
Workshop on Virtual Reality Interaction and Physical Simulation VRIPHYS (2018)
F. Jaillet, G. Zachmann, K. Erleben, and S. Andrews (Editors)

Laplacian Damping for Projective Dynamics

Jing Li1 Tiantian Liu2 Ladislav Kavan1

1University of Utah, United States
2University of Pennsylvania, United States

Abstract
Damping is an important ingredient in physics-based simulation of deformable objects. Recent work introduced new fast simu-
lation methods such as Position Based Dynamics and Projective Dynamics. Explicit velocity damping methods currently used
in conjunction with Position Based Dynamics or Projective Dynamics are simple and fast, but have some limitations. They may
damp global motion or non-physically transport velocities throughout the simulated object. More advanced damping models
do not have these limitations, but are slow to evaluate, defeating the benefits of fast solvers such as Projective Dynamics. We
present a new type of damping model specifically designed for Projective Dynamics, which provides the quality of advanced
damping models while adding only minimal computing overhead. The key idea is to define damping forces using Projective Dy-
namics’ Laplacian matrix. In a number of simulation examples we show that this damping model works very well in practice.
When used with a modified Projective Dynamics solver that uses a non-dissipative implicit midpoint integrator, our damping
method provides fully user-controllable damping, allowing the user to quickly produce visually pleasing and vivid animations.

CCS Concepts
•Computing methodologies → Physical simulation;

1. Introduction

Dissipation of mechanical energy is an important phenomenon in
nature. In computer animation, damping is used to enhance sta-
bility of non-dissipative time integration schemes or to add aes-
thetic control to the results of simulations. Explicit damping meth-
ods produce fast damping effects, but may introduce unwanted ar-
tifacts. Explicit damping can be as simple as reducing each ve-
locity in the system by a fixed ratio. This method is known as
“ether drag” [SSF13]. A limitation of the ether drag is that it damps
all velocities, even global rigid body motions. In order to miti-
gate this problem, Position Based Dynamics introduced a damp-
ing method (“PBD damping”) that modifies the vertex velocities
without changing the global motion, i.e. linear and angular mo-
menta [MHHR07]. Even though this method successfully preserves
the linear and angular momenta, it can non-physically transport ve-
locities throughout the object and make it appear unnaturally rigid,
because the underlying idea is to factor out linear and angular ve-
locities as in a rigid body simulation. Implicit damping methods,
on the other hand, can produce more visually satisfying results, but
with extra computational cost.

Projective Dynamics [LBOK13,BML∗14,LBK17] is a fast time in-
tegration method for elastic body simulations. Due to performance
considerations, only explicit damping methods were considered in
Projective Dynamics so far. In this paper, we propose a fast implicit
damping method that can be naturally integrated into the frame-

work of Projective Dynamics with negligible extra computational
cost.

Our method is inspired by Rayleigh damping, which is extensively
used in computer graphics [CAP17] [LKSH08] [GMD13] [FM17].
One feature of Rayleigh damping is that it is effective at remov-
ing high-frequency vibrations because the stiffness matrix acts as
a high-pass filter [Wil02]. We use the Laplacian matrix to approx-
imate this stiffness matrix because the Laplacian matrix is also a
high-pass filter [Zha04] [Tau95] The key advantage of using the
Laplacian matrix is that it is constant – independent of the current
state of the simulated system – unlike the stiffness matrix. There-
fore, Laplacian Damping can be efficiently incorporated in the Pro-
jective Dynamics framework with minimal computing overheads.

The original Projective Dynamics method is derived from back-
ward Euler, also known as implicit Euler. Backward Euler is a
strongly dissipative integrator, containing significant “built-in” nu-
merical damping which is not user-controllable. We can combine
Projective Dynamics with different time integrators, such as im-
plicit midpoint. Implicit midpoint is non-dissipative and therefore
can produce nice vivid motion, however, it is not always stable for
large time steps. Our new damping method can be combined with
implicit midpoint in the Projective Dynamics framework, produc-
ing stable motion that is as vivid motion as the user desires.

In summary, the main contributions of our new damping model
are:

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

• Our method does not exhibit the artifacts of fast explicit damping
methods such as ether drag or PBD damping [MHHR07].
• Our method produces similar visual results to implicit damping

methods such as lagged Rayleigh damping [GS14] or variational
damping [KYT∗06] while being much faster.
• Our method is easy to implement and fully compatible with the

Projective Dynamics framework.
• Our method adds only minimal computing overheads on top of

the underlying Projective Dynamics simulator.

2. Background and Related Work

Damping is commonly observed in nature. For purposes of numer-
ical simulations, simple damping model, such as viscous damping,
can be often assumed. Force corresponding to viscous damping can
be expressed as:

fd =−Dv (1)

where D is a positive semi-definite damping matrix, v is the veloc-
ity of all particles in the simulated system, and fd is the resulting
damping force. D can be arbitrary, even time-dependent. The sim-
plest choice of D is a constant scaled identity matrix: D := kdI
where kd is a constant damping coefficient [TPBF87]. Unfortu-
nately, this damping model will also dissipate rigid body motions,
i.e., global translation and rotation. This issue can be resolved by
using a strain rate dependent damping matrix.

A special class of viscous damping methods is called Caughey
damping [CO65]. It is designed for controlling the strength of
damping for different vibrating components with different frequen-
cies separately. The damping force in the Caughey damping model
is still proportional to the velocity as described in Eq. 1, but the
damping matrix becomes:

DCaughey := M
p

∑
i=1

(
αi

[
M−1K

]i−1
)

(2)

where M is the mass matrix of the system, typically diagonally
lumped; K is the stiffness matrix, i.e., the Hessian matrix of the
elastic potential energy (or, equivalently, Jacobian of the elastic
forces). In Eq. 2, αi controls the strength of damping for vibration
modes with different frequencies and p is the number of vibration
modes. When only modes with the smallest vibration frequencies
are considered, i.e. p = 2, the Caughey damping model reduces to
its linear case known as Rayleigh damping [Ray96]:

DRayleigh := α1M+α2K (3)

Recently, Xu el al. [XB17] proposed an example based method that
can converge DRayleigh towards DCaughey by adding user-defined ex-
amples. This is essentially an artist-friendly way to approximate a
Caughey damping matrix.

A common way to implement damping is by integrating damp-
ing forces in a separate numerical integration step, which can be
either explicit or implicit [BMF05]. Ether drag [SSF13] is the most
basic explicit damping method, which corresponds to multiplying
all velocities by a constant (potentially spatially varying). Although
this is very fast, ether drag shares a similar problem as [TPBF87] -
even rigid body motions are damped, reducing both linear and an-
gular momentum of a system. In order to fix this issue, Müller et

al. [MHHR07] used a momentum-preserving explicit damping in
Position Based Dynamics (PBD), which is almost as fast as ether
drag. However, as we demonstrate in Figure 2, the results can be
implausible in some cases due to non-physical transport of veloci-
ties through the simulated object. In cases where visual plausibility
is more important than performance, implicit damping methods can
be used. Bridson et al. [BMF05] combined a half step of implicit
damping and another half step of explicit elastic force integration,
producing highly realistic cloth simulation results. Kharevych et
al. [KYT∗06] proposed a new variational damping method, also
incorporated a separate implicit time integration step.

Time Integration is one of the core ingredients of physically
based simulation. Given the current state consisting of positions xn
and velocities vn, we need to predict the next state xn+1, vn+1 using
Newton’s second law of motion. Different time integration methods
use different discrete estimates (quadratures) of the forces. Without
damping, many implicit time integration schemes can be generally
expressed as the following optimization problem:

g(x) = 1
2h2 ||x−y||2M + c1E(c2x+ z) (4)

this is a generalization of Eq.3 in [LBK17], where h is the time
step size, ||x||2M = xTMx stands for the norm of x weighted by the
mass matrix, E(x) is the elastic energy evaluated at position x, and
the scalars c1, c2 and the vectors y, z are time-integrator-dependent
constants. For example, in backward Euler, c1 = c2 = 1, y = xn +
hvn and z = 0; in implicit midpoint, c1 = 1, c2 = 0.5, y = xn +hvn

and z = xn
2 ; in BDF-2, c1 = 4

9 ,c2 = 1, y =
4xn−xn−1

3 +h 8vn−2vn−1
9

and z = 0. The goal of the time integration is to minimize g(x) to
find the next state position xn+1 = argminxg(x), then to update the
next state velocity vn+1 explicitly according to the integration rules
(a local minimum is sufficient). This variational integration formu-
lation usually provides a more stable numerical solution compared
to nonlinear root finding [KYT∗06, MTGG11]. This is because the
minimization problem could at least find a local minimum, which
could be a reasonable solution, while the root-finding could simply
fail.

The optimization formulation was investigated by Gast et al.
[GS14], who used a “lagged” Rayleigh damping matrix. Specifi-
cally, their damping force is defined as:

fd =−D(xn)vn+1 =−(α1M+α2K(xn))vn+1 (5)

∇Ed(x) =−fd = D(xn)vn+1 (6)

With this formulation, it is possible to derive corresponding viscous
damping “energy” Ed which can be appended to Eq. 4 and han-
dled just like the elastic potential E (the main difference is that this
“damping potential” depends on the current state xn, hence this is
not a classical potential function). The elastic energy is often non-
convex and therefore D may be indefinite and the damping model
can thus erroneously increase velocities. In order to ensure that the
damping energy will be reducing velocities as expected, a “definite-
ness fix” process to guarantee semi-definiteness of D(xn) is often
recommended [GS14]. After the indefiniteness is eliminated, this
damping energy can be defined by anti-differentiating Eq. 6 on the

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

position of the vertices x:

Ed(x) =
∫

x
D(xn)vn+1(x)dx =

c2h
2
||vn+1(x)||2D(xn) (7)

where c2 is the same as in Eq. 4, and vn+1(x) represents the velocity
update rule for a chosen time integrator.

Projective Dynamics (PD) [BML∗14] is one of the acceleration
schemes to solve Eq. 4, assuming a certain structure of the elastic
energy:

EPD(x) = ∑
j

w jE j(x) (8)

where w j is the weight of the j-th element, encoding the size of the
element and the stiffness of the material for that element. E j is a
special type of elastic energy:

E j(x) = min
p j∈M j

Ẽ j(x,p) Ẽ j(x,p) =
1
2
||G jx−S jp||2F (9)

where ||.||F is the Frobenius norm, M j is a constraint manifold,
p is a stacked projection variable, S j selects a certain p j = S jp
being restricted to manifold M j, and G j is the differential oper-
ator. For example, if we want to represent an as-rigid-as-possible
energy [CPSS10], we can simply setM j to SO(3), and use G jx to
represent the deformation gradient of the j-th element.

In projective dynamics, the position x and projection variable p
are updated using a local/global solver. After substituting Eq. 8 into
Eq. 4, we can rewrite the new objective function as:

1
2h2 ||x−y||2M +

1
2

xT(c1c2
2L)x

−xT(c1c2Jp− c1c2Lz)+ const.
(10)

where L = ∑ j w jGT
j G j and J = ∑ j w jGT

j S j. Whenever x is fixed,
updating p only requires one loop over all elements and projecting
G j(c2x+z) onto the desired manifoldsM j; this is usually referred
to as the “local step” of PD. With p is fixed, we can compute the
optimal x by solving setting the gradient of Eq. 10 over x equal to
zero. The solution x∗ is:

x∗ =
(

M
h2 + c1c2

2L
)−1(My

h2 + c1c2Jp− c1c2Lz
)

(11)

Note that the system matrix M
h2 + c1c2

2L only depends on the topol-
ogy of the mesh, the stiffness of all elements, the mass of all ver-
tices and the time-step where all of the quantities are unlikely to
change during a simulation. [BML∗14] pre-factorized this matrix
and reused this factor to solve for x∗. This solve is usually referred
as the "global step". The local/global steps are repeated in an alter-
nating way for a fixed number of iterations, typically between 10 to
20.

The original Projective Dynamics algorithm uses backward
Euler integration [BML∗14], which features artificial numerical
damping which is not user-controllable. In real-time physics we
typically use large time steps, where this artificial damping can
be significant. If more damping is desired, [BML∗14] uses an ex-
plicit post-processing damping method described in [MHHR07] to
further damp the velocity without reducing the momentum. Im-
plicit damping methods such as Rayleigh damping are hard to in-
tegrate with Projective Dynamics, because the stiffness matrix K

in Rayleigh damping changes dynamically and thus needs to be
refactorized often. This negates the performance gains of Projec-
tive Dynamics.

3. Method

We propose a modified implicit Rayleigh damping model, where
the damping matrix is redefined as:

DOurs = α1M+α2L (12)

where L = ∑ j w jGT
j G j is exactly the same Laplacian matrix as

in Eq. 10. Unlike the original Rayleigh damping model where the
stiffness matrix K plays the role of slowing down high frequency
vibrations, we choose the Laplacian matrix L to achieve visually
similar damping effects. We call our corresponding damping model
the “Laplacian damping model”.

The stiffness matrix K of a deformable body works as a high-
pass filter – it produces large damping forces that act against high-
frequency vibrations. The Laplacian matrix L shares the same prop-
erty and, indeed, related Laplacian-type matrices are often used in
geometry processing to "smooth out" high spatial frequencies. Be-
cause constant vectors are in the null-space of L, if v corresponds
to a global translation, then Lv= 0. This shows there is no damping
of global translational motion. In deformable body simulations, the
Laplacian matrix also encodes the stiffness information and mesh
topology like a stiffness matrix. Based on these observations, we
believe that the Laplacian matrix could be a good constant replace-
ment of the stiffness matrix used in Rayleigh damping. We verified
this intuition experimentally, as shown in Figure 3, indicating that
our Laplacian damping model can produce results that are qualita-
tively similar to those obtained from the original Rayleigh damping
model.

After modifying the Rayleigh damping matrix, we can anti-
differentiate our damping force to evaluate our damping energy:

Ed(x) =
∫

x
DOursvn+1(x)dx

=
c2h
2
||vn+1(x)||2DOurs

(13)

where the scalar c2 and velocity update rule vn+1(·) depends on the
specific time integration rule. Since DOurs is not dependent on the
position x, we do not need to use a “lagged” version (as in [GS14])
of the damping matrix anymore. Also, because the Laplacian ma-
trix is guaranteed to be positive semi-definite, we do not need to
fix its definiteness either, which simplifies implementation and im-
proves run-time performance. We simply plug our damping energy
Eq. 13 into our variational formulation (Eq. 4) and solve the opti-
mization using local/global solve similar to Projective Dynamics.

To be specific, let us explain our local/global steps with implicit
midpoint integration, where c1 = 1, c2 = 0.5, z = xn

2 , and the ve-
locity update rule is vn+1 = 2 xn+1−xn

h −vn.

In the local step where the position vector x is fixed, we solve
for the projection variable p j by projecting G j

(x+xn
2
)

to its cor-
responding manifold M j. This step is exactly the same as in the
original Projective Dynamics, because the damping energy does not
affect the elastic energy where the local step takes place.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

Example #Verts #Elems Integration Method Integration Time Integration Time Damping
(without damping) (with damping) Overhead

ribbon (Figure 2) 549 728 implicit midpoint 10ms 10ms <1ms
bar (Figure 8) 738 1920 implicit midpoint 40ms 43ms 3ms
penguin (Figure 1) 1979 6915 implicit midpoint 151ms 151ms <1ms
dummy (Figure 5) 4492 16890 implicit midpoint 670ms 674ms 4ms
pig (Figure 3) 5122 16505 implicit midpoint 477ms 486ms 9ms
hair (Figure 7) 1900 600 backward Euler 42ms 43ms 1ms

Table 1: Summary of our example simulations, all using the Projective Dynamics framework with 10 iterations. The “Integration Time” is
total time per frame of our method with / without damping.

In the global step where the projection variable p is already com-
puted, we compute the optimal positions by solving the following
problem:

1
2h2 ||x−y||2M +

1
2

xT(1
4

L)x−xT(1
2

Jp− 1
2

Lz)

+
h
4

∣∣∣∣∣∣2 x−xn

h
−vn

∣∣∣∣∣∣2
DOurs

+ const. (14)

which is exactly Eq. 10 with our damping energy Eq. 13 appended
at the end. The exact solution x∗ of this global problem can be
computed analytically as follows:

x∗ =
(

M
h2 +

1
4

L+
2
h

DOurs

)−1

(
My
h2 +

1
2

Jp− 1
2

Lz+DOurs(
2
h

xn +vn)

) (15)

Note that because DOurs is the combination of the mass matrix M
and the Laplacian matrix L, we can prefactorize the system ma-
trix M

h2 +
1
4 L+ 2

h DOurs as well. Therefore the global system can be
solved efficiently at run time. As we can see from Table 1, the over-
head of adding damping with our method is typically very small
because we do not disturb the efficient local/global solve process
of Projective Dynamics.

4. Results

Table 1 summarizes all of our experiments including the run times
for our method utilizing the Projective Dynamics framework. All
of our simulations use ten Projective Dynamics iterations. We can
see that our damping model adds only a very small computing
overhead compared to Projective Dynamics without damping. This
small computational cost is spent on evaluating DOurs(

2
h xn +vn) in

Eq. 15. All timings were measured with an Intel Core i7-4910MQ
CPU. In all of our examples we have set the global damping co-
efficient α1 (in Eq. 3) to zero to avoid damping of global transla-
tional motion, producing more vivid animations. However, our sys-
tem supports any α1 > 0 in case global damping is requested by the
user. We choose to compare our method with ether drag and PBD
damping because they are fast damping method used with Projec-
tive Dyanmics so far. And we choose to compare our method with
variational damping and the lagged Rayleigh damping because they
are high-quality damping method used with more computationally
intensive simulation methods In Figure 1, we show a deformable
penguin falling and bouncing on the ground. In this example, im-
plicit midpoint would explode without damping, as we show in the

Figure 1: Results produced by our method (left) and ether drag
(right). Using our method, the penguin keeps bouncing. Using ether
drag, the penguin stops moving earlier.

accompanying video. This explosion can be prevented with ether
drag. We found the minimal damping coefficient of ether drag that
produces stable animation: 5× 10−3. Even though this prevents
the explosions, the side effect is slowing of the global translational
motion of the penguin. We repeat the same experiment with our
method using implicit midpoint as the underlying integrator. In this
case, we set the damping coefficient of our method to 5× 10−6,
which is the smallest amount of damping needed to stabilize the
simulation. We can see that in this case, the global motion of the
penguin is not slowed down, while the simulation remains stable
and visually pleasing.

PBD damping [MHHR07] is an explicit damping method which

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

Figure 2: Our method makes the ribbon coil in a natural and fabric-like fashion, similar to ribbon motions seen in rhythmic gymnastics
performances. In contrast, PBD damping introduces unnatural early rotation of the tail of the ribbon, as if the ribbon was a rigid bar rather
than fabric. The arrows point out the differences in the motion of the ribbon tail.

preserves both linear and angular momenta. However, since this is
achieved by explicitly factoring out global rigid motion, the PBD
damping might preserve momenta in an unnatural, non-physical
way. In Figure 2, we show an example of this behavior using a sim-
ulated ribbon attached to a wand. The wand circles around while
translating backwards, similar to a performance of rhythmic gym-
nast. With the PBD damping applied to the ribbon, the tail of the
ribbon is moving when the end attached to the wand just started
rotating. But in real physical world, other than rigid body, the ve-
locities cannot be transported immediately from one end to the
other. The velocities from one end of the object are non-physically
transported to velocities in the opposite end of the object, and the
entire ribbon starts spinning almost like a rigid body. In contrast,
our method models local damping forces, resulting in natural coil-
ing motion of the ribbon as seen in real-world gymnastics perfor-
mances.

In Figure 3, the snout of a pig is pulled and released, result-
ing in a comical animation. We compared our method with lagged
Rayleigh damping [GS14], noticing the methods differ only in
small details such as the motion of the ears. The visual differ-
ences are hard to distinguish without careful examination. The
lagged Rayleigh damping uses the definiteness-fixed Hessian ma-
trix from the previous time step. Because this matrix changes at
each frame, we recompute the Cholesky factorization each frame,
which is slower than our method, see Figure 4. However, we note
that faster numerical methods for the lagged Rayleight damping
are possible [GS14]. In Figure 5 we compare our method with
the “variational damping” approach introduced by Kharevych and
colleagues [KYT∗06]. We implemented variational damping in a
separate integration step, where the previous state is treated as rest-
pose configuration. The resulting optimization problem is solved
by Newton’s method, which is more computationally intensive than
Projective Dynamics. The visual difference of the final result with
our damping method and the variational damping is barely notice-
able, but our method is much faster, as shown in Figure 6.

In Figure 7, we simulate hair strands as a mass-spring system,

shaken from side to side. In this simulation, we use backward Eu-
ler and observe that its artificial numerical damping is not suffi-
cient – the hair is too bouncy. With our method, we can introduce
additional damping and achieve a more sensible hair animation. In
Figure 8 we show that our damping method behaves well under re-

Figure 3: Results produced by our method (left) and the lagged
Rayleigh damping [GS14] (right). Our method looks almost the
same as the lagged Rayleigh damping, but our method is much
faster, as shown in Figure 4.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

0
2
4
6
8

10
12
14

1 101 201 301 401 501 601 701 801 901 1001

�
m

e
(s

ec
)

frame number

Timing for Each Frame

Our Method Lagged Rayleigh Damping

Implicit Midpoint without Damping

Figure 4: Computing time per animation frame for our method with
implicit midpoint, lagged Rayleigh damping, and implicit midpoint
without damping in the deformable pig animation (Figure 3). All
methods use ten iterations.

Figure 5: Results produced by our method (left) and variational
damping are visually similar, but our method is much faster, as
shown in Figure 6.

finement. In this example, a thin sheet is fixed at one edge, and the
other end drops freely under gravity. Notice that the results for time
steps of 1.65ms and 0.165ms are very similar, but are different for
time steps of 33ms.

5. Limitations and Future Work

Our method shares one limitations with Projective Dynamics: mod-
ifications of the connectivity of the simulated system or its param-
eters (including the damping coefficient) require re-factorization
of the Cholesky factors. Our method conserves linear momentum,
but does not conserve angular momentum exactly. In the future,
we believe that we can derive a modification of our method to ex-
actly conserve angular momentum. Another avenue for future work
would involve extending our method to more advanced damping
models, such as Caughey damping or example-based damping de-
sign [XB17].

6. Conclusion

We introduced a new implicit damping method which can be com-
bined with various time integration schemes under the Projective

0

1

2

3

4

5

6

7

1 101 201 301 401 501 601 701 801 901 1001

�
m

e(
se

c)

frame number

Timing for Each Frame

Our Method Varia�onal Damping Implicit Midpoint without Damping

Figure 6: Computing time per animation frame for variational
damping, implicit midpoint without damping, and implicit midpoint
with our method. Times are for the dummy-punching simulation
shown in Figure 5.

Figure 7: Hair animation with backward Euler with damping (our
method, left) and without damping (backward Euler only, right).

Dynamics framework. Our method produced higher quality results
than explicit damping methods. Unlike more expensive implicit
damping methods such as lagged Rayleigh damping and varia-
tional damping, our method did not significantly reduce the per-
formance of Projective Dynamics. The visual results of our method
were comparable to results produced with more computationally
intensive implicit damping methods. We believe our new damping
method will find use in interactive applications such as games or
surgical training simulators.

Acknowledgements

We thank Junior Rojas, Saman Sepehri, and Cem Yuksel for many
inspiring discussions. We also thank Yasunari Ikeda for help with
hair rendering, Nathan Marshak and Dimitar Dinev for proofread-
ing, Shirley Han and Jessica Hair for narrating the accompanying
video. This material is based upon work supported by the National
Science Foundation under Grant Numbers IIS-1617172 and IIS-
1622360. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Founda-

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

Figure 8: Convergence experiment with a flexible sheet simulated
with different time steps. Small time steps lead to similar results.

tion. We also gratefully acknowledge the support of Activision and
hardware donation from NVIDIA Corporation

References

[BMF05] BRIDSON R., MARINO S., FEDKIW R.: Simulation of clothing
with folds and wrinkles. In ACM SIGGRAPH 2005 Courses (2005),
ACM, p. 3. 2

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (2014), 154. 1, 3

[CAP17] CHEN Y. J., ASCHER U., PAI D.: Exponential rosenbrock-
euler integrators for elastodynamic simulation. IEEE Transactions on
Visualization and Computer Graphics (2017). 1

[CO65] CAUGHEY T., O’KELLY M. E.: Classical normal modes in
damped linear dynamic systems. Journal of Applied Mechanics 32, 3
(1965), 583–588. 2

[CPSS10] CHAO I., PINKALL U., SANAN P., SCHRÖDER P.: A simple
geometric model for elastic deformations. In ACM SIGGRAPH 2010
Papers (2010), SIGGRAPH ’10, ACM, pp. 38:1–38:6. 3

[FM17] FRÂNCU M., MOLDOVEANU F.: Unified simulation of rigid and
flexible bodies using position based dynamics. 1

[GMD13] GLONDU L., MARCHAL M., DUMONT G.: Real-time sim-
ulation of brittle fracture using modal analysis. IEEE Transactions on
Visualization and Computer Graphics 19, 2 (2013), 201–209. 1

[GS14] GAST T. F., SCHROEDER C.: Optimization integrator for large
time steps. In Eurographics/ACM SIGGRAPH Symposium on Computer
Animation (Copenhagen, Denmark, 2014), Eurographics Association. 2,
3, 5

[KYT∗06] KHAREVYCH L., YANG W., TONG Y., KANSO E., MARS-
DEN J. E., SCHRÖDER P., DESBRUN M.: Geometric, variational inte-
grators for computer animation. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics symposium on Computer animation (2006), Eu-
rographics Association, pp. 43–51. 2, 5

[LBK17] LIU T., BOUAZIZ S., KAVAN L.: Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Transactions on
Graphics (TOG) 36, 3 (2017), 23. 1, 2

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Transactions on Graphics 32,
6 (Nov. 2013), 209:1–7. (Proceedings of ACM SIGGRAPH Asia 2013,
Hong Kong). 1

[LKSH08] LLOYD B. A., KIRAC S., SZÉKELY G., HARDERS M.: Iden-
tification of dynamic mass spring parameters for deformable body sim-
ulation. In Eurographics (Short Papers) (2008), Citeseer, pp. 131–134.
1

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M., RATCLIFF
J.: Position based dynamics. Journal of Visual Communication and
Image Representation 18, 2 (2007), 109–118. 1, 2, 3, 4

[MTGG11] MARTIN S., THOMASZEWSKI B., GRINSPUN E., GROSS
M.: Example-based elastic materials. In ACM Transactions on Graphics
(TOG) (2011), vol. 30, ACM, p. 72. 2

[Ray96] RAYLEIGH J. W. S. B.: The theory of sound. Macmillan 2
(1896). 2

[SSF13] SU J., SHETH R., FEDKIW R.: Energy conservation for the
simulation of deformable bodies. IEEE Transactions on Visualization
and Computer Graphics 19, 2 (Feb. 2013), 189–200. 1, 2

[Tau95] TAUBIN G.: A signal processing approach to fair surface design.
In Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques (1995), ACM, pp. 351–358. 1

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER K.:
Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (Aug.
1987), 205–214. 2

[Wil02] WILSON E. L.: Three-Dimensional Static and Dynamic Analysis
of Structures, 3rd ed. Computers and Structures, Inc., 2002. 1

[XB17] XU H., BARBIČ J.: Example-based damping design. ACM
Trans. Graph. 36, 4 (July 2017), 53:1–53:14. 2, 6

[Zha04] ZHANG H.: Discrete combinatorial laplacian operators for dig-
ital geometry processing. In Proceedings of SIAM Conference on Ge-
ometric Design and Computing. Nashboro Press (2004), pp. 575–592.
1

Appendices
A. Assembly of G j and p

A.1. Finite Element Method

We denote the number of vertices as n and the number of elements
(tetrahedra) as m. For one single tetrahedron, the four vertex indices
are i1, i2, i3, i4. In this tetrahedron, we assume that i2 < i1 < i3 < i4

G j = D−T
M A j⊗ I3 (16)

where DM is the reference shape matrix, and A j ∈ R3×n can be
written as

A j =


i2 i1 i3 i4

1 −1
1 −1

1 −1

 (17)

where i1, i2, i3, i4 denote the column numbers, and all the entries
other than 1 and -1 are 0.

p =


p1
p2
...

pm

 (18)

where p j ∈ R9×1, p ∈ R9m×1.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

Jing Li, Tiantian Liu, Ladislav Kavan / Laplacian Damping for Projective Dynamics

A.2. Spring

We denote the number of vertices as n and the number of ele-
ments(springs) as m. For one single spring, the two vertex indices
are i1 and i2.

G j =
1
r

A j⊗ I3 (19)

where r is the rest length of the spring, and A j ∈ R1×n can be
written as

A j =
(i1 i2

1 −1
)

(20)

where i1, i2 denote the column numbers, and all the entries other
than 1 and -1 are 0.

p =


p1
p2
...

pm

 (21)

where p j ∈ R3×1, p ∈ R3m×1.

B. Proof of preservation of linear momentum

For a single tetrahedron, the vertices of which are x1, x2, x3, x4,
the velocities of each vertex are v1, v2, v3, v4. We consider the
case where the motion of the tetrahedron is pure translation, which
means v1 = v2 = v3 = v4.

The deformation gradient is given as

F = DSD−1
M (22)

We vectorize DS as

vec(DS) =

x1−x4
x2−x4
x3−x4


= (Aj⊗ I3)x

(23)

Thus the deformation gradient can be vectorized as well as:

vec(F) = vec(DSD−1
M)

= (D−T
M ⊗ I3)vec(DS)

= (D−T
M ⊗ I3)(A j⊗ I3)x

= (D−T
M A j⊗ I3︸ ︷︷ ︸
G j∈R9×3n

)x

(24)

Our corresponding Laplacian matrix will be:

L = ∑ω j(D−T
M A j⊗ I3)

T (D−T
M A j⊗ I3)

= ∑ω j(D−T
M A j)

T ⊗ I3D−T
M A j⊗ I3

= ∑ω jAj
T D−1

M D−T
M A j⊗ I3

(25)

yielding the damping force:

Lv = ∑ω jAT
j D−1

M D−T
M (A j⊗ I3v) (26)

where

A j⊗ I3v =

v1−v4
v2−v4
v3−v4

= 0 (27)

Therefore, the damping force Lv is 0 under the translation mode,
preserving the linear momentum of the system.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

