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Corotated Linear Elasticity

Our method: 20.1 ms/frame

Newton's method 308 ms/frame

Neo-Hookean

Our method: 17.8 ms/frame

Newton's method 305 ms/frame

St. Venant Kirchhoff

Our method: 17.2 ms/frame

Newton's method 305 ms/frame

Polynomial Material

Our method: 21.5 ms/frame

Newton's method 308 ms/frame

Spline-based Material A

Our method: 36.6 ms/frame

Newton's method 315 ms/frame

Spline-based Material B

Our method: 30.7 ms/frame

Newton's method 316 ms/frame

Figure 1: Our method enables fast simulation of many different types of hyperelastic materials. Compared to the commonly-applied Newton’s
method, our method is about 10 times faster, while achieving even higher accuracy and being simpler to implement. The Polynomial and
Spline-based materials are models recently introduced by Xu et al. [2015]. Spline-based material A is a modified Neo-Hookean material with
stronger resistance to compression; spline-based material B is a modified Neo-Hookean material with stronger resistance to tension.

Abstract
We present a new method for real-time physics-based simulation
supporting many different types of hyperelastic materials. Previ-
ous methods such as Position Based or Projective Dynamics are
fast, but support only limited selection of materials; even classi-
cal materials such as the Neo-Hookean elasticity are not supported.
Recently, Xu et al. [2015] introduced new “spline-based materi-
als” which can be easily controlled by artists to achieve desired
animation effects. Simulation of these types of materials currently
relies on Newton’s method, which is slow, even with only one it-
eration per timestep. In this paper, we show that Projective Dy-
namics can be interpreted as a quasi-Newton method. This insight
enables very efficient simulation of a large class of hyperelastic
materials, including the Neo-Hookean, spline-based materials, and
others. The quasi-Newton interpretation also allows us to leverage
ideas from numerical optimization. In particular, we show that our
solver can be further accelerated using L-BFGS updates (Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm). Our final
method is typically more than 10 times faster than one iteration of
Newton’s method without compromising quality. In fact, our result
is often more accurate than the result obtained with one iteration of
Newton’s method. Our method is also easier to implement, imply-
ing reduced software development costs.

Keywords: Physics-based animation, material models, numerical
optimization.

1 Introduction

Physics-based animation is an important tool in computer graphics
even though creating visually compelling simulations often requires
a lot of patience. Waiting for results is not an option in real-time
simulations, which are necessary in applications such as computer
games and training simulators, e.g., surgery simulators. Previous
methods for real-time physics such as Position Based Dynamics
[Müller et al. 2007] or Projective Dynamics [Bouaziz et al. 2014]
have been successfully used in many applications and commercial
products, despite the fact that these methods support only a re-
stricted set of material models. Even classical models from contin-
uum mechanics, such as the Neo-Hookean, St. Venant-Kirchoff, or
Mooney-Rivlin materials, are not supported by Projective Dynam-
ics. We tried to emulate their behavior with Projective Dynamics,
but despite our best efforts, there are still obvious visual differences
when compared to simulations with the original non-linear materi-
als.

The advantages of more general material models were nicely
demonstrated in the recent work of Xu et al. [2015], who pro-
posed a new class of spline-based materials particularly suitable for
physics-based animation. Their user-friendly spline interface en-
ables artists to easily modify material properties in order to achieve
desired animation effects. However, their system relies on New-
ton’s method, which is slow, even if the number of Newton’s iter-
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ations per frame is limited to one. Our method enables fast sim-
ulation of spline-based materials, combining the benefits of artist-
friendly material interfaces with the advantages of fast simulation,
such as rapid iterations and/or higher resolutions.

Physics-based simulation can be formulated as an optimization
problem where we minimize a multi-variate function g. New-
ton’s method minimizes g by performing descent along direction
−(∇2g)−1∇g, where ∇2g is the Hessian matrix, and ∇g is the
gradient. One problem of Newton’s method is that the Hessian
∇2g can be indefinite, in which case the Newton’s direction could
erroneously increase g. This undesired behavior can be prevented
by so-called “definiteness fixes” [Teran et al. 2005; Nocedal and
Wright 2006]. While definiteness fixes require some computational
overheads, the slow speed of Newton’s method is mainly caused by
the fact that the Hessian changes at every iteration, i.e., we need to
solve a new linear system for every Newton step.

The point of departure for our method is the insight that Projec-
tive Dynamics can be interpreted as a special type of quasi-Newton
method. In general, quasi-Newton methods [Nocedal and Wright
2006] work by replacing the Hessian∇2g with a linear operator A,
where A is positive definite and solving linear systems Ax = b is
fast. The descent directions are then computed as−A−1∇g (where
the inverse is of course not explicitly evaluated, in fact, A is often
not even represented with a matrix). The trade-off is that if A is a
poor approximation of the Hessian, the quasi-Newton method may
converge slowly. Unfortunately, coming up with an effective ap-
proximation of the Hessian is not easy. We tried many previous
quasi-Newton methods, but even after boosting their performance
with L-BFGS [Nocedal and Wright 2006], we were unable to ob-
tain an effective method for real-time physics. We show that Pro-
jective Dynamics can be re-formulated as a quasi-Newton method
with some remarkable properties, in particular, the resulting Aour

matrix is constant and positive definite. This re-formulation enables
us to generalize the method to hyperelastic materials not supported
by Projective Dynamics, such as the Neo-Hookean or spline-based
materials. Even though the resulting solver is slightly more com-
plicated than Projective Dynamics (in particular, we must employ a
line search to ensure stability), the computational overhead required
to support more general materials is rather small.

The quasi-Newton formulation also allows us to further improve
convergence of our solver. We propose using L-BFGS, which uses
curvature information estimated from a certain number of previ-
ous iterates to improve the accuracy of our Hessian approximation
Aour. Adding the L-BFGS Hessian updates introduces only a small
computational overhead while accelerating the convergence of our
method. However, this is not a silver bullet, because the perfor-
mance of L-BFGS highly depends on the quality of the initial Hes-
sian approximation. With previous quasi-Newton methods, we ob-
served rather disappointing convergence properties (see Figure 7).
However, the combination of our Hessian approximation Aour with
L-BFGS is quite effective and can be interpreted as a generaliza-
tion of the recently proposed Chebyshev Semi-Iterative method for
accelerating Projective Dynamics [Wang 2015].

The L-BFGS convergence boosting is compatible with our first
contribution, i.e., fast simulation of complex non-linear materials.
Specifically, we can simulate any materials satisfying the Valanis-
Landel assumption [Valanis and Landel 1967] which includes many
classical materials, such as St. Venant-Kirchhoff, Neo-Hookean,
Mooney-Rivlin, and also the recently proposed spline-based ma-
terials [Xu et al. 2015] (none of which is supported by Projective
Dynamics). In summary, our final method achieves faster conver-
gence than Projective Dynamics while being able to simulate a large
variety of hyperelastic materials.

2 Related Work
The work of Terzopoulos et al. [1987] pioneered physics-based an-
imation, nowadays an indispensable tool in feature animation and
visual effects. Real-time physics became widespread only more
recently, with first success stories represented by real-time rigid
body simulators, commercially offered by companies such as Ha-
vok since early 2000s. Fast simulation of deformable objects is
more challenging because they feature many more degrees of free-
dom than rigid bodies. Fast simulations of deformable objects using
shape matching [Müller et al. 2005; Rivers and James 2007] paved
the way towards more general Position Based Dynamics methods
[Müller et al. 2007; Stam 2009]. The past decade witnessed rapid
development of Position Based methods, including improvements
of the convergence [Müller 2008; Kim et al. 2012], robust simula-
tion of elastic models [Müller and Chentanez 2011], generalization
to fluids [Macklin and Müller 2013] and continuum-based materials
[Müller et al. 2014; Bender et al. 2014a], unified solvers including
multiple phases of matter [Macklin et al. 2014], and most recently,
methods to avoid element inversion [Müller et al. 2015]. We refer to
a recent survey [Bender et al. 2014b] for a more detailed summary
of Position Based methods.

A new interpretation of Position Based methods was offered by Liu
et al. [2013], observing that Position Based Dynamics can be in-
terpreted as an approximate solver for Implicit Euler time-stepping.
The same paper introduces a fast local/global solver for mass-spring
systems integrated using Implicit Euler. This method was later gen-
eralized to Projective Dynamics [Bouaziz et al. 2014] by combining
the ideas of [Liu et al. 2013] with a shape editing system “Shape-
Up” [Bouaziz et al. 2012]. Recently, a Chebyshev Semi-Iterative
method [Wang 2015] has been proposed to accelerate convergence
of Projective Dynamics, while exploring also highly parallel GPU
implementations of real-time physics.

Multi-grid methods represent another approach to accelerate
physics-based simulations [Georgii and Westermann 2006; Müller
2008; Wang et al. 2010; McAdams et al. 2011; Tamstorf et al.
2015]. Multi-grid methods are attractive especially for highly de-
tailed meshes where sparse direct solvers become hindered by high
memory requirements. However, constructing multi-resolution data
structures and picking suitable parameters is not a trivial task. An-
other way to speed up FEM is by using subspace simulation where
the nodal degrees of freedom are replaced with a low-dimensional
linear subspace [Barbič and James 2005; An et al. 2008; Li et al.
2014]. These methods can be very efficient; however, deforma-
tions that were not accounted for during the subspace construction
may not be well represented. A variety of approaches have been
designed to address this limitation while trying to preserve effi-
ciency [Harmon and Zorin 2013; Teng et al. 2014; Teng et al. 2015].
Simulating at coarser resolutions is also possible, while crafting
special data-driven materials which avoid the loss of accuracy typ-
ically associated with lower resolutions [Chen et al. 2015].

The concept of constraint projection, which appears in both Posi-
tion Based and Projective Dynamics, is also central to the Fast Pro-
jection method [Goldenthal et al. 2007] and strain-limiting tech-
niques [Thomaszewski et al. 2009; Narain et al. 2012]. The
Fast Projection method and Position Based Dynamics formulate
physics simulation as a constrained optimization problem that
is solved by linearizing the constraints in the spirit of sequen-
tial quadratic programming [Macklin et al. 2014]. The resulting
Karush-Kuhn-Tucker (KKT) equation system is then solved us-
ing a direct solver [Goldenthal et al. 2007] or an iterative method
such as Gauss-Seidel [Müller et al. 2007; Stam 2009; Fratarcangeli
and Pellacini 2015], Jacobi [Macklin and Müller 2013], or their
under/over-relaxation counterparts [Macklin et al. 2014]. By using
a constrained optimization formulation the Fast Projection method
and Position Based Dynamics are designed for solving infinitely



stiff systems but are not appropriate to handle soft materials. This
problem can be overcome by regularizing the KKT system [Servin
et al. 2006; Tournier et al. 2015], leading to approaches that can
accurately handle extremely high tensile forces (e.g., string of a
bow) but also support soft (compliant) constraints. However, these
methods are slower than Projective Dynamics because a new linear
system has to be solved at each iteration.

The idea of quasi-Newton methods in elasticity is not new and
has been studied long time before real-time simulations were feasi-
ble. Several research papers have been done to accelerate Newton’s
method in FEM simulations by updating the Hessian approxima-
tion only once every frame [Bathe and Cimento 1980; Fish et al.
1995]. However, even one Hessian update is usually so computa-
tionally expensive that can not fit into the computing time limit of
real-time applications. Deuflhard [2011] minimizes the number of
Hessian factorizations by carefully scheduled Hessian updates. But
the update rate will heavily depend on the deformation. A good
Hessian approximation suitable for realtime applications should be
easy to refactorize or capable of prefactorization. One straightfor-
ward constant approximation which is good for prefactorization is
the Hessian evaluated at the rest-pose (undeformed configuration).
The rest-pose is positive semi-definite and its use at any configu-
ration enables pre-factorization. Unfortunately, the actual Hessian
of deformed configurations is often very different from the rest-
pose Hessian and this approximation is therefore not satisfactory
for larger deformations [Müller et al. 2002].

To improve upon this, Müller et al. [2002] introduced per-vertex
“stiffness warping” of the rest-pose Hessian, which is more accu-
rate and can still leverage pre-factorized rest-pose Hessian. Unfor-
tunately, the per-vertex stiffness warping approach can introduce
non-physical ghost forces which violate momentum conservation
and can lead to instabilities [Müller and Gross 2004]. This problem
was addressed by per-element stiffness warping [Müller and Gross
2004] which avoids the ghost forces but, unfortunately, the per-
element-warped stiffness matrices need to be re-factorized, intro-
ducing computational overheads which are prohibitive in real-time
simulation. For corotated elasticity, Hecht et al. [2012] proposed an
improved method which can re-use previously computed Hessian
factorization. Specifically, the sparse Cholesky factors are updated
only when necessary and also only where necessary. This spatio-
temporal staging of Cholesky updates improves run-time perfor-
mance, however, the Cholesky updates are still costly and their
scheduling can be problematic especially in real-time applications,
which require approximately constant per-frame computing costs.
Also, the frequency of Cholesky updates depends on the simulation:
fast motion with large deformations will require more frequent up-
dates and thus more computation, or risking ghost forces and po-
tential instabilities. Neither is an option in real-time simulators.

Our re-formulation of Projective Dynamics as a quasi-Newton
method reveals relationships to so called “Sobolev gradient meth-
ods”, which have been studied since the 1980s in the continuous set-
ting [Neuberger 1983]; see also the more recent monograph [Neu-
berger 2009]. The idea of quasi-Newton methods appears already
in [Desbrun et al. 1999; Hauth and Etzmuss 2001] in the con-
text of mass-spring systems and, more recently, in [Martin et al.
2013] in the context of geometry processing. Martin et al. [2013]
also propose multi-scale extensions and discuss an application in
physics-based simulation, but consider only the case of thin shells
and their numerical method alters the physics of the simulated sys-
tem. Quasi-Newton methods are also useful in situations where
computation of the Hessian would be expensive or impractical [No-
cedal and Wright 2006]. In character animation, Hahn et al. [2012]
used BFGS to simulate physics in “Rig Space”, which is challeng-
ing because the rig is a black box function and its derivatives are
approximated using finite differences.

3 Background
Projective Dynamics. We start by introducing our notation and
recapitulating the key concepts of Projective Dynamics. Let x ∈
Rn×3 be the current (deformed) state of our system containing n
nodes, each with three spatial dimensions. Projective Dynamics
requires a special form of elastic potential energies, based on the
concept of constraint projection. Specifically, Projective Dynamics
energy for element number i is defined as:

Ei(x) = min
pi∈Mi

Ẽi(x,pi), Ẽi(x, z) = ‖Gix− z‖2F (1)

where ‖·‖F is the Frobenius norm,Mi is a constraint manifold, pi
is an auxiliary “projection variable”, and Gi is a discrete differen-
tial operator represented, e.g., by a sparse matrix. For example, if
element number i is a tetrahedron,Mi is SO(3), and Gi is defor-
mation gradient operator [Sifakis and Barbič 2012], we obtain the
well-known as-rigid-as-possible material model [Chao et al. 2010].
Another elementary example is a spring, where the element is an
edge,Mi is a sphere, and Gi subtracts two endpoints of the spring.
If all elements are springs, Projective Dynamics becomes equiva-
lent to the work of Liu et al. [2013]. The key property of Gi is that
constant vectors are in its nullspace, which makes Ei translation
invariant. The total energy of the system is:

E(x) =
∑
i

wiEi(x) (2)

where i indexes elements and wi > 0 is a positive weight, typically
defined as the product of undeformed volume and stiffness.

Time integration. As discussed by Martin et al. [2011], Backward
Euler time integration can be expressed as a minimization of:

g(x) =
1

2h2
tr((x− y)TM(x− y))︸ ︷︷ ︸

inertia

+ E(x)︸ ︷︷ ︸
elasticity

(3)

where y is a constant depending only on previously computed
states, M is a positive definite mass matrix (typically diagonal –
mass lumping), and h > 0 is the time step (we use fixed h cor-
responding to the frame rate of 30fps, i.e., h = 1/30s). The
trace (tr) reflects the fact that there are no dependencies between
the x, y, z coordinates, which enables us to work only with n × n
matrices (as opposed to more general 3n × 3n matrices). This is
somewhat moot in the context of the mass matrix M, but it will
be more important in the following. The constant y is defined as
y := 2ql − ql−1 + h2M−1fext, where ql ∈ Rn×3 is the current
state, ql−1 the previous state, and fext ∈ Rn×3 are external forces
such as gravity. The minimizer of g(x) will become the next state,
ql+1. Intuitively, the first term in Eq. 3 can be interpreted as “iner-
tial potential,” attracting x towards y, where y corresponds to state
predicted by Newton’s first law – motion without the presence of
any internal forces. The second term penalizes states x with large
elastic deformations. Minimization of g(x) corresponds to finding
balance between the two terms. Note that many other implicit in-
tegration schemes can also be expressed as minimization problems
similar to Eq. 3. In particular, we have implemented Implicit Mid-
point, which has the desirable feature of being symplectic [Hairer
et al. 2002; Kharevych et al. 2006]. Unfortunately, in our experi-
ments we found Implicit Midpoint to be markedly less stable than
Backward Euler and, therefore, we continue to use Backward Euler
despite its numerical damping.

Local/global solver. The key idea of Projective Dynamics is to
expose the auxiliary projection variables pi, taking advantage of
the special energy form according to Eq. 1. To simplify notation,
we stack all projection variables into p ∈ Rc×3 and define binary



selector matrices Si such that pi = Sip. Projective Dynamics uses
the augmented objective:

g̃(x,p) =
1

2h2
tr((x− y)TM(x− y)) +

∑
i

wiẼ(x,Sip) (4)

which is minimized over both x and p, subject to the constraint
p ∈ M, where M is a cartesian product of the individual con-
straint manifolds. The optimization is solved using an alternating
(local/global) solver. In the local step, x is assumed to be fixed; the
optimal p are given by projections on individual constraint mani-
folds, e.g., projecting each deformation gradient (a 3×3 matrix) on
SO(3). In the global step, p is assumed to be fixed and we rewrite
the objective g̃(x,p) in matrix form:

1

2h2
tr((x− y)TM(x− y)) +

1

2
tr(xTLx)− tr(xTJp) +C (5)

where L :=
∑
wiG

T
iGi, J :=

∑
wiG

T
i Si, and the constant C

is irrelevant for optimization. For a fixed p, the minimization of
g̃(x,p) can be accomplished by finding x with a vanishing gra-
dient, i.e., ∇xg̃(x,p) = 0. Computing the gradient yields some
convenient simplifications (the traces disappear):

∇xg̃(x,p) =
1

h2
M(x− y) + Lx− Jp (6)

Equating the gradient to zero leads to the solution:

x∗ = (M/h2 + L)−1(Jp + My/h2) (7)

The matrix M/h2 + L is symmetric positive definite and there-
fore x∗ is a global minimum (for fixed p). The key computational
advantage of Projective Dynamics is that M/h2 + L does not de-
pend on x, which allows us to pre-compute and repeatedly reuse its
sparse Cholesky factorization to quickly solve for x∗, which is the
result after one local and global step. The local and global steps are
repeated for a fixed number of iterations (typically 10 or 20).

4 Method
As described in the previous section, Projective Dynamics relies on
the special type of elastic energies according to Eq. 1. Let us now
describe how Projective Dynamics can be interpreted as a quasi-
Newton method. The first step is to compute the gradient of the
objective g(x) from Eq. 3. The energy E(x) used in this objec-
tive contains constrained minimization over the projection variables
pi ∈ Mi (see Eq. 1 and Eq. 2). Equivalently, we can interpret the
pi as functions of x realizing the projections, according to Eq. 1.
Nevertheless, the gradient ∇g(x) can still be computed easily – in
fact, it is exactly equivalent to ∇xg̃(x,p) from Eq. 6 where we
assumed that p is constant. This at first surprising fact has been
observed in previous work [Chao et al. 2010; Bouaziz et al. 2012].
Intuitively, the reason is that if we infinitesimally perturb x, its pro-
jection pi(x) can move only in the tangent space ofMi and there-
fore, the differential δpi(x) has no effect on δ‖x − pi(x)‖2. As
an intuitive explanation, imagine that x is a space shuttle projected
to its closest point on Earth pi(x); to first order, the distance of
the space shuttle from Earth does not depend on the tangent motion
δpi(x). Please see the Appendix for a more formal discussion. In
summary, the gradient of Eq. 3 is:

∇g(x) =
1

h2
M(x− y) + Lx− Jp(x) (8)

where p(x) is a function stacking all of the individual projections
pi(x). Newton’s method would proceed by computing second
derivatives, i.e, the Hessian matrix ∇2g(x), and use it to compute

a descent direction −(∇2g(x))−1∇g(x). Note that definiteness
fixes may be necessary to guarantee this will really be a descent
direction [Gast et al. 2015].

What happens if we modify Newton’s method by using M/h2 +L
instead of the Hessian∇2g(x)? Simple algebra reveals:

(M/h2 +L)−1∇g(x) = x− (M/h2 +L)−1(Jp(x) +My/h2)

However, the latter term is equivalent to the result of one itera-
tion of the local/global steps of Projective Dynamics, see Eq. 7.
Therefore, (M/h2 + L)−1∇g(x) = x − x∗ and we can interpret
dPD := −(M/h2 + L)−1∇g(x) as a descent direction (this time
there is no need for any definiteness fixes). Projective Dynamics
can be therefore understood as a quasi-Newton method which com-
putes the next iterate as x+dPD. Typically, quasi-Newton methods
use line search techniques [Nocedal and Wright 2006] to find pa-
rameter α > 0 such that x + αdPD reduces the objective as much
as possible. However, with Projective Dynamics energies according
to Eq. 1, the optimal value is always α = 1.

4.1 More general materials

The interpretation of Projective Dynamics as a quasi-Newton
method suggests that a similar optimization strategy might be ef-
fective for more general elastic potential energies. First, let us fo-
cus on isotropic materials, deferring the discussion of anisotropy to
Section 4.4. The assumption of isotropy (material-space rotation
invariance) together with world-space rotation invariance means
that we can express elastic energy density function Ψ as a function
of singular values of the deformation gradient [Irving et al. 2004;
Sifakis and Barbič 2012]. In the volumetric case, we have three sin-
gular values σ1, σ2, σ3 ∈ R, also known as “principal stretches”.
The function Ψ(σ1, σ2, σ3) must be invariant to any permutation
of the principal stretches, e.g., Ψ(σ1, σ2, σ3) = Ψ(σ2, σ1, σ3) etc.
Because directly working with such functions Ψ could be cumber-
some, we instead use the Valanis-Landel hypothesis [Valanis and
Landel 1967], which assumes that:

Ψ(σ1, σ2, σ3) = a(σ1) + a(σ2) + a(σ3)+

b(σ1σ2) + b(σ2σ3) + b(σ1σ3) + c(σ1σ2σ3)
(9)

where a, b, c : R → R. Many material models can be writ-
ten in the Valanis-Landel form, including linear corotated material
[Sifakis and Barbič 2012], St. Venant-Kirchhoff, Neo-Hookean,
and Mooney-Rivlin. The recently proposed spline-based materials
[Xu et al. 2015] are also based on the Valanis-Landel assumption.
How can we generalize Projective Dynamics to these types of ma-
terials? Invoking the quasi-Newton interpretation discussed above,
our method will minimize the objective g by performing descent
along direction d(x) := −(M/h2 + L)−1∇g(x). The mass ma-
trix M and step size h are defined as before, and computing∇g(x)
is straightforward. But how to define a matrix L for a given material
model? This matrix can still have the form L :=

∑
wiG

T
iGi, but

the question is how to choose the weightswi. In Projective Dynam-
ics, we assumed the weights are given as wi = Viki, where Vi > 0
is rest-pose volume of i-th element, and ki > 0 is a stiffness pa-
rameter provided by the user. In our case, the user instead specifies
a material model according to Eq. 9 from which we have to infer
the appropriate ki value. In the following we drop the subscript i
for ease of notation.

For linear materials (Hooke’s law), stiffness is given as the second
derivative of elastic energy. Therefore, it would be tempting to set k
equal to the second derivative of Ψ at the rest pose (corresponding
to σ1 = σ2 = σ3 = 1), which evaluates to a′′(1)+2b′′(1)+c′′(1),
regardless of whether we differentiate with respect to σ1, σ2, or σ3.
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Figure 2: Animating jiggly squirrel head. The squirrel head is driven by a gentle keyframed motion in the top row, and by a faster, impulsive
motion in the bottom row. Soft Projective Dynamics material (left column) creates nice secondary motion, but does not prevent large dis-
tortions of the shape. If we stiffen the Projective Dynamics material (middle column), we prevent the distortions, but also kill the secondary
motion. Our polynomial material a(x) = µ(x− 1)4, b(x) = 0, c(x) = 0 (right column) achieves the desired effect of jiggling without large
shape distortions.

Even though this method would produce suitable k for some mate-
rials (such as corotated elasticity), it does not work e.g. for a poly-
nomial material defined as a(x) = µ(x− 1)4, b(x) = 0, c(x) = 0.
Already this relatively simple material can facilitate certain anima-
tion tasks, such as creating a cartoon squirrel head which jiggles,
but does not overly distort its shape, see Figure 2. However, with
this material, the second derivatives at x = 1 evaluates to zero re-
gardless of the value of µ, which would lead to zero stiffness which
is obviously not a good approximation. The problem is the second
derivative takes into account only infinitesimally small neighbor-
hood of x = 1, i.e., the rest pose. However, we need a single value
of k which will work well in the entire range of deformations ex-
pected in our simulations. To capture this requirement, we define
an interval [xstart, xend] where we expect our principal stretches to
be. We consider the following stress function:

∂Ψ

∂σ1

∣∣∣∣
σ2=1,σ3=1

= a′(σ1) + 2b′(σ1) + c′(σ1) (10)

and define our k as the slope of the best linear approximation of
Eq. 10 for σ1 ∈ [xstart, xend]. Note that due to the symmetry of
the Valanis-Landel assumption, we would obtain exactly the same
result if we differentiated with respect to σ2 or σ3 (instead of σ1

as above). We study different choices of [xstart, xend] intervals in
Section 5. In summary, the results are not very sensitive on the
particular choice of xstart and xend. The key fact is that regard-
less of the specific setting of xstart and xend, spatial variations of
µ are correctly taken into account, i.e., softer and stiffer parts of
the simulated object will have different µ coefficients (e.g., in our
squirrel head we made the teeth more stiff). Even though all ele-
ments have the same [xstart, xend] interval, the resulting matrices
L and J properly reflect the spatially varying stiffness.

Line search. With Projective Dynamics materials (Eq. 1), the line
search parameter α = 1 is always guaranteed to decrease the ob-
jective g (Eq. 3). Unfortunately, this is no longer true in our gen-

Algorithm 1: Quasi-Newton Solver

1 x1 := y; g(x1) := evalObjective(x1)
2 for k = 1, . . . , numIterations do
3 ∇g(xk) := evalGradient(xk)

4 d(xk) := −(M/h2 + L)−1∇g(xk)
5 α := 2
6 repeat
7 α := α/2
8 xk+1 := xk + αd(xk)
9 g(xk+1) := evalObjective(xk+1)

10 until g(xk+1) ≤ g(xk) + γα tr((∇g(xk))Td(xk));
11 end

eralized quasi-Newton setting, where it is easy to find examples
where g(x + d(x)) > g(x), i.e., taking a step of size one actually
increases the objective. This can lead to erroneous energy accu-
mulation, potentially resulting in catastrophic failure of the simu-
lation (“explosions”), as shown in Figure 3. Fortunately, thanks to
the fact that M/h2 + L is positive definite, d(x) is guaranteed to
be a descent direction. Therefore, there exists α > 0 such that
g(x + αd(x)) ≤ g(x) (unless we are already at a critical point
∇g(x) = 0, at which point the optimization is finished). In fact,
we can ask for even more, i.e., we can always find α > 0 such that
g(x+αd(x)) ≤ g(x) + γα tr((∇g(x))Td(x)) for some constant
γ ∈ (0, 1) (we use γ = 0.3). This is known as the Armijo condi-
tion which expresses the requirement of “sufficient decrease” [No-
cedal and Wright 2006], preventing the line search algorithm from
reducing the objective only by a negligible amount. Another re-
quirement for robust line search is to avoid too small steps α (even
though they might satisfy the Armijo condition). We tested two
possibilities: Wolfe conditions, which impose an additional “cur-
vature condition”, and backtracking line search, which starts from
large α and progressively decreases it until the Armijo condition
is satisfied. We found that in our setting both approaches lead to
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Figure 3: Without line search, the squirrel head animation using
our polynomial material (as in Figure 2) quickly becomes unstable.

comparable error reduction, but the backtracking line search is less
computationally expensive. Also, α = 1 is an excellent initial guess
for the backtracking strategy. Therefore, in our final algorithm we
implement the backtracking line search; after a failed attempt, we
multiply alpha by 0.5. This value worked well in our experiments,
even though, in theory, any constant ∈ (0, 1) could be used instead.

Alg. 1 summarizes the process of computing one frame of our sim-
ulation. The outer loop (lines 2-11) performs quasi-Newton iter-
ations and the inner loop (lines 6-10) implements the line search.
What is the extra computational cost required to support more gen-
eral materials? With Projective Dynamics energies (Eq. 1), we do
not need the line search, because α = 1 always works. Indeed, if
we drop the line search from Alg. 1, the algorithm becomes equiv-
alent to a generalized local/global process, as discussed in Sec-
tion 3 (which is unstable for non-Projective-Dynamics energies).
Rejected line search attempts, i.e., additional iterations of the line
search, represent the main computational overhead of our method.
Fortunately, we found that in practical simulations the number of
extra line search iterations is relatively small. For example, in the
squirrel head example in Figure 2 using the polynomial material,
we need only 4280 line search iterations for the entire sequence
with 400 frames, 10 quasi-Newton iterations per frame, i.e., the av-
erage number of line search iterations per quasi-Newton iteration
is only 1.07. Even though in most cases the full step (α = 1) suc-
ceeds, the Armijo safeguard is essential for stability; if we drop it,
the simulation can quickly explode, as shown in Figure 3.

4.2 Accelerating convergence
The connection between Projective Dynamics and quasi-Newton
methods allows us to take advantage of further mathematical op-
timization techniques. In this section, we discuss how to accel-
erate convergence of our method using L-BFGS (Limited-memory
BFGS). The BFGS algorithm (Broyden-Fletcher-Goldfarb-Shanno)
is one of the most popular general purpose quasi-Newton methods;
its key idea is to approximate the Hessian using curvature infor-
mation calculated from previous iterates, i.e., x1, . . . ,xk−1. The
L-BFGS modification means that we will use only the most recent
m iterates, i.e., xk−m, . . . ,xk−1; the rationale being that too dis-
tant iterates are less relevant in estimating the Hessian at xk.

In Alg. 1, the matrix M/h2 + L in line 4 can be interpreted as
our initial approximation of the Hessian. This matrix is constant
which on one hand enables its pre-factorization, but on the other
hand, M/h2 + L may be far from the Hessian ∇2g(xk), which is
the reason for slower convergence compared to Newton’s method
[Bouaziz et al. 2014]. L-BFGS allows us to develop a more ac-
curate, state-dependent Hessian approximation, leading to faster
convergence without too much computational overhead (in our ex-
periments the overhead is typically less than 1% of the simulation
time, see Table 1). The key to fast iterations of L-BFGS is the
fact that the progressively updated approximate Hessian Ak is not
stored explicitly, which would require us to solve a new linear sys-
tem Akd(xk) = −∇g(xk) each iteration, implying high compu-

Algorithm 2: Descent direction computation with L-BFGS

1 q := −∇g(xk)
2 for i = k − 1, . . . , k −m do
3 si := xi+1 − xi; ti := ∇g(xi+1)−∇g(xi); ρi := tr(tTi si)
4 ζi := tr(sTi q)/ρi
5 q := q− ζiti
6 end
7 r := A−1

0 q // A0 is initial Hessian approximation
8 for i = k −m, . . . , k − 1 do
9 η := tr(tTi r)/ρi

10 r := r + si(ζi − η)
11 end
12 d(xk) := r // resulting descent direction

tational costs. Instead, L-BFGS implicitly represents the inverse of
Ak, i.e., linear operator Bk such that the desired descent direction
can be computed simply as d(xk) = −Bk∇g(xk). The linear
operator Bk is not represented using a matrix (which would have
been dense), but instead as a sequence of dot products, known as
the L-BFGS two-loop recursion, see Alg. 2. For a more detailed
discussion of BFGS and its variants we refer to Chapters 6 and 7 of
[Nocedal and Wright 2006].

Alg. 2 requires us to provide an initial Hessian approximation A0,
ideally such that the linear system A0r = q can be solved effi-
ciently (line 7). In our method, we use our old friend: M/h2 + L.
At first, it may seem the initialization of the Hessian is perhaps not
too important and the L-BFGS iterations quickly approach the exact
Hessian. However, this intuition is not true. In Section 5 we experi-
ment with different possible initializations of the Hessian and show
that our particular choice of M/h2 + L outperforms alternatives
such Hessian of the rest-pose and many others. In short, the reason
is that the L-BFGS updates use only a very few gradient samples,
which provide only a limited amount of information about the ex-
act Hessian. The appeal of the L-BFGS strategy is that it is very
fast – the compute cost of the two for-loops in Alg. 2 is negligible
compared to the cost of solving the linear system in line 7 with our
choice of A0 = M/h2 + L. This is true even for high values of
m. In other words, the linear solve using M/h2 + L (line 7) is
still doing the “heavy lifting”, while the L-BFGS updates provide
additional convergence boost at the cost of minimal computational
overheads.

Upgrading our method with L-BFGS is simple: we only need to
replace line 4 in Alg. 1 with a call of Alg. 2. Note that for m = 0,
Alg. 2 returns exactly the same descent direction as before, i.e.,
d(xk) := −(M/h2 + L)−1∇g(xk). What is the optimal m, i.e.,
the size of the history window? Too small m will not allow us to
unlock the full potential of L-BFGS. The main problem with too
high m is not the higher computational cost of the two loops in
Alg. 2, but the fact that too distant iterates (such as xk−100) may
contain information irrelevant for the Hessian at xk and the result
can be even worse than with a shorter window. We found that m =
5 is typically a good value in our experiments.

The recently proposed Chebyshev Semi-Iterative methods for Pro-
jective Dynamics [Wang 2015] can also be interpreted as a special
type of a quasi-Newton method which utilizes two previous iter-
ates, i.e., corresponding to m = 2. Indeed, in our experiments L-
BFGS with m = 2 exhibits similar convergence rate as the Cheby-
shev method, see Figure 7 and further discussion in Section 5. Fi-
nally, we note that even though the Wolfe conditions are the rec-
ommended line search strategy for L-BFGS, we did not observe
any significant convergence benefit compared to our backtracking



Figure 4: Our method is capable of simulating complex collision
scenarios, such as squeezing the Big Bunny through a torus. The
Big Bunny uses corotated elasticity with µ = 5 and λ = 200.

strategy. However, evaluating the Wolfe conditions increases the
computational cost per iteration and therefore, we continue to rely
on the backtracking strategy as described in Alg. 1.

4.3 Collisions
A classical approach to enforcing non-penetration constraints be-
tween deformable solids is to 1) detect collisions and 2) resolve
them using temporarily instanced repulsion springs, which bring
the volume of undesired overlaps to zero [McAdams et al. 2011;
Harmon et al. 2011]. However, in Projective Dynamics the primary
emphasis is on computational efficiency and therefore only simpli-
fied collision resolution strategies have been proposed by Bouaziz
et al. [2014]. Specifically, Projective Dynamics offers two possible
strategies. The first strategy is a two-phase method, where colli-
sions are resolved in a separate post-processing step using projec-
tions, similar to Position Based Dynamics. The same strategy was
employed also by Liu et al. [2013]. The drawback of this approach
is the fact the collision projections are oblivious to elasticity and in-
ertia of the simulated objects. The second approach used in Projec-
tive Dynamics is more physically realistic, but introduces additional
computational overheads. Specifically, temporarily-instanced re-
pulsion springs are added to the total energy. This leads to physi-
cally realistic results, but the drawback is that the matrix M/h2+L
needs to be re-factorized whenever the set of repulsion springs is
updated – typically, at the beginning of each frame.

Our quasi-Newton interpretation invites a new approach to colli-
sion response which is physically realistic, but avoids expensive
re-factorizations. Specifically, for each inter-penetration found by
collision detection, we introduce an energy term Ecollision(x) =
((Sx− t)Tn)2, where S is a selector matrix of the collided vertex,
t is its projection on the surface and n is the surface normal. This
constraint pushes the collided vertex to the tangent plane. It is im-
portant to add this term to our total energyE(x) only if the vertex is
in collision or contact. Whenever the relative velocity between the
vertex and the collider indicates separation, the Ecollision(x) term
is discarded (otherwise it would correspond to unrealistic “glue”
forces). This is done once at the beginning of each iteration (just
before line 3 in Alg. 1). The line search (lines 6-10 of Alg. 1) is un-
affected by these updates, i.e., the unilateral nature of the collision
constraints is handled correctly without any further processing.

The key idea of our approach is to leverage the quasi-Newton ap-
proximation for collision processing. In particular, we account for
the Ecollision(x) terms when evaluating the energy and its gradients,
but we ignore their contributions to the M/h2 + L matrix. This
means that we form a somewhat more aggressive approximation of
the Hessian, with the benefit that the system matrix will never need
to be re-factorized. The line search process (lines 6-10 in Alg. 1)
guarantees that energy will decrease in spite of this more aggressive
approximation. The only trade-off we observed in our experiments
is that the number of line search iterations may increase, which is
a small cost to pay for avoiding re-factorizations. We observed that
even in challenging collision scenarios, such as when squeezing a

Big Bunny through a torus, the approach behaves robustly and suc-
cessfully resolves all collisions, see Figure 4.

4.4 Anisotropy

Our numerical methods, including the L-BFGS acceleration, can
be directly applied also to anisotropic material models. We verified
this on an elastic cube model with corotated base material (µ = 10,
λ = 100, referring to the notation of Sifakis and Barbič [2012])
enhanced with additional anisotropic stiffness term κ

2
(‖Fd‖−1)2,

where F is the deformation gradient and d is the (rest-pose) direc-
tion of anisotropy. This corresponds to the directional reinforce-
ment of the material which is common, e.g., in biological soft tis-
sues containing collagenous fibers. The result of our method with
κ = 50 can be seen in Figure 5.

Isotropic Material Anisotropic Material

Figure 5: Dropping an elastic cube on the ground. Left: deforma-
tion using isotropic elasticity (linear corotated model). Right: the
result after adding anisotropic stiffness.
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Figure 6: Elastic sphere with spline-based materials [Xu et al.
2015], simulated using our method. Spline-based material A is
a modified Neo-Hookean material that resists compression more;
material B is a modified Neo-Hookean material that resists tension
more. The strain-stress curves are shown on the left.

5 Results

Our method supports standard elastic materials, such as corotated
linear elasticity, St. Venant-Kirchhoff and the Neo-Hookean model,



model #ver. #ele. material model
our method (10 iterations) Newton (1 iteration)

linesearch L-BFGS per-frame relative per-frame relative
iterations overhead time error time error

Thin sheet 660 1932 Polynomial 10.8 0.026 ms 4.4 ms 2.7× 10−8 184 ms 8.8× 10−4

Sphere 889 1821 Spline-based A 24.5† 0.155 ms 21.2 ms 2.7× 10−7 188 ms 6.9× 10−4

Sphere 889 1821 Spline-based B 21.8 0.156 ms 19.7 ms 6.9× 10−6 187 ms 2.5× 10−4

Shaking bar 574 1647 Corotated 10.1 0.193 ms 7.2 ms 1.6× 10−4 171 ms 4.4× 10−3

Ditto 1454 4140 Neo-Hookean 11.7 0.203 ms 17.8 ms 3.0× 10−5 305 ms 1.6× 10−3

Hippo 2387 8406 Corotated 11.9 0.555 ms 40.6 ms 2.2× 10−3 640 ms 3.7× 10−2

Twisting bar 3472 10441 Neo-Hookean 10.6 0.945 ms 45.6 ms 9.4× 10−5 681 ms 7.9× 10−3

Cloth 6561 32160 Mass-Springs 10.0 1.20 ms 42.3 ms 9.3× 10−4 798 ms 1.2× 10−2

Big Bunny 6308 26096 Corotated 49.2‡ 2.19 ms 623 ms 9.8× 10−2 2700 ms 2.8× 10−1

Squirrel 8395 23782 Polynomial 10.7 1.41 ms 153 ms 8.3× 10−8 2400 ms 9.1× 10−6

Squirrel 33666 125677 Polynomial 10.5 6.38 ms 706 ms 1.5× 10−5 15800 ms 5.4× 10−5

Table 1: In all examples, we execute 10 iterations of our method per frame, accelerated with L-BFGS with history window m = 5. Newton’s
method uses 1 iteration per frame. The “linesearch iterations” reports the average number of line search iterations per frame. The “L-BFGS
overhead” is the runtime overhead of L-BFGS, i.e., timing of Alg. 2 without line 7 (m = 5). The reported per-frame time for our method
accounts for all 10 iterations. One iteration of our method is approximately 100 times faster than one iteration of Newton’s method. We use
10 iterations of our method which reduce the error more than one iteration of Newton’s method, while being about 10 times faster. †The
higher number of line search iterations is due to the high nonlinearity of the spline-based materials and large deformations of the sphere. ‡In
this case, the higher number of line search iterations is caused by nonlinearities due to collisions (Section 4.3).
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Figure 7: Convergence of our method with different L-BFGS history settings, compared to Chebyshev Semi-Iterative method and Newton’s
method (baseline). The model is “Twisting bar” with Neo-Hookean elasticity.

see Figure 1. None of these materials is supported by Projective Dy-
namics (note that Projective Dynamics supports a special sub-class
of corotated linear materials, specifically, ones with λ = 0). Our
method also supports the recently introduced spline-based materials
proposed by Xu et al. [2015], as shown in Figure 1 and Figure 6.

Table 1 reports our testing scenarios and compares the run time
of our method with Newton’s method, both executed on an Intel
i7-4910MQ CPU at 2.90GHz. All scenarios are produced with a
fixed timestep of 1/30 seconds. Because Newton’s method is not
guaranteed to work with indefinite Hessians, we employ the stan-
dard definiteness fix [Teran et al. 2005], i.e., we project the Hes-
sian of each element to its closest positive definite component. We
found this method works better than other definiteness fixes, such
as adding a multiple of the identity matrix [Martin et al. 2011],
which affects the entire simulation even if there are just a few prob-
lematic elements. The approximately 100 times faster run-time of
one iteration of our method compared to one iteration of Newton’s
method is due to the following facts: 1) we use pre-computed sparse
Cholesky factorization, because our matrix M/h2 + L is constant,
2) the size of our matrix is n × n, whereas the Hessian used in
Newton’s method is a 3n × 3n matrix, i.e., the x, y, z coordinates

are no longer decoupled, 3) the computation of SVD derivatives,
necessary to evaluate the Hessians of materials based on principal
stretches [Xu et al. 2015], is expensive. Note that our method is
also simpler to implement, as no SVD derivatives or definiteness
fixes are necessary.

Comparison to Chebyshev Semi-Iterative method. We com-
pared the convergence of our method with various lengths of the L-
BFGS window to the recently introduced Chebyshev Semi-Iterative
method [Wang 2015]. We also plot results obtained with Newton’s
method as a baseline, see Figure 7.

Even though the Chebyshev method was originally proposed only
for Projective Dynamics energies, our generalization to arbitrary
materials is compatible with the Chebyshev Semi-Iterative acceler-
ation, see Alg. 3. The Alg. 3 computes a descent direction which
can be used in line 4 of Alg. 1. As discussed by Wang [2015], the
Chebyshev acceleration should be disabled during the first S itera-
tions, where the recommended value is S = 10. Another parameter
which is essential for the Chebyshev method is an estimate of spec-
tral radius ρ, which is calculated from training simulations [Wang
2015]. This parameter must be estimated carefully, because under-
estimated ρ can lead to the Chebyshev method producing ascent di-
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Figure 8: Convergence comparison of L-BFGS methods (all using m = 5) initialized with different Hessian approximations, along with
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rections (as opposed to descent directions). Without line search, the
ascent directions manifest themselves as oscillations [Wang 2015].
For the purpose of comparisons, we implemented the Chebyshev
method with direct solver which is the fastest method on the CPU
[Wang 2015].

Algorithm 3: Descent direction computation using Chebyshev
Semi-Iterative Method [Wang 2015]

1 // S . . . Chebyshev disabled for the first S iterates, default S = 10
2 // ρ . . . approximated spectral radius
3 q := −(M/h2 + L)−1∇g(xk)
4 x̂k+1 := xk + q

5 if k < S then ωk+1 := 1 if k = S then ωk+1 := 2/(2− ρ2) if
k > S then ωk+1 := 4/(4− ρ2ωk)
d(xk) := ωk+1(x̂k+1 − xk−1) + xk−1 − xk

We compare the convergence of all methods using relative error,
defined as:

g(xk)− g(x∗)

g(x0)− g(x∗)
(11)

where x0 is the initial guess (we use x0 := y for all methods), xk is
the k-th iterate, and x∗ is the exact solution computed using New-
ton’s method (iterated until convergence). The decrease of relative
error for one example frame is shown in Figure 7, where all meth-
ods are using the backtracking line search outlined in Alg. 1. As
expected, descent directions computed using Newton’s method are
the most effective ones, as can be seen in Figure 7 (right). However,
each iteration of Newton’s method is computationally expensive,
and therefore other methods can realize faster error reduction with
respect to computational time, as shown in Figure 7 (left). All of
the remaining methods are based on the constant Hessian approx-
imation M/h2 + L which leads to much faster convergence. Out
of these methods, classical Projective Dynamics converges slowest.
The Chebyshev Semi-Iterative method improves the convergence;
we also confirmed that disabling the Chebyshev method during the
first 10 iterations indeed helps, as recommended by Wang [2015].
Our method aided with L-BFGS improves convergence even fur-
ther. Already with m = 2 (where m is the size of the history win-
dow), we obtain slightly faster convergence than with the Cheby-
shev method. One reason is that it is not necessary to disable L-
BFGS in the first several iterates, because L-BFGS is effective as
soon as the previous iterates become available. Also, we do not
have to estimate the spectral radius which is required by the Cheby-

shev method. With L-BFGS, we can also increase the history win-
dow, e.g., to m = 5, obtaining even more rapid convergence.

L-BFGS with different initial Hessian estimates. Our method
can be interpreted as providing a particularly good initial estimate
of the Hessian for L-BFGS. Therefore, it is important to compare to
other possible Hessian initializaitons. In a general setting, Nocedal
and Wright [2006] recommend to bootstrap L-BFGS using a scaled
identity matrix:

A0 :=
tr(sTk−1yk−1)

tr(yT
k−1yk−1)

I (12)

We experimented with this approach, but we found that our choice
A0 := M/h2 + L leads to much faster convergence, trumping the
computational overhead associated with solving the pre-factorized
system A0r = q (see Figure 8, red graph).

Another possibility would be to set A0 equal to the rest pose Hes-
sian, which can of course also be pre-factorized. As shown in Fig-
ure 8 (yellow graph), this is a slightly better approximation than
scaled identity, but still not very effective. This is because the actual
Hessian depends on world-space rotations of the model, deviating
significantly from the rest-pose Hessian. This issue was observed
by Müller et al. [2002], who proposed per-vertex stiffness warping
as a possible remedy. Per-vertex stiffness warping still allows us
to leverage pre-factorization of the rest-pose Hessian and results in
better convergence than pure rest-pose Hessian, see Figure 8 (pur-
ple graph). However, per-vertex stiffness warping may introduce
ghosts forces, because stiffness warping uses different rotation ma-
trices for each vertex, which means that internal forces in one el-
ement no longer have to sum to zero. The ghost forces disappear
in a fully converged solution, however, this would require a pro-
hibitively high number of iterations.

Yet another possibility is to completely re-evaluate the Hessian at
the beginning of each frame. This requires re-factorization, how-
ever, the remaining 10 (or so) iterations can reuse the factorization,
relying only on L-BFSG updates. When measuring convergence
with respect to number of iterations, this approach is very effective,
as shown in Figure 8 (right, green graph). However, the cost of the
initial Hessian factorization is significant, as obvious from Figure 8
(left, green graph). Our method uses the same Hessian factorization
for all frames, avoiding the per-frame factorization costs, while fea-
turing excellent convergence properties, see Figure 8 (blue graph).

The overheads of per-frame Hessian factorizations can be mitigated
by carefully scheduled Hessian updates. In particular, the Hes-
sian can be reused for multiple subsequent frames if the state is
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Figure 9: Simulation of a bar with corotated elasticity, constrained
in the middle and rapidly shaken. The method of Hecht et al. [2012]
with full Hessian updates every other frame explodes due to large
ghost forces (top). Our method does not introduce any ghost forces
and remains stable (bottom).

not changing too much [Deuflhard 2011]. Assuming the corotated
elastic model, Hecht et al [2012] push this idea even further by
proposing a warp-cancelling form of the Hessian which allows not
only for temporal schedule, but also for spatially localized updates.
Specifically, a nested dissection tree allows for recomputing only
parts of the mesh, which is particularly advantageous in situations
where only small part of the object is undergoing large deforma-
tions. However, the updates are still costly, and the frequency of the
updates depends on the simulation. Similarly to per-vertex stiffness
warping, insufficiently frequent update may produce ghost forces
and consequent instabilities. This can be a problem when simulat-
ing quickly moving elastic objects. To illustrate this, in Figure 9
we show a simulation of shaking an elastic bar. Even if we sched-
ule the Hessian updates every other frame and recompute the entire
domain, this method still generates too large ghost forces and be-
comes unstable. In contrast, our method remains stable and does
not require any run-time Hessian updates.

Comparison to Projective Dynamics. One possible alternative to
our method would be to apply regular Projective Dynamics with ad-
ditional strain-limiting constraints [Bouaziz et al. 2014], enabling
us to construct piece-wise linear approximations of the strain-stress
curves of more general materials. We tried to use this approach to
approximate the polynomial material (a(x) = µ(x − 1)4, b(x) =
0, c(x) = 0) discussed in Section 4.1, see Figure 10. Even though
we obtain similar overall behavior, there are two types of arti-
facts associated with this approximation. First, the strain-limiting
constraints introduce damping when they are not activated. This
is because the projection terms still exist in our constant matrix
M/h2 + L; if the strain-limiting is not activated, the deformation
gradients project to their current values, which produces the unde-
sired damping. The second problem is due to the non-smooth na-
ture of the piece-wise linear approximation, i.e., the stiffness of the
simulated object is abruptly changed when the strain-limiting con-
straints become activated. As shown in the accompanying video,
our method avoids both of these issues.

The L-BFGS acceleration benefits also simulations which use only
Projective Dynamics materials (Eq. 1). The most elementary ex-
ample of these materials are mass-spring systems. In Figure 11,
we can see that the L-BFGS acceleration applied to a mass-spring
system simulation results in more realistic wrinkles.

Choice of L-BFGS history window size. Which history window
(m) is the best? We experimented with different values of m, see
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Figure 10: The strain-stress curve of a polynomial material can
be approximated piece-wise linearly with two Projective Dynamics
constraints.

Our Method with L-BFGS
(m=5)

Projective Dynamics

Figure 11: Mass-spring system simulation using our method with
L-BFGS (left) and without, i.e., using pure Projective Dynamics
(right). The L-BFGS acceleration results in more realistic wrinkles.

Figure 13. Too largem takes into account too distant iterates which
can lead to worse approximation of the Hessian. In Figure 13, we
see the optimal value is m = 5, which is also our recommended
default setting. However, it is comforting that the algorithm is not
particularly sensitive to the setting of m – even large values such
as m = 100 produce only slightly worse convergence. In Figure 7
we can notice that the convergence rate of the Chebyshev method
is similar to our method with L-BFGS using m = 2. We believe
this is not a coincidence, because the Chebyshev method uses two
previous iterates, just like L-BFGS with m = 2.

Choice of stiffness parameters. As discussed in Section 4.1,
we Eq. 10 and define our stiffness parameter k as the slope of
the best linear approximation of Eq. 10 for σ1 ∈ [xstart, xend].
What is the best [xstart, xend] interval to use? In the limit, with
[xstart, xend]→ [1, 1], our k would converge to the second deriva-
tive. However, a finite interval [xstart, xend] guarantees that our k
is meaningful even for materials such as the polynomial material
a(x) = µ(x− 1)4, b(x) = 0, c(x) = 0; in this case, we obtain a k
which depends linearly on µ. We argue the convergence of our algo-
rithm is not very sensitive to a particular choice of the [xstart, xend]
interval. In Figure 14, we show convergence graphs of a twisting
bar with Neo-Hookean material using different intervals to com-
pute the stiffness parameter k. Although Neo-Hookean material
is highly non-linear, the convergence rates for different interval
choices are quite similar. Therefore, we decided not to investigate
more sophisticated strategies and we set xstart = 0.5, xend = 1.5
in all of our simulations.

Comparison with iterative solvers. Sparse iterative solvers do not
require expensive factorizations and are therefore attractive in in-
teractive applications. A particularly popular iterative method are
Conjugate gradients (CG) [Shewchuk 1994]. An additional ad-
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Figure 12: Convergence comparison of various methods using sparse direct solvers and conjugate gradients. The model is “Twisting bar”
with Neo-Hookean elasticity.
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Figure 13: Comparison of L-BFGS convergence rate with different
history window sizes (m).

vantage is that CG can be implemented in a matrix-free fashion,
i.e., without explicitly forming the sparse system matrix. Gast et
al. [2015] further accelerate the CG solver used in Newton’s method
by proposing a CG-friendly definiteness fix. Specifically, the CG it-
erations are terminated whenever the maximum number of iteration
is reached or indefiniteness of the Hessian matrix is detected.

While iterative methods can be the only possible choice in high-
resolution simulations (e.g., in scientific computing), in real-time
simulation scales, sparse direct solvers with pre-computed factor-
ization are hard to beat, as we show in Figure 12. Specifically, we
test Newton’s method with linear systems solved using CG with 5
and 15 iterations, using Jacobi preconditioner. Even with 15 CG
iterations, the accuracy is still not the same as with the direct solver
the computational cost becomes high. If we use only five CG iter-
ations the running time improves, but the convergence rate suffers
because the descent directions are not sufficiently effective. The
method of Gast et al. [2015] initially outperforms Newton with CG,
however, the convergence slows down in subsequent iterations. We
also tried to apply CG to our method, in lieu of the direct solver.
With 15 CG iterations the convergence is competitive, however, the
CG solver is slower.

Robustness. We demonstrate that our proposed extensions to more
general materials and the L-BFGS solver upgrade do not compro-
mise simulation robustness. In Figure 15, we show an elastic hippo
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Figure 15: Our method is robust despite extreme initial conditions:
a randomly initialized hippo returns back to its rest pose.

which recovers from an extreme (randomized) deformation with
many inverted elements. Specifically, the hippo model uses L-
BFGS with m = 5 and corotated linear elasticity with µ = 20 and
λ = 100 (note that Projective Dynamics supports only corotated
materials with λ = 0).

6 Limitations and Future Work
Our method is currently limited only to hyperelastic materials sat-
isfying the Valanis-Landel assumption. Even though this assump-
tion covers many practical models, including the recently proposed
spline-based materials [Xu et al. 2015], it would be interesting to
study the further generalization of our method. Perhaps even more
interesting would be to remove the assumption of hyperelasticity.
Can we develop fast algorithms for simulating non-hyperelastic ma-
terials, including the effects such as relaxation, creep, and hys-



teresis [Bargteil et al. 2007]? Inspired by the recent work of
Wang [2015], we would like to explore GPU implementations of
physics-based simulations. Our current method is derived from
the Implicit Euler time integration method and therefore inherits
its artificial damping drawbacks. We experimented with Implicit
Midpoint – a symplectic integrator which does not suffer from this
problem. However, we found that Implicit Midpoint is much less
stable. In the future we would like to explore fast numerical solvers
for symplectic yet stable integration methods. Finally, we plan to
investigate specific physics-based applications which require both
high accuracy and speed, such as interactive surgery simulation.

7 Conclusions
We have presented a method for fast physics-based simulation of
a large class of hyperelastic materials. The key to our approach is
the insight that Projective Dynamics [Bouaziz et al. 2014] can be
re-formulated as a quasi-Newton method. Aided with line search,
we obtain a robust simulator supporting many practical material
models. Our quasi-Newton formulation also allows us to further
accelerate convergence by combining our method with L-BFGS.
Even though L-BFGS is sensitive to initial Hessian approximation,
our method suggests a particularly effective Hessian initialization
which yields fast convergence. Most of our experiments use ten it-
erations of our method which is typically more accurate than one
iteration of Newton’s method, while being about ten times faster
and easier to implement. Traditionally, real-time physics is consid-
ered to be approximate but fast, while off-line physics is accurate
but slow. We hope that our method will help to blur the boundaries
between real-time and off-line physics-based animation.
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Appendix
In this Appendix we compute the gradient∇xEi(x), where Ei(x)
is defined according to Eq. 1. Dropping the subscript i for clarity,
we define the projection:

p(x) = argmin
z∈M

‖Gx− z‖2 (13)

where G represents a discrete differential operator andM is a con-
straint manifold. We need to compute the differential:

1

2
δ‖Gx− p(x)‖2 = (Gx− p(x))T(Gδx− δp(x)) (14)

= (Gx− p(x))TGδx (15)

because the second term (Gx − p(x))Tδp(x) vanishes. This is
due to the fact that δp(x) ∈ Tp(x)M, where Tp(x)M denotes the
tangent space at point p(x) ∈M. The vector Gx− p(x) must be
orthogonal to Tp(x)M, otherwise p(x) could not be the minimizer
according to Eq. 13.


