose and therefore the exact
Hessian is close to the rest-pose Hessian. Unfortunately, when we
rotate the initial configuration by 90 degrees (Configuration 2), the
rest-pose Hessian becomes ineffective, as it is far away from the
exact Hessian (yellow graph). Our Hessian approximation is invari-
ant to rigid body transformations and therefore leads to the same
error reduction in both Configurations 1 and 2 (blue graph). To
further analyze this effect, we also computed the condition number
of A−1∇2g(x), where A is an approximate Hessian. The condition
numbers reported in Table 8 confirm this observation.

Another interpretation of our Hessian approximation can be de-
rived from the energy density function of the Neo-Hookean material

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:11

Table II. Condition Number of A−1∇2g(x) in Figure 9
Rest-Pose Our Hessian

A Hessian Approximation
Configuration 1 2 1 2
Condition number 2.45 45.5 9.94 9.94

Condition number of A−1∇2g(x) in Configurations 1 and 2 as in Figure 9, where
∇2g(x) is the exact Hessian matrix evaluated at the beginning of the frame and A is an
approximate Hessian, computed (1) at the rest pose and (2) using our method.

[Sifakis and Barbič 2012]:

�(F) = μ

2
(tr(FT F) − 3) − μ log(det(F)) + λ

2
log2(det(F)), (14)

where F is the deformation gradient and μ and λ are Lamé coeffi-
cients. In this case, our Hessian approximation corresponds to the
first term, that is, tr(FT F), which is indeed rotation invariant. The
rest-pose Hessian is not rotation invariant and thus produces worse
approximation of the exact Hessian as shown in Figure 9.

This issue of the rest-pose Hessian was observed by Müller
et al. [2002], who proposed per-vertex stiffness warping as a possi-
ble remedy. Per-vertex stiffness warping still allows us to leverage
prefactorization of the rest-pose Hessian and results in better con-
vergence than pure rest-pose Hessian; see Figure 8 (purple graph).
However, per-vertex stiffness warping may introduce ghost forces,
because stiffness warping uses different rotation matrices for each
vertex, which means that internal forces in one element no longer
have to sum to zero. The ghost forces disappear in a fully converged
solution; however, this would require a prohibitively high number
of iterations.

Yet another possibility is to completely re-evaluate the Hessian at
the beginning of each frame. This requires refactorization; however,
the remaining 10 (or so) iterations can reuse the factorization, rely-
ing only on L-BFGS updates. When measuring convergence with
respect to the number of iterations, this approach is very effective,
as shown in Figure 8 (right, green graph). However, the cost of the
initial Hessian factorization is significant, as can be seen in Figure 8
(left, green graph). Our method uses the same Hessian factorization
for all frames, avoiding the per-frame factorization costs while fea-
turing excellent convergence properties; see Figure 8 (blue graph).

The overhead of per-frame Hessian factorizations can be mit-
igated by carefully scheduled Hessian updates. In particular, the
Hessian can be reused for multiple subsequent frames if the state is
not changing too much [Deuflhard 2011]. Assuming the corotated
elastic model, Hecht et al. [2012] push this idea even further by
proposing a warp-canceling form of the Hessian that allows not
only for temporal schedule but also for spatially localized updates.
Specifically, a nested dissection tree allows for recomputing only
parts of the mesh, which is particularly advantageous in situations
where only a small part of the object is undergoing large deforma-
tions. However, the updates are still costly, and the frequency of the
updates depends on the simulation. Similarly to per-vertex stiffness
warping, insufficiently frequent updates may produce ghost forces
and consequent instabilities. This can be a problem when simulating
quickly moving elastic objects. To illustrate this, in Figure 10, we
show a simulation of shaking an elastic bar. Even if we schedule
the Hessian updates every other frame and recompute the entire
domain, this method still generates too large ghost forces and be-
comes unstable. In contrast, our method remains stable and does
not require any runtime Hessian updates.

Comparison to Projective Dynamics. One possible alternative
to our method would be to apply regular Projective Dynamics with
additional strain-limiting constraints [Bouaziz et al. 2014], enabling
us to construct piece-wise linear approximations of the strain-stress

Fig. 10. Simulation of a bar with corotated elasticity, constrained in the
middle and rapidly shaken. The method of Hecht et al. [2012] with full
Hessian updates every other frame explodes due to large ghost forces (top).
Our method does not introduce any ghost forces and remains stable (bottom).

Fig. 11. The strain-stress curve of a polynomial material can be approxi-
mated piece-wise linearly with two Projective Dynamics constraints.

curves of more general materials. We tried to use this approach to
approximate the polynomial material (a(x) = μ(x − 1)4, b(x) =
0, c(x) = 0) discussed in Section 4.1; see Figure 11. Even though we
obtain similar overall behavior, there are two types of artifacts asso-
ciated with this approximation. First, the strain-limiting constraints
introduce damping when they are not activated. This is because the
projection terms still exist in our constant matrix M/h2 + L; if the
strain limiting is not activated, the deformation gradients project to
their current values, which produces the undesired damping. The
second problem is due to the nonsmooth nature of the piece-wise
linear approximation; that is, the stiffness of the simulated object
is abruptly changed when the strain-limiting constraints become
activated. As shown in the accompanying video, our method avoids
both of these issues.

The L-BFGS acceleration also benefits simulations that use only
Projective Dynamics materials (Equation (1)). The most elementary
examples of these materials are mass-spring systems. In Figure 12,
we can see that the L-BFGS acceleration applied to a mass-spring
system simulation results in more realistic wrinkles with negligible
computational overhead; see Table I.

Choice of L-BFGS history window size. In order to find the
best history window size (m), we experimented with different
values of m; see Figure 13. Too large m takes into account too
distant iterates, which can lead to worse approximation of the Hes-
sian. In Figure 13, we see that the optimal value is m = 5, which
is also our recommended default setting. However, it is comfort-
ing that the algorithm is not particularly sensitive to the setting of
m—even large values such as m = 100 produce only slightly worse

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:12 • T. Liu et al.

Fig. 12. Mass-spring system simulation using our method with L-BFGS
(left) and without, that is, using pure Projective Dynamics (right). The L-
BFGS acceleration results in more realistic wrinkles.

Fig. 13. Comparison of L-BFGS convergence rate with different history
window sizes (m).

convergence. We also observed that in scenarios with frequent col-
lisions, the history becomes less useful. In these cases, reducing the
window size according to the number of newly instantiated collision
constraints may be beneficial. In Figure 7, we also notice that the
convergence rate of the Chebyshev method is similar to our method
with L-BFGS using m = 2. We believe this is not a coincidence,
because the Chebyshev method uses two previous iterates, just like
L-BFGS with m = 2.

Line search conditions. The purpose of a line search algorithm is
to ensure a sufficient decrease in a given descent direction. Line 4 in
Algorithm 1 is known as the Armijo condition. This condition pre-
vents overshooting, but it is not enough to ensure that the algorithm
keeps making reasonable progress, because it is satisfied for all suf-
ficiently small values of α. In order to rule out unacceptably small
steps, the popular Wolfe conditions use an additional requirement:
tr((∇g(x+αd(x)))Td(x)) ≥ γ2 tr((∇g(x))Td(x)), where γ2 ∈ (γ, 1),
and γ is the constant in line 4 of Algorithm 1. This requirement
is known as a “curvature condition.” Intuitively, this condition re-
quires the gradient at the new iterate to be sufficiently “flat,” that is,
close to a critical point.

We implemented two algorithms: (1) backtracking line search
starting with α = 1 and using only the Armijo condition and (2)
line search using both of the Wolfe conditions (according to Algo-
rithm 3.5 and 3.6 in Nocedal and Wright [2006]). The line search
step sizes for one example frame are compared in Figure 14. With
descent directions computed with our method, we observed that 1
is an excellent initial guess that usually satisfies both of the Wolfe
conditions. In these cases, both algorithms return α = 1. In some

Fig. 14. Step size of each quasi-Newton iteration in the twisting bar exam-
ple. The blue circles are step sizes chosen by backtracking line search with
the Armijo condition. The red crosses are step sizes chosen by line search
satisfying the Wolfe conditions.

Fig. 15. The convergence rate for different stiffness parameters chosen
from different [xstart, xend] intervals.

iterations, for example, in iteration 20 in Figure 14, the curvature
condition enforces a larger step than the backtracking line search.
However, at the beginning of iteration 20, the relative error has been
already reduced to 10−7, and the different step size does not have
a significant effect on the result. We note the Wolfe conditions are
usually recommended when using L-BFGS methods [Nocedal and
Wright 2006] initialized with a scaled identity matrix, but this can
be a poor initial guess. Our Hessian approximation provides a better
initial guess and therefore careful line search becomes less critical.
In practice, we observed that both line search approaches lead to
comparable error reduction when using our Hessian approximation,
and therefore we recommend the computationally less expensive
backtracking line search strategy.

Choice of stiffness parameters. As discussed in Section 4.1, we
use Equation (11) to define our stiffness parameter k as the slope of
the best linear approximation of Equation (10) at ∈ [xstart, xend].
What is the best [xstart, xend] interval to use? In the limit, with
[xstart, xend] → [1, 1], our k would converge to the second deriva-
tive. However, a finite interval [xstart, xend] guarantees that our k
is meaningful even for materials such as the polynomial material
a(x) = μ(x − 1)4, b(x) = 0, c(x) = 0; in this case, we obtain a k
that depends linearly on μ. We argue that the convergence of our al-
gorithm is not very sensitive to a particular choice of the [xstart, xend]
interval. In Figure 15, we show convergence graphs of a twisting

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:13

Fig. 16. Convergence comparison of various methods using sparse direct solvers and conjugate gradients. The model is “Twisting bar” with Neo-Hookean
elasticity.

bar with Neo-Hookean material using different intervals to compute
the stiffness parameter k. Although Neo-Hookean material is highly
nonlinear, the convergence rates for different interval choices are
quite similar. Therefore, we decided not to investigate more sophis-
ticated strategies and we set xstart = 0.5, xend = 1.5 in all of our
simulations.

Comparison with iterative solvers. Sparse iterative solvers do
not require expensive factorizations and are therefore attractive in
interactive applications. A particularly popular iterative solver is the
Conjugate Gradient method (CG) [Hestenes and Stiefel 1952]. An
additional advantage is that CG can be implemented in a matrix-free
fashion, that is, without explicitly forming the sparse system matrix.
Gast et al. [2015] further accelerate the CG solver used in Newton’s
method by proposing a CG-friendly definiteness fix. Specifically,
the CG iterations are terminated whenever the maximum number
of iterations is reached or indefiniteness of the Hessian matrix is
detected.

While iterative methods can be the only possible choice in high-
resolution simulations (e.g., in scientific computing), in real-time
simulation scales, sparse direct solvers with precomputed factor-
ization are hard to beat, as we show in Figure 16. Specifically, we
test Newton’s method with linear systems solved using CG with
five and 15 iterations, using a Jacobi preconditioner. Even with 15
CG iterations, the accuracy is still not the same as with the direct
solver, while the computational cost becomes high. If we use only
five CG iterations, the linear system solving time improves, but
the convergence rate suffers because the descent directions are not
sufficiently effective. The method of Gast et al. [2015] initially out-
performs Newton with CG; however, the convergence slows down
in subsequent iterations. We also tried to apply CG to our method,
in lieu of the direct solver. With 15 CG iterations, the convergence
is competitive; however, the CG solver is slower.

A carefully chosen preconditioner usually helps the convergence
of a CG solver. Figure 17 shows an example of the effect of different
preconditioners. The green graph is L-BFGS initialized with the
Hessian matrix evaluated at the beginning of every frame, solved
by a direct solver. This Hessian approximation provides a very nice
initial guess for L-BFGS, but its evaluation and factorization are
too expensive to execute once per frame. The two yellow graphs
use the same Hessian approximation as the green graph but are
solved using preconditioned conjugate gradients (PCGs) with five
and 15 iterations, using incomplete Cholesky factorization of the
rest-pose Hessian as a preconditioner. Compared with the green

Fig. 17. Comparison to preconditioned conjugate gradients (PCGs) with
different preconditioners, tested on the “Twisting bar” example with Neo-
Hookean elasticity. Experiment (a) is L-BFGS using our Hessian approxi-
mation as the initial guess. The rest of the experiments (b–f) are L-BFGS
using the Hessian matrix evaluated at the beginning of each frame solved
by the following options: (b) direct solver; (c) five PCG iterations with in-
complete Cholesky (ichol) of the rest-pose Hessian; (d) 15 PCG iterations
with ichol of the rest-pose Hessian; (e) five PCG iterations with ichol of
our Hessian approximation; (f) 15 PCG iterations with ichol of our Hessian
approximation.

graph, we can see that the PCG solver is more efficient especially
at the first several iterations, since it does not require the expensive
factorization of the Hessian matrix. However, the convergence starts
to slow down at later iterates. The two purple graphs are using the
exact same configuration as the yellow graphs, but use incomplete
Cholesky factorization of our Hessian approximation, M/h2 + L,
as a preconditioner. We can see that our Hessian approximation is
a better preconditioner than the rest-pose Hessian.

Robustness. We demonstrate that our proposed extensions to
more general materials and the L-BFGS solver upgrade do not
compromise simulation robustness. In Figure 18, we show an elastic
hippo that recovers from an extreme (randomized) deformation with
many inverted elements. Specifically, the hippo model uses L-BFGS
with m = 5 and corotated linear elasticity with μ = 20 and λ = 100
(note that Projective Dynamics supports only corotated materials
with λ = 0).

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:14 • T. Liu et al.

Fig. 18. Our method is robust despite extreme initial conditions: a ran-
domly initialized hippo returns back to its rest pose. This example does
not contain any explicit inversion handling constraints, only the standard
penalization of inverted elements due to corotated elasticity.

6. LIMITATIONS AND FUTURE WORK

Our method is currently limited only to hyperelastic materials sat-
isfying the Valanis-Landel assumption. Even though this assump-
tion covers many practical models, including the recently proposed
spline-based materials [Xu et al. 2015], it would be interesting to
study the further generalization of our method. Perhaps even more
interesting would be to remove the assumption of hyperelasticity.
Can we develop fast algorithms for simulating non-hyperelastic
materials, including effects such as relaxation, creep, and hysteresis
[Bargteil et al. 2007]? Our method assumes linear FEM; it would
be a great topic to find a good Hessian approximation to nonlinear
shape functions, such as Quadratic Bézier Finite Elements [Bargteil
and Cohen 2014]. Inspired by the recent work of Wang [2015],
we would like to explore GPU implementations of physics-based
simulations. Our current method is derived from the Implicit Euler
time integration method and therefore inherits its artificial damping
drawbacks. We experimented with Implicit Midpoint—a symplec-
tic integrator that does not suffer from this problem. However, we
found that Implicit Midpoint is much less stable. In the future, we
would like to explore fast numerical solvers for symplectic yet stable
integration methods. Finally, we plan to investigate specific physics-
based applications that require both high accuracy and speed, such
as interactive surgery simulation.

Collision detection and response is a challenging problem. The
classical model of repulsion springs [McAdams et al. 2011], which
we adopted in our implementation, is analogous to an active set
method that adds/removes constraints during the iterations of the
algorithm. It is possible that this approach will end up cycling;
however, we have never observed this in practice. One possible
workaround is to limit the number of iterations, possibly leaving
some collision constraints unresolved. In collision-dominant simu-
lations, more advanced algorithms may be necessary. Another lim-
itation is that in our current implementation, we treat collisions as
soft constraints with relatively stronger stiffness compared to the
elastic models. One possible way to resolve hard collision con-
straints is to use Lagrangian multipliers by solving the KKT system
using its Schur complement [Ichim et al. 2016]. However, in cases
with many collision constraints, the Schur complement becomes
impractically large. Another possible approach to treating hard col-
lision constraints is the Augmented Lagrangian method [Deng et al.
2013]. Fast and robust collision resolution in challenging scenarios
is a problem that deserves significant attention in future work.

7. CONCLUSIONS

We have presented a method for fast physics-based simulation of
a large class of hyperelastic materials. The key to our approach is
the insight that Projective Dynamics [Bouaziz et al. 2014] can be
reformulated as a quasi-Newton method. Aided with line search,
we obtain a robust simulator supporting many practical material

models. Our quasi-Newton formulation also allows us to further ac-
celerate convergence by combining our method with L-BFGS. Even
though L-BFGS is sensitive to initial Hessian approximation, our
method suggests a particularly effective Hessian initialization that
yields fast convergence. Most of our experiments use 10 iterations
of our method, which is typically more accurate than one iteration
of Newton’s method, while being about 10 times faster and easier
to implement. Traditionally, real-time physics is considered to be
approximate but fast, while offline physics is accurate but slow.
We hope that our method will help to blur the boundaries between
real-time and offline physics-based animation.

ACKNOWLEDGMENTS

We thank Jernej Barbič, Erik Brunvand, Elaine Cohen, Sebastian
Martin, James O’Brien, Mark Pauly, Peter Shirley, Cem Yuksel,
and Hongyi Xu for many inspiring discussions. We also thank Petr
Kadleček for help with rendering, Alec Jacobson for providing the
mesh generating tool, Dimitar Dinev for proofreading, and Han-
nah Swan for narrating the accompanying video. This work was
supported by NSF awards IIS-1622360 and IIS-1350330.

REFERENCES

Steven S. An, Theodore Kim, and Doug L. James. 2008. Optimizing cubature
for efficient integration of subspace deformations. ACM Trans. Graph. 27
(2008), 165:1–165:10.

Jernej Barbič and Doug L. James. 2005. Real-time subspace integration for
St. Venant-kirchhoff deformable models. ACM Trans. Graph. 24 (2005),
982–990.

Adam W. Bargteil and Elaine Cohen. 2014. Animation of deformable bodies
with quadratic Bézier finite elements. ACM Trans. Graph. 33 (2014),
27:1–27:10.

Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. 2007.
A finite element method for animating large viscoplastic flow. ACM Trans.
Graph. 26 (2007), 16:1–16:8.

Klaus Jürgen Bathe and Arthur P. Cimento. 1980. Some practical proce-
dures for the solution of nonlinear finite element equations. In Computer
Methods in Applied Mechanics and Engineering 22 (1980), 59–85.

Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014a.
Position-based simulation of continuous materials. Computers & Graph-
ics 44 (2014), 1–10.

Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and
Miles Macklin. 2014b. A survey on position-based simulation methods in
computer graphics. In Comput. Graph. Forum. 33 (2014), 228–251.

Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark
Pauly. 2012. Shape-up: Shaping discrete geometry with projections. In
Comput. Graph. Forum, Vol. 31. 1657–1667.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark
Pauly. 2014. Projective dynamics: Fusing constraint projections for fast
simulation. ACM Trans. Graph. 33 (2014), 154:1–154:11.

Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A
simple geometric model for elastic deformations. ACM Trans. Graph. 29
(2010), 38:1–38:6.

Desai Chen, David Levin, Shinjiro Sueda, and Wojciech Matusik. 2015.
Data-driven finite elements for geometry and material design. ACM Trans.
Graph. 34 (2015), 74:1–74:10.

Bailin Deng, Sofien Bouaziz, Mario Deuss, Juyong Zhang, Yuliy
Schwartzburg, and Mark Pauly. 2013. Exploring local modifications for
constrained meshes. In Comput. Graph. Forum, Vol. 32. 11–20.

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials • 23:15

Mathieu Desbrun, Peter Schröder, and Alan Barr. 1999. Interactive ani-
mation of structured deformable objects. Graphics Interface 99 (1999),
10.

Peter Deuflhard. 2011. Newton Methods for Nonlinear Problems: Affine
Invariance and Adaptive Algorithms. Springer Science & Business Media.

Jacob Fish, Murali Pandheeradi, and Vladimir Belsky. 1995. An efficient
multilevel solution scheme for large scale non-linear systems. Internat. J.
Numer. Methods Engrg. 38 (1995), 1597–1610.

Marco Fratarcangeli and Fabio Pellacini. 2015. Scalable partitioning for
parallel position based dynamics. In Comput. Graph. Forum. 34 (2015),
405–413.

Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang,
and Joseph M. Teran. 2015. Optimization integrator for large time steps.
IEEE Trans. Visualization Comp. Graph. 21 (2015), 1103–1115.

Joachim Georgii and Rüdiger Westermann. 2006. A multigrid framework
for real-time simulation of deformable bodies. Comput. Graphics 30, 3
(2006), 408–415.

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and
Eitan Grinspun. 2007. Efficient simulation of inextensible cloth. ACM
Trans. Graph. 26 (2007), 49:1–49:7.

Fabian Hahn, Sebastian Martin, Bernhard Thomaszewski, Robert Sumner,
Stelian Coros, and Markus Gross. 2012. Rig-space physics. ACM Trans.
Graph. 31 (2012), 72:1–72:8.

Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2002. Geometric Nu-
merical Integration: Structure-Preserving Algorithms for Ordinary Dif-
ferential Equations. Springer.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011.
Interference-aware geometric modeling. ACM Trans. Graph. 30 (2011),
137:1–137:10.

David Harmon and Denis Zorin. 2013. Subspace Integration with Local
Deformations. ACM Trans. Graph. 32 (2013), 107:1–107:10.

Michael Hauth and Olaf Etzmuss. 2001. A high performance solver for the
animation of deformable objects using advanced numerical methods. In
Comput. Graph. Forum. 20 (2001), 319–328.

Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien.
2012. Updated sparse cholesky factors for corotational elastodynamics.
ACM Trans. Graph. 31 (2012), 123:1–123:13.

Magnus Rudolph Hestenes and Eduard Stiefel. 1952. Methods of Conjugate
Gradients for Solving Linear Systems. Vol. 49. NBS.

Alexandru-Eugen Ichim, Ladislav Kavan, Merlin Nimier-David, and Mark
Pauly. 2016. Building and animating user-specific volumetric face rigs.
In Proc. EG Symp. Computer Animation. 107–117.

Geoffrey Irving, Joseph Teran, and Ron Fedkiw. 2004. Invertible finite el-
ements for robust simulation of large deformation. In Proc. EG Symp.
Computer Animation. 131–140.

Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jerrold E Mars-
den, Peter Schröder, and Matthieu Desbrun. 2006. Geometric, variational
integrators for computer animation. In Proc. EG Symp. Computer Anima-
tion. 43–51.

Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012.
Long range attachments-a method to simulate inextensible clothing in
computer games. In Proc. EG Symp. Computer Animation. 305–310.

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Acceler-
ated quadratic proxy for geometric optimization. ACM Trans. Graph. 35
(2016), 134:1–134:11.

Siwang Li, Jin Huang, Fernando de Goes, Xiaogang Jin, Hujun Bao, and
Mathieu Desbrun. 2014. Space-time editing of elastic motion through ma-
terial optimization and reduction. ACM Trans. Graph. 33 (2014), 108:1–
108:10.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan.
2013. Fast simulation of mass-spring systems. ACM Trans. Graph. 32
(2013), 214:1–214:7.

Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans.
Graph. 32 (2013), 104:1–104:12.

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim.
2014. Unified particle physics for real-time applications. ACM Trans.
Graph. 33 (2014), 153:1–153:12.

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus
Gross. 2011. Example-based elastic materials. ACM Trans. Graph. 30
(2011), 72:1–72:8.

Tobias Martin, Pushkar Joshi, Miklós Bergou, and Nathan Carr. 2013. Effi-
cient non-linear optimization via multi-scale gradient filtering. In Comput.
Graph. Forum. 32 (2013), 89–100.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tam-
storf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity for
character skinning with contact and collisions. ACM Trans. Graph. 30
(2011), 37:1–37:12.

Matthias Müller. 2008. Hierarchical position based dynamics. In Work-
shop in Virtual Reality Interactions and Physical Simulation “VRIPHYS”
(2008). Eurographics Association.

Matthias Müller and Nuttapong Chentanez. 2011. Solid simulation with
oriented particles. ACM Trans. Graph. 30 (2011), 92:1–92:10.

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin.
2014. Strain based dynamics. In Proc. EG Symp. Computer Animation,
Vol. 2 (2014), 149–157.

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin.
2015. Air meshes for robust collision handling. ACM Trans. Graph. 34
(2015), 133:1–133:9.

Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and
Barbara Cutler. 2002. Stable real-time deformations. In Proc. EG Symp.
Computer Animation. 49–54.

Matthias Müller and Markus Gross. 2004. Interactive virtual materials. In
Proceedings of Graphics Interface (2004), 239–246.

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.
2007. Position based dynamics. J. Vis. Comun. Image Represent. 18
(2007), 109–118.

Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.
2005. Meshless deformations based on shape matching. ACM Trans.
Graph. 24 (2005), 471–478.

Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇
projective dynamics: Fast simulation of general constitutive models. In
Proc. ACM SIGGRAPH/Eurographics Symp. on Computer Animation
(SCA’16). 21–28.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive
anisotropic remeshing for cloth simulation. ACM Trans. Graph. 31 (2012),
152:1–152:10.

J.W. Neuberger. 1983. Steepest descent for general systems of linear differ-
ential equations in hilbert space. In Ordinary Differential Equations and
Operators. Springer.

John Neuberger. 2009. Sobolev Gradients and Differential Equations.
Springer Science & Business Media.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization.
Springer Verlag.

Alec R. Rivers and Doug L. James. 2007. FastLSM: Fast lattice shape
matching for robust real-time deformation. ACM Trans. Graph. 26 (2007),
82:1–82:6.

Martin Servin, C. Lacoursière, and N. Melin. 2006. Interactive simulation of
elastic deformable materials. In The Annual SIGRAD Conference; Special
Theme: Computer Games 19 (2006).

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.



23:16 • T. Liu et al.

Eftychios Sifakis and Jernej Barbič. 2012. FEM simulation of 3D deformable
solids: A practitioner’s guide to theory, discretization and model reduction.
In ACM SIGGRAPH Courses. 20:1–20:50.

Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer
graphics. In IEEE Int. Conf. on CAD and Comput. Graph. 1–11.

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed
aggregation multigrid for cloth simulation. ACM Trans. Graph. 34 (2015),
245:1–245:13.

Yun Teng, Mark Meyer, Tony DeRose, and Theodore Kim. 2015. Sub-
space condensation: Full space adaptivity for subspace deformations.
ACM Trans. Graph. 34 (2015), 76:1–76:9.

Yun Teng, Miguel A. Otaduy, and Theodore Kim. 2014. Simulating ar-
ticulated subspace self-contact. ACM Trans. Graph. 33 (2014), 106:1–
106:9.

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005.
Robust quasistatic finite elements and flesh simulation. In Proc. EG Symp.
Computer Animation. 181–190.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elas-
tically deformable models. In Computer Graphics (Proc. SIGGRAPH),
Vol. 21. 205–214.

Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2009.
Continuum-based strain limiting. In Comput. Graph. Forum. 28 (2009),
569–576.

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and Francois Faure.
2015. Stable constrained dynamics. ACM Trans. Graph. 34 (2015), 132:1–
132:10.

K. C. Valanis and Robert F. Landel. 1967. The strain-energy function of a
hyperelastic material in terms of the extension ratios. Journal of Applied
Physics 38 (1967), 2997–3002.

Huamin Wang. 2015. A Chebyshev semi-iterative approach for accelerating
projective and position-based dynamics. ACM Trans. Graph. 34 (2015),
246:1–246:9.

Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-
resolution isotropic strain limiting. ACM Trans. Graph. 29 (2010), 156:1–
156:10.

Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear
material design using principal stretches. ACM Trans. Graph. 34 (2015),
75:1–75:11.

Received May 2016; revised October 2016; accepted December 2016

ACM Transactions on Graphics, Vol. 36, No. 3, Article 23, Publication date: May 2017.


