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Figure 1:We propose a new constraint dynamics solver using backward Euler for both rigid and deformable degrees of freedom.
The figure shows: a pure elastic body (left), elastic body with internal rigid bodies (middle), and using an articulated skeleton,
i.e., rigid-body and joint constraints (right). Our method is fast and easy to implement; no explicit rigid body simulation or
rigid-deformable coupling code is necessary.

ABSTRACT
We propose a fast and robust solver to simulate continuum-based
deformable models with constraints, in particular, rigid-body and
joint constraints useful for soft articulated characters. Our method
embeds degrees of freedom of both articulated rigid bodies and
deformable bodies in one unified optimization problem, thus cou-
pling the deformable and rigid bodies. Our method can efficiently
simulate character models, with rigid-body parts (bones) being
correctly coupled with deformable parts (flesh). Our method is sta-
ble because backward Euler time integration is applied to rigid as
well as deformable degrees of freedom. Our method is rigorously
derived from constrained Newtonian mechanics. In an example
simulation with rigid bodies only, we demonstrate that our method
converges to the same motion as classical explicitly integrated rigid
body simulator.

CCS CONCEPTS
• Computing methodologies→ Physical simulation.
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1 INTRODUCTION
Realistic animation of articulated characters plays an important
role in computer games, virtual reality and other interactive appli-
cations. The animation of articulated characters often models the
body as a collection of rigid bodies (“Ragdoll physics”) which can be
computed quickly. However, virtual characters are usually based on
real-world creatures, which often have deformable external parts
(flesh) to interact with the environment (e.g., finger grasping). This
external part is coupled with rigid internal structure (skeleton) that
provide support. For example, believable animations of a human-
like character, a snail, or a mermaid require simulation of bones
or similar rigid structures, often further constrained with joints
because two adjacent bones (e.g. upper and lower arm) usually can-
not move arbitrarily. The mechanical interplay between rigid and
deformable bodies results in numerically challenging simulation
problems.

Projective Dynamics [Bouaziz et al. 2014] is an implicit Euler
solver used in real-time deformable object simulation. It exploits
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a special potential energy structure which enables an efficient lo-
cal/global solver, which often outperforms the classic Newton’s
method, making Projective Dynamics a suitable option for real-time
simulation of deformable objects. However, Projective Dynamics
(PD) assumes continuum-based elastic models. In theory, rigidity
of the bones can be achieved by increasing the stiffness of the rigid
parts. In practice however, this does not work very well, because
with high stiffness ratios the convergence of PD deteriorates and
more computationally expensive Newton-type solvers are recom-
mended [Tournier et al. 2015]. The problem is that the global step
of PD can only translate groups of vertices (e.g. four vertices in
a tetrahedron), but not rotate them (the same problem is present
also in Position Based Dynamics). Therefore, constraints with high
stiffness effectively “lock” the orientation. In this paper, we avoid
this problem by linearizing the SE(3) manifolds, enabling exact
(i.e. infinitely stiff) rigid-body constraints without locking. In Fig-
ure 6, we demonstrate an example of the PD locking problem and
demonstrate how our proposed approach avoids it.

We propose a real-time simulation framework for soft articulated
characters. Our method is derived from constrained formulation of
Newtonian dynamics by using backward Euler time integration. In
terms of the numerical solution, we show that we can combine the
principles of Projective Dynamics and constrained dynamics into a
unified optimization problem.

Contributions:
• We propose a unified method to simulate deformable charac-
ters with articulated skeletons in Projective Dynamics. Our
method is fast, easy to implement and rigorously derived
from Newton’s laws via backward Euler time integration.

• We show that the special structure of potential energy from
Projective Dynamics retains its numerical benefits when we
reorganize the computations in a certain way. This allows
us to benefit from the local/global solver in a similar way as
the original, unconstrained Projective Dynamics.

• The vertices corresponding to rigid bodies are represented
only via 12-dimensional affine subspaces, resulting in similar
efficiency as classical rigid-body treatment with 6 DoF per
rigid body. Our formulation is monolithic, i.e., there is no sep-
arate treatment of rigid and deformable degrees of freedom,
transfer of momenta etc., simplifying implementation.

• Our method enforces the rigid-body and joint constraints
exactly, while exhibiting fast convergence due to the lin-
earization of the SE(3) manifolds (Lie algebras).

2 RELATEDWORK
2.1 Deformable body simulation
Deformable bodies can be simulated by mass-spring systems [Chen
et al. 1998], finite difference method [Terzopoulos et al. 1987], finite
element method (FEM) [Debunne et al. 2001; Müller et al. 2002],
finite volume method (FVM) [Teran et al. 2003], boundary element
method (BEM) [James and Pai 1999] etc. Position Based Dynamics
(PBD) [Müller et al. 2007] is one of the popular methods to sim-
ulate deformable bodies in real-time applications. PBD assumes
infinitely stiff energy potentials and the material stiffness depends
on iteration count and time step, which is problematic in a scene
with objects of varied stiffness, e.g.: soft bodies interacting with

nearly rigid bodies [Macklin et al. 2016]. PBD is solved in a Gauss-
Seidel fashion, which is stable and easy to implement, but does
not converge rapidly. Extended position-based dynamics (XPBD)
introduces a total Lagrange multiplier to PBD, which converges to
the actual solution of backward Euler integration with physically
correct stiffness. But similar to PBD, XPBD suffers from slow con-
vergence speed of Gauss-Seidel iteration and low accuracy of only
first order approximation of backward Euler integrator. Those short-
comings of PBD and XPBD are addressed by Projective Dynamics
(PD) [Bouaziz et al. 2014] with rigor and higher accuracy from
continuum mechanics. Projective Dynamics was derived as an ex-
tension of ShapeUp [Bouaziz et al. 2012] to dynamics. ShapeUp is an
optimization system for geometry processing which also supports
rigid-body constraints, but these are only soft constraints and dy-
namics is not considered. Increasing the stiffness of the rigid-body
constraints would result in similar deterioration of convergence as
in Projective Dynamics [Tournier et al. 2015].

Projective Dynamics can be seen as a quasi-Newton method
[Liu et al. 2017] or an alternating direction method of multipliers
(ADMM) [Narain et al. 2016], and therefore support more gen-
eral materials. Fast GPU implementations of Projective Dynamics
are also possible. Those methods can be further accelerated using
Chebyshev semi-iterative approach [Wang 2015], a colored Gauss-
Seidel method [Fratarcangeli et al. 2016], or a hyper-reduce scheme
[Brandt et al. 2018]. [Kugelstadt et al. 2018] follow a similar strategy
of Projective Dynamics by using an operator splitting approach
to speed up the stretching resistance part. Moreover, it formulates
the resistance to volume change as compliant constraints and in-
troduces analytic polar decomposition(APD) to compute the rota-
tional part of the deformation gradient. [Soler et al. 2018] simulate
Cosserate rods with Projective Dynamics by incorporating body
orientation in standard PD solver. [Peng et al. 2018] speeds up the
convergence rate of Projective Dynamics for an accurate solution
by applying Anderson acceleration, a well-established technique
for fixed point iteration method.

2.2 Articulated rigid body simulation
There is a large body of classical work in computer graphics to
simulate articulated rigid bodies [Baraff 1996; Bender et al. 2014;
Featherstone 1987; Weinstein 2007]. [Armstrong and Green 1985]
incorporates dynamics into themodel of the human figure, given the
forces and torques applied to joints at key points in the animation.
[Witkin and Kass 1988] proposes a general tool to create articulated
character animation by using spacetime constraints. [Weinstein
et al. 2006] propose an iterative solution for handling joint and
large numbers of unpredictable contact and collision events for
rigid articulated bodies. [Zordan et al. 2005] incorporates motion
capture data tomake the articulated skeleton respond to unexpected
impact.

2.3 Coupling between rigid and deformable
bodies

Coupling rigid and deformable bodies is an interesting topic that
has been explored by many authors [Baraff and Witkin 1997; Jans-
son and Vergeest 2003; Lenoir and Fonteneau 2004; O’Brien et al.
2000; Sifakis et al. 2007]. One common approach is to simulate
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each subsystem with specialized technique and then bridge the
two together [Shinar 2008]. Specifically, [Shinar et al. 2008] de-
signed a full two-way coupling of rigid and deformable bodies. It
consists of 5 major steps to interleave the rigid and deformable
body simulation in addition to the simulation of both the rigid and
deformable degrees of freedom. ArtiSynth [Lloyd et al. 2012], an
open source package used for modeling and simulating complex
anatomical systems, is composed of both rigid and deformable bod-
ies. It uses FEM to simulate deformable bodies and uses multibody
techniques [Shabana 2005] to simulate rigid bodies separately, and
couple these two parts together using attachment constraints. It is
also common to simulate characters via physically-based skinning
[Capell et al. 2005; Hahn et al. 2012; Kavan and Sorkine 2012; Liu
et al. 2013; McAdams et al. 2011], however, with these methods
the motion of the skeleton is specified kinematically, i.e., is not
subject to physics-based simulation. [Galoppo et al. 2007a] com-
bines articulated-body dynamics and skin deformation, which is
expressed in pose space (rest configuration). It then applies dis-
placement corrections from deformation to skinning. However, this
method is not suitable for large global deformations, such as highly
flexible characters. [Tournier et al. 2015] proposes an offline method
for high stiffness material and constraints. [Tournier et al. 2015] also
pointed out that Projective Dynamics results in artificial damping or
even locking if the relative material stiffness is too high. Instead of
using complete geometric stiffness[Andrews et al. 2017], Projective
Dynamics only keeps the constant term in the geometric stiffness.
[Kim and Pollard 2011] simulates skeleton-driven deformable body
characters, which uses mesh embedding to reduce the DOFs of the
deformable bodies. [Verschoor et al. 2018] defines the shape of the
bone implicitly as capsule. The distance between the representative
point on the bone and the interpolation point (from 4 vertices in a
tetrahedron) is minimized as the energy term, whereas our method
can simulate bones of various shape such as skulls.

3 METHOD
Continuous equations of motion with constraints can be written as
[Lanczos 1986]:

Ma(t) = −∇E(x(t)) + ∇C(x(t))Tλ(t) + fext (1a)
C(x(t)) = 0 (1b)

whereM is a massmatrix, a(t) denotes acceleration andC : Rn×3 →
Rnc×1 is an implicit function for the number of constraints nc .
∇E(x(t)) and fext ∈ Rn×3 represent the elastic and external forces
and λ(t) ∈ Rnc×1 is a vector of Lagrange multipliers.

Backward Euler time discretization corresponds to the following
update rules:

xn+1 − xn = hvn+1
vn+1 − vn = han+1

(2)

where xn+1 is the current state, xn is the previous state, h is the
time step, vn+1 is the current velocity, vn is the previous velocity,
and an+1 is the current acceleration. From Eq. 2, we can write:

an+1 =
1
h2

(xn+1 − 2xn + xn−1) (3)

Applying the backward Euler discretization to Eq. 1a we obtain:
M
h2

(x − y) = −∇E(x) + ∇C(x)Tλ (4)

where x is a shorthand for xn+1 and the constant y is defined as:
y := 2xn − xn−1 + h2M−1fext.
Together with C(x) = 0, Eq. 4 can be interpreted as setting to
zero the gradient of the Lagrangian of the following constrained
optimization problem:

min
x

1
2h2

∥x − y∥2M + E(x) (5a)

s.t. C(x) = 0 (5b)

This constrained optimization problem can be understood intu-
itively: Eq. 5a is nothing but the classical objective of unconstrained
backward Euler [Martin et al. 2011], which is restricted to satisfy
the constraints (Eq. 5b). Even though simply adding Eq. 5b to the
original unconstrained problem might be seen as an ad-hoc way to
enforce the constraints, we would like to emphasize that Eq. 5 is
rigorously derived from constrained Newtonian dynamics (Eq. 1)
with backward Euler time integration.

Previous work [Bouaziz et al. 2014] demonstrated that fast and ro-
bust optimizers can be derived by introducing auxiliary “projection”
variables. The key contribution of this paper consists in gener-
alizing these methods to the case of non-trivial hard constraints
C(x) = 0. Specifically, our method includes exact rigid-body con-
straints (in contrast to approximately-rigid bodies [Macklin et al.
2014; Müller et al. 2005]) and exact joint constraints. This is not a
trivial extension because the rigid-body constraints are non-convex
and joint-constraints between rigid bodies (e.g. bones) introduce
coupling between the individual rigid-body constraints.

Our method is essentially a fast and robust solver for the con-
strained optimization problem in Eq. 5a and Eq. 5b, exploiting
special structure of the manifolds of rigid body constraints SE(3).
In the following, we derive our final algorithm in two steps. First,
we restrict vertices belonging to one rigid body to a 12-dimensional
affine subspace (Section 3.1). Second, we further restrict the affine
degrees of freedom to the 6-dimensional non-linear manifold SE(3)
while taking joint-coupling into account (Section 3.2). The final
algorithm is summarized in Alg. 1.

3.1 Step 1: Affine Reduction
Projective Dynamics [Bouaziz et al. 2014] is an efficient numerical
solver for deformable body simulation. It treats backward Euler
integration as an unconstrained optimization problem formulated in
Eq. 5a. Projective Dynamics solves this unconstrained optimization
problem using a local-global strategy, where the global step can be
described as follows:

min
1
2h2

∥x − y∥2M +
1
2
xTLx − xTJp (6)

where L and J are two constant matrices determined by the mesh
topology andmaterial stiffness, p is a projection vector computed by
the local step. Projective Dynamics is a fast solver but can not handle
nonlinear hard constraints in Eq. 5b. In order to take advantage
of Projective Dynamics, we can first group the rigid body vertices
together using affine constraints.
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The purpose of this first (preparatory) step is to remove redun-
dant degrees of freedom. Specifically, an arbitrary number of ver-
tices corresponding to a rigid body is reduced to 12 degrees of
freedom. This corresponds to classical linear model reduction and
we do not claim any technical innovations in this step. The pur-
pose is to set the stage for the second step which tackles the main
problem of exactly enforcing coupled rigid-body constraints (Sec-
tion 3.2). We believe that this decoupling improves the exposition
of our method as well as structure of our code (implementation).

Our system is composed of n = nb + nf vertices where nf is
the number of flesh vertices and nb is the number of bone vertices.
We reorder the vertices such that all of the flesh vertices come first
and bone vertices are grouped together according to the bones they
correspond to:

x =
[
xf
xb

]
(7)

where x ∈ Rn×3 denotes the positions of all vertices, xf ∈ Rnf ×3

the positions of flesh vertices, and xb ∈ Rnb×3 the positions of
bone vertices.

Next, we restrict vertices belonging to one rigid body to an affine
transformation of their rest pose positions:

xb = VT (8)

V =


V1 0 0 0
0 V2 0 0

0 0
. . . 0

0 0 0 Vm


(9)

where Vk is the rest-pose vertex positions of bone k , and V ∈

Rnb×4m consists of Vk shown in Eq. 9,m is the number of bones.
For every bone k , there is an associated affine transformation ma-
trix Tk ∈ R3×4 (which will be eventually restricted to SE(3) in
Section 3.2). We stack all of the transformation matrices into a
single matrix T =

[
T1 T2 . . . Tm

]T
∈ R4m×3.

Substituting Eq. 8 into Eq. 7 can be written as:

x =
[
xf
VT

]
=

[
Inf 0
0 V

]
︸     ︷︷     ︸

B

[
xf
T

]
︸︷︷︸
x̂

(10)

where Inf is the identity matrix, B ∈ R(nf +nb )×(nf +4m) is a
constant matrix, and x̂ ∈ R(nf +4m)×3 becomes our new reduced
variable. We can substitute x̂ into Eq. 6 with auxiliary (projection)
variables p to get our new objective function:

min
1
2h2

∥(Bx̂ − y)∥2M +
1
2
x̂TBTLBx̂ − x̂TBTJp (11)

This new objective function is essentially a subspace version of
the global step of Projective Dynamics [Brandt et al. 2018]. The
constant y is computed as y := xn + hvn where xn is the current
positions and vn is the current velocity. We compute x by using
Eq. 10 after x̂ is solved for by Eq. 11, thus rigid body dynamics is
not needed when determining y in the rigid part. With p fixed, the
optimal x̂ is computed by setting the derivative of Eq. 11 to zero:

BT(
M
h2
+ L)B︸          ︷︷          ︸

prefactor

x̂ = BT
(
My
h2
+ Jp

)
(12)

where pre-factorization is a possible acceleration strategy because
B,M and L are all constant matrices. We do not claim any technical
novelty in this step, but this preparation will be useful in the next
section.

3.2 Step 2: Non-linear Constraints
In this section we combine the affinely-reduced formulation from
the previous section with rigid-body constraints. If desired, the
rigid-body constraints can be also coupled with joint constraints
(e.g., to model articulated skeletons). Writing out our constrained
optimization problem in more detail:

min
x̂

1
2h2

∥Bx̂ − y∥2M + E(x̂, p) (13a)

s.t. Tk ∈ SE(3) for k = 1. . .m (13b)
Tjq = Tkq if the j- and k-th bones share a joint q (13c)

where Tk is the transformation matrix for bone k , q ∈ R4×1

Eq. 13c means that a joint transformed with bone k should be in
the same position after being transformed with bone j if bone k
and j share the joint q.
For a given projection p, we first minimize Eq. 13a using Eq. 12 and
denote the result of this unconstrained minimization problem as
x0. We then project the constraints to satisfy Eq. 13b and Eq. 13c
while deviating from x0 as little as possible.

Enforcing Eq. 13b alone by itself is a well known problem called
Procrustes problem that can be solved using singular value decom-
position [Sorkine-Hornung and Rabinovich 2017]. The hard part is
to also satisfy Eq. 13c without violating the Tk ∈ SE(3) constraints.
In the first step (Section 3.1), we have relaxed the SE(3) constraints
to affine ones. These affine transformationsT0 =

[
T01 T02 . . . T

0
m
]T

give us an initial guess for solving the non-convex optimization
problem in Eq. 13.

When solving for Eq. 13b and Eq. 13c together, instead of restrict-
ing Tj and Tk to rigid body transformations directly, we restrict
them to linearized rigid body transformations first and reparam-
eterize the 12-DoF matrix Tk with two 3-DoF vectors:ωk for lin-
earized rotation (angular velocity) and lk for translation. The new
variables ωk and lk parametrize the tangent space (the Lie alge-
bra) of SE(3). Formally, at any given rigid-body transformation[
R0k t0k

]
∈ SE(3), we can introduce the following substitution:

Tk =
[
R0k t0k

]︸      ︷︷      ︸
3 × 4

[
I +ω∗

k
lk

0 1

]
︸           ︷︷           ︸

4 × 4

(14)

where ω∗
k ∈ R3×3 denotes the cross-product matrix of ωk . We

compute R0k and t0k by solving the Procrustes problem using SVD
[Sorkine-Hornung and Rabinovich 2017] to best fit the affinely
transformed bone vertices, denoted as x0b = VT0.

Next, we can solve the linearized version of Eq. 13b along with
the (already linear) Eq. 13c as a convex quadratic minimization
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problem with linear equality constraints:

min
s

sTQs + cTs (15a)

s.t. Cs = r (15b)

where s =
[
ωT
1 lT1 . . . ωT

m lTm
]T

∈ R6×1. Then Tk can be
viewed as a function of s according to Eq. 14. Solving Eq. 15a and
Eq. 15b exactly amounts to a small (6m×6m, wherem is the number
of bones) linear system solve and is thus very fast. The construction
of the matrices Q, C and the vectors c and r is explained in detail
in the following subsections. Due to the linearization of SE(3), this
solve has to be iterated with the Procrustes projection back to
SE(3), which can be done independently for each bone. This entire
process can be interpreted as generalization of Procrustes projection
to multiple rigid constraints combined with joint constraints, i.e.,
articulated rigid bodies.

3.2.1 reparameterization of the linear constraints. First, we express
Eq. 13c in terms of the new unknown s by using Eq. 14. We can
rewrite the position of a joint q as:

Tkq = R0k
(
q + lk − (q∗)ωk

)
+ t0k (16)

where q∗ denotes the cross-product matrix of q. Assuming thatωk
and tk are small, we substitute Eq. 16 into Eq. 13c, obtaining:

(R0j − R0k )q + t
0
j − t0k︸                    ︷︷                    ︸

r

= R0j (q
∗)ωj − R0k (q

∗)ωk − R0j lj + R
0
k lk︸                                           ︷︷                                           ︸

Cs
(17)

The linearized constraints matrix C is assembled by collecting
Eq. 17 over all joints, see Figure 3. Stacking the contribution of all
joint constraints together will get us Eq. 15b.

3.2.2 reparameterization of the objective. Intuitively, we are solv-
ing for rigid bone transformations T while staying as close as pos-
sible to the initial guess x0b . So we can write Eq. 15a as:

min
s

∑
k

∥VkT
T
k (s) − x0b,k ∥

2
M (18)

where Vk is the rest-pose vertices for bone k , x0b,k stands for the
initial guess we computed from Eq. 12. We can substitute Eq. 14
into VkTk to get:

∥VkT
T
k − x0b,k ∥

2
M =

∑
i
mi ∥R

0
k (I +ω

∗
k )Vk,i + R

0
k lk + t

0
k − x0b,k,i ∥

2

(19a)

=
∑
i
mi ∥R

0
k lk − R0k (V

∗
k,i )︸    ︷︷    ︸

Q0
i

ωk + R
0
kVk,i + t

0
k − x0b,k,i︸                    ︷︷                    ︸

ei

∥2 (19b)

=
[
ωT
k lTk

] [ ∑
imiQ0T

i Q0
i −

∑
imiQ0T

i R0k
−
∑
imiR0Tk Q0

i
∑
imiR0Tk R0k

] [
ωk
lk

]
(19c)

+ 2lTk (
∑
i
miR

0T
k ei ) − 2ωT

k (
∑
i
miQ0T

i ei ) +
∑
i
mi ∥ei ∥2 (19d)

From Eq. 19c, we can see that the objective is a quadratic function
of new unknown ω and l. So we can expand Eq. 19c and extract
ω and l, which leads to 19d. Eq. 15a is formed by summing Eq. 19

over k = 1 . . .m. Each individual bone contributes a 6 × 6 block,
visualized in Figure 2.

Figure 2: Block structure of Q and c

Figure 3: Block structure ofC. The joint positions are shown
in the left yellow column and the bones in the blue column
along the right side. Each joint/bone pair corresponds to a
3 × 6 block in the matrix. A block is non-zero only if the
bone ties to the joint. Here, we show a joint connecting two
bones, such as the elbow joint.

We summarize our final algorithm in Alg. 1. The optimization
problem in Eq. 15 amounts to a small linear system solve (6m × 6m
where m is the number of bones), but we need to iterate (lines
5-12) because the SE(3)manifold is non-linear. Note that our solver
enforces rigidity constraints exactly within every iteration, and the
joint error (i.e. the residual of Eq. 13c) typically converges to zero
very quickly, as shown in Figure 8 in Section 5.

4 IMPLEMENTATION
The implementation of our method starts with constructing a con-
forming mesh of the rigid(bone) and deformable(flesh) bodies. We
use one .obj file to define the closed surface of the exterior and
anther .obj file to define the closed surface of the interior skele-
ton. Our framework takes the two .obj files as input and outputs
a .smesh file which tetgen[Si 2015] can turn into conforming (De-
launay) tetrahedralized mesh with a different regional attribute for
each enclosed region. From this .mesh file, we know exactly which
vertices belong to the which bone region and which vertices belong
to the flesh region. In addition, we created a .joint file specifically
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ALGORITHM 1: Monolithic Solver for Constrained Dynamics

1 Init: x̂ :=
[
xf 0
T0

]
2 for i = 1, . . . , nlocal/global iterations do
3 Local step: fix x̂, compute p;
4 Global step: fix p, solve Eq. 12 for x̂;
5 for j = 1, . . . , nconstraint iterations do
6 For each bone k , compute

[
R0
k t0k

]
(Procrustes);

7 if Residual of Eq. 13c is small then
8 Exit loop;

9 Iterate over bones, construct Q and c;
10 Iterate over joints, construct C and r;
11 Compute s by solving Eq. 15 (linear system);
12 Iterate over bones, update Tk using Eq. 14;

13 Update: x̂ :=
[
xf
T

]

in our framework to keep track of the affiliation of all the rigid
bones and joints. By combining the .joint and .mesh file, we have a
complete model of the soft articulated character. This process of
constructing the model of soft articulated character is illustrated
in Figure 4. We show the model of a bar, a mermaid and a human
in Figure 5, where the deformable parts and the rigid parts(bone)
are colored pink and white respectively. The red dots represent the
joint positions. The deformable parts are simulated using a linear
co-rotational model in all the examples shown in Section 5.

Figure 4: Schematic workflow of mesh construction

To handle contact, we used the collision method proposed in
[Heidelberger 2007], which computes collision forces based on con-
sistent n-body penetration depth information. We add the collision
forces in fext in Eq. 1. We accelerate collision detection with spatial
hashing [Heidelberger 2007] as well.

5 RESULTS
Table 1 summarizes all of our experiments including the run times
of only using co-rotated linear elasticity. All of our simulations use
20 Projective Dynamics iterations (nlocal/global iterations in Alg. 1)

Figure 5: Visualization of the interior of ourmodels. The de-
formable and rigid components are colored using pink and
white respectively. The joints are illustrated using red dots.

and a time step of 0.033s . In this table, Affine Time is the cost for
the local and global solve in Section 3.1, Joint Time is the time spent
for joint constraints in Section 3.2. Total Time is the overall cost
for our monolithic solver. PD Time is the reference time spent on
Projective Dynamics as if there were no rigid or joint constraints
at all. All timings were measured with an Intel®CoreTM i7-8750H
CPU.

We can see that the time spent on affine transformation is smaller
or equivalent to Projective Dynamics, depending on how large the
ratio between the number of rigid/elastic vertices are. The larger the
number of rigid vertices, the smaller the size of the linear system
is, resulting in faster solver computation times. We set the max
number iterations for the joint constraint (njoint iterations in Alg. 1)
optimization to 100 (under 10 iterations is usually taken). Figure 8
shows the convergence of the lines 6-13 in Alg. 1. Specifically, this
is a log-plot of the joint error

∑
j ∥Tjq − Tkq∥2 for two example

joints, where k is the index of the bone which connects to a joint
and j is the indices of all the other bones which connect to the same
joint.

In contrast, Projective Dynamics might fail to converge when
coupling of rigid and deformable bodies is imitated by setting the
stiffness of the two rigid parts higher than the deformable parts. As
we can see in Figure 6 left, the rigid parts “lock” and fail to rotate.
In the same scenario, our method quickly converges to the correct
result (Figure 6). [Bouaziz et al. 2012] imposes the shape constraints
by using penalty methods. The rigid constraints are not imposed
exactly and controlled by the shape constraint weights. If the shape
constraint weights are too high, it would still result in PD locking
(Figure 7).

In Figure 9, we show the result of applying our method to a
single rigid body (no deformable degrees of freedom) and compare
to a state-of-the-art rigid body simulator [Bender 2007], which uses
explicit RK4 integration. When both simulators use timestep 0.01,
we can see small differences after simulating 3.0 seconds of motion.
These differences can be explained by the numerical damping of
our implicit integrator (backward Euler). Indeed, when we reduce
the timestep to 0.001 in both simulators and simulate the same
motion again, we obtain nearly identical results (Figure 9 right).

In Figure 10, we show a snail falling down under gravity and
colliding with a sphere. In this example, there’s only one rigid
body and no joint constraints. We simply remove the Eq. 13c from
Eq. 13 to obtain only the rigid body constraint. Almost half of the
vertices of the whole system are rigid in this example, the time
spent on solving the affine transformation is significantly lower
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Table 1: Results on our example models.

Example #Elastic Verts #Verts #Elems #Bones #Joints Affine Time Joint Time Total Time PD Time

bar 1010 1690 7661 2 1 59ms 17ms 76ms 56ms
snail 14318 28840 105694 1 0 998ms 16ms(rigid) 1014ms 1159ms
washing machine 11617 12683 45888 9 8 413ms 108ms 521ms 431ms
aerial silk 11617 12683 45888 9 8 407ms 262ms 669ms 439ms
mermaid 5249 7570 32270 9 0 276ms 8ms(rigid) 284ms 273ms

Figure 6: Imitating rigid bodies by higher stiffness in Projec-
tive Dynamics results in locking (left), Our method (right)
produces the correct result.

Figure 7: Imitating rigid bodies by shape constraints in
[Bouaziz et al. 2012]. Higherweight of shape constraints still
results in PD locking (right).

than simulating the whole system as a deformable body using
Projective Dynamics.

In Figure 11, we show that our method with joint constraints
produces more realistic animation by tying the rigid bones to joints.
The character is doing aerial silk performance like an acrobat, pro-
ducing global deformation that skinning methods such as [Galoppo
et al. 2007b] cannot produce. Note that there is no skull in the
character as shown in Figure 5.

In Figure 12, the tail of the mermaid is pre-bent. During the
animation, the tail moves as it tries to restore its rest-pose shape.
And initial velocity moves the mermaid towards the cylindrical

Figure 8: Reduction of joint error (i.e., the residual of
Eq. 13c) with respect to the number of iterations of our gen-
eralized Procrustes solver (lines 5-12 in Algorithm 1).

Figure 9: The blue bar is simulated by [Bender 2007], a li-
brary for dynamic simulation of multi-body systems. The
white bar is simulated using our methods with all vertices
rigidly constrained. The wireframe in the white bar shows
our mesh, even though we use only 12 degrees of freedom.
With time step 0.01s, there’s a small deviation between the
blue bar and the white bar. With time step 0.001s, the devia-
tion between the blue bar and the white bar is significantly
reduced.

glass. The hands and arms collide with the glass, thus making the
hands and arms move around.

6 LIMITATION AND FUTUREWORK
The joint constraints prevent bones from separating, but each bone
can still rotate arbitrarily far, which is not true for most biological
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Figure 10: A snail collides with a sphere. Only highly de-
formable shell can be efficiently simulated with Projective
Dynamics (middle). With our method (right), the shell stays
rigid while the body elastically wraps around the sphere.

Figure 11: Simulation of an acrobat doing an aerial silk per-
formance. The middle figure shows our method with rigid
constraints where the bones are rigid bot not constrained
to stay connected, resulting in unrealistic elongation of
the character. Our method with joint constraints holds the
bones together, resulting in a more realistic skeleton-like
motion.

joints. An interesting avenue for future work would involve adding
the support of joint limits. In all our examples, the characters are
passive, i.e., not actuated. It would be possible to extend our method
with artist directed control to our physics-based system. Spacetime
constraints [Witkin and Kass 1988] offer control over the animation
and add physical realism with desired secondary motion effects.
State-of-the-art character control using spacetime constraints sup-
ports only articulated bodies [Witkin and Kass 1988] or purely
deformable bodies [Schulz et al. 2014]. In the future it would be
interesting to extend spacetime constraints to characters with soft
flesh and rigid skeletons.

7 CONCLUSION
We introduced a new monolithic method to simulate articulated
soft characters based on constrained dynamics. Our method has
comparable computing performance to Projective Dynamics and is
simple to implement; in particular, no additional code is required to
explicitly handle the coupling between rigid and deformable bodies.
Our method is suitable for simulating characters with deformable
bodies, rigid bones and joints, which is often required for realistic
creatures. We believe our new articulated/deformable simulating
method will find use in computer games or training simulators.

Figure 12: Results of a mermaid colliding with a cylindri-
cal glass container. The tail is elastic and we can contrast its
deformable nature to the relatively more rigid upper body
which contains bones.
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