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Figure 1: Ambient occlusion in the Sibenik cathedral model represented at vertices using (a) point sampling, (b) averaging
triangle samples and (c) our method. Compare to (d) ground truth per-pixel rendering.

Abstract
We investigate the representation of signals defined on triangle meshes using linearly interpolated vertex attributes.
Compared to texture mapping, storing data only at vertices yields significantly lower memory overhead and less
expensive runtime reconstruction. However, standard approaches to determine vertex values such as point sampling
or averaging triangle samples lead to suboptimal approximations. We discuss how an optimal solution can be
efficiently calculated using continuous least-squares. In addition, we propose a regularization term that allows us
to minimize gradient discontinuities and mach banding artifacts while staying close to the optimum. Our method
has been integrated in a game production lighting tool and we present examples of representing signals such as
ambient occlusion and precomputed radiance transfer in real game scenes, where vertex baking was used to free up
resources for other game components.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Representation of signals on triangle meshes is a classic prob-
lem in computer graphics. The standard solution relies on
surface parametrization and texture mapping. While this is an
efficient representation for high-frequency signals, the asso-
ciated memory footprints are often one of the limiting factors
in game development. Especially for low-frequency signals
it is common to use vertex baking, i.e., representation by
linearly interpolated vertex attributes [Gou71]. This is much
less expensive, especially for scalar signals such as ambient
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occlusion [ZIK98, Lan02]—with textures, the uv-coordinates
require two scalars per vertex, in addition to the image data.
Furthermore, no parametrization or runtime texture memory
access is needed. The significantly reduced memory foot-
prints and lower shader complexity are important not only
in low-end gaming platforms and mobile devices, but also
in high-end games that often combine texture mapping and
vertex baking [LH09, Wan11].

The question addressed in this paper is how to determine
the vertex values to optimally approximate a given signal f
defined on a triangle mesh. The most straightforward solution
is to point sample f at vertex locations. While under certain
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Figure 2: Interpolated vertex samples with values determined by (a) point sampling, (b) averaging triangle samples and (c) our
method. Compare with (d) ground truth per-pixel rendering.

conditions this is sufficient for exact reconstruction [GW02],
in practice we almost always must accept some inaccura-
cies. Error is introduced because the vertex density is often
irregular, the input signal might not be band limited, and
the graphics hardware supports only linear reconstruction.
Unfortunately, point sampling does not minimize the approx-
imation error and aliasing may occur, see Figure 2a. A more
accurate approach is to densely sample f inside triangles and
calculate the vertex values by taking barycentric-weighted av-
erages [KL06]. This is analogous to low-pass filtering which
reduces aliasing, but at the cost of blurring the result, see
Figure 2b.

One possibility to improve reconstruction accuracy is to
refine and/or optimize the mesh. However, game levels often
push the limits of the geometry budgets and the artists are not
enthusiastic to compromise on scene size or geometric detail.
Moreover, geometry refinement would involve unnecessary
replication of all other vertex attributes (vertices, tangent
frames, texture coordinates, etc.) and would impact the whole
game development pipeline, because geometry also serves
purposes other than rendering, such as gameplay and physics.

In this paper, we assume a fixed mesh and we formulate
and solve an optimization problem that minimizes the error
in a least squares sense, see Figure 2c. However, with more
complex geometry, the least squares solution is not always
as visually pleasing because high variations in vertex values
can be introduced, see Figure 3a. To remedy this, we study
regularization techniques that trade off accuracy for smooth-
ness, allowing us to minimize the mach band artifacts. Our
experiments indicate that a small amount of regularization
improves the visual quality considerably while still staying
close to the optimum.

Our techniques have been implemented in a game pro-
duction lighting tool and we provide examples of vertex
baked ambient occlusion and precomputed radiance transfer
in real game scenes, demonstrating that our method provides
smoother and more accurate approximations than previous
methods. From a practical standpoint, vertex baking resulted
in significant memory savings compared to textures, freeing

up resources for other components of the game while requir-
ing only minimal changes in the development workflows and
the game runtime.

2. Related Work

Vertex baking is common on low-end gaming platforms like
the Nintendo Wii, cell phones and tablets, where memory and
power consumption considerations require that compromises
be made. On high-end platforms, texture memory consump-
tion and shader complexity are still issues and the savings
resulting from vertex baking can significantly improve the
quality of the final products [LH09, Wan11]. Another prob-
lem is that texture mapping requires parametrization, often
carefully authored to avoid undesirable uv-seams. In recent
years, texturing techniques that do not require an explicit
parametrization have been proposed [BL08, YKH10], but ef-
ficient implementations to date have only been presented on
high-end graphics hardware.

The problem of representing signals on triangle meshes
occurs in many areas of computer graphics. Much of the
early work in Radiosity [CW93] deals with representing
lighting signals by point sampling. More accurate results
can be achieved by adapting the mesh to conform to the sig-
nal [HSA91] or by using Galerkin methods [Zat93]. Discon-
tinuity meshing [LTG92] refines the mesh at shadow bound-
aries to more accurately represent the signal before or during
the solution. While these methods are important, they are less
useful in games, where geometry refinement or higher-order
reconstruction functions are typically not an option due to
resource limitations and hardware capabilities.

A related approach studied in the literature is to sample
a fine mesh and then simplify it to better represent a given
signal [SWH∗95, Hop96]. However, the final signal used in
these techniques is computed using a greedy optimization
process which does not come with any optimality guarantees.
In this paper, we leverage advances in linear system solvers
over the past decades [BBK05] to efficiently compute optimal
solutions for a fixed mesh, resulting in higher quality.
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Precomputed radiance transfer [SKS02] is another tech-
nique that usually stores data at the vertices of a mesh. In
the literature, these meshes are typically finely tessellated
and some work has been done toward computing the solu-
tion more efficiently [HR10] or adapting the mesh [KP04].
Precomputed radiance transfer, especially if only used for
indirect lighting, is another example of a signal that can be
efficiently represented using our technique.

Probably the closest work to ours [KL06] reduces aliasing
artifacts when storing volumetric irradiance by performing
the volumetric equivalent of the barycentric-weighted aver-
ages described in this paper. Note that in spite of the aliasing
issues, point sampling at vertex locations is still one of the
most common solutions, and in fact is the default in many ap-
plications, including Autodesk Maya. The artifacts are either
resolved during manual post-processing or are masked by
another layer of high-frequency textures. Our method results
in more visually pleasing approximations, eliminating the
need for any post-processing or masking.

3. Vertex Baking

As input, we have a triangular mesh with vertices v1, . . . ,vN
representing a piecewise linear surface S ⊂ R3. We assume
the vertices at creases have been duplicated, i.e., each con-
nected component of the mesh corresponds to a smooth patch
(smoothing group). We further assume there is an integrable
function f : S → R that assigns each surface point a scalar
value (vector functions are handled per-component). The task
is to find vertex values x = (x1, . . . ,xN)

T ∈ RN×1 such that
their piecewise linear interpolant gx : S → R is as close as
possible to f in the least squares sense, i.e., minimizes

E(x) =
∫
S
( f (p)−gx(p))2 dp (1)

where p is an arbitrary surface point. The function gx can be
formally expressed as

gx(p) =
N

∑
i=1

hi(p)xi (2)

where hi : S → R are piecewise linear hat functions (nodal
shape functions from linear finite elements) such that hi(vi) =
1 and hi(v j) = 0 for i 6= j. In the following we drop the
subscript from gx for improved readability.

3.1. Optimal Fit

Equation (1) represents a continuous linear least squares prob-
lem. To solve it, we substitute Equation (2) into Equation (1)
and re-arrange the terms, obtaining

E(x) = xT Ax−2xT b+ c (3)

where A∈RN×N , b∈RN×1 and c∈R are defined as follows

Ai, j =
∫
S

hi(p)h j(p)dp (4)

bi =
∫
S

hi(p) f (p)dp (5)

c =
∫
S

f 2(p)dp (6)

The matrix A is sparse, symmetric positive definite and is
also known as the mass or Gram matrix. Its entries can be
calculated analytically: Ai,i is the total area of the triangles
incident to vertex i divided by 6 and Ai, j is the total area of the
triangles incident to edge i j divided by 12 (zeros elsewhere).
The vector b and scalar c typically cannot be calculated an-
alytically, because we usually do not have a closed-form
expression for f and, therefore, we apply Monte Carlo inte-
gration, see Section 3.3.

Because A is positive definite, E(x) is convex and we
can find its global minimum by solving ∂E(x)/∂xi = 0 for
i = 1, . . . ,N, which reduces to

Ax = b (7)

A common approximation is to replace A with a diagonal
matrix D such that Di,i =∑

N
j=1 Ai, j =

∫
S hi(p)dp, a technique

known as mass-lumping. Note that the mass lumped solution
x̃ = D−1b has components

x̃i =

∫
S hi(p) f (p)dp∫
S hi(p)dp

(8)

which correspond to a weighted average (with hi being the
weighting function [KL06]). However, better results can be
achieved by solving Equation (7) exactly, see Figure 2b,c. We
discuss the numerical solution methods in Section 3.3.

3.2. Regularization

While the least squares formulation from Equation (1) works
very well for simple scenes as in Figure 2, in more complex
scenes the objective E(x) becomes overly eager to exploit all
available degrees of freedom. For example, Figure 3a shows
the exact solution of Equation (7) applied to a game scene.
The piece-wise linear approximation g exhibits large gradient
discontinuities, visually exacerbated by the mach band effect.

To obtain a better behaved g, we augment the linear system
from Equation (7) with a smoothness (or regularization) term
R ∈ RN×N , resulting in

(A+αR)x = b (9)

where α≥ 0 is a user-tunable parameter. The simplest choice,
inspired by Tikhonov regularization, i.e., R := A, is inade-
quate because it corresponds to reducing brightness by push-
ing x to zero. A more suitable R should not affect the abso-
lute values of x. This motivates gradient-based regularization,
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Figure 3: Left to right: (a) least squares fit with no regularization, (b) gradient-based regularization (α = 0.1), (c) edge-based
regularization (α = 0.1) and (d) ground truth.

which can be expressed as∫
S
( f (p)−g(p))2 dp︸ ︷︷ ︸

data term

+α

∫
S
‖∇g(p)‖2dp︸ ︷︷ ︸

smoothness term

(10)

To obtain the regularization matrix, we note that∇g is piece-
wise constant which allows us to split the smoothness term
per triangle. For triangle t with vertices vi,v j,vk,

∇g|t = (x j− xi)
(vi−vk)

⊥

2at
+(xk− xi)

(v j−vi)
⊥

2at
(11)

where at ∈ R is the area of triangle t and ⊥ denotes a
counterclockwise rotation by 90◦ in the plane of the trian-
gle [BKP∗10]. One subtle issue is that the units of ∇g|t do
not match the units of f (p)− g(p) (the former is inversely
proportional to the units of distance, while the latter is in-
dependent of them). This can be fixed by scaling the gradi-
ent by the square root of the triangle area, i.e., introducing
∇̃g|t :=

√
at∇g|t . Employing ∇̃g|t instead of ∇g|t makes

the units of the data and smoothness terms match and cor-
responds to giving more weight to the gradients of larger
triangles. Because the gradient is linear in x, we can write
∇̃g|t = Ftx where Ft is a R3×N sparse matrix. This allows
us to express the regularization term as∫

S
‖∇̃g(p)‖2dp = ∑

t
at‖∇̃g|t‖

2 = ∑
t

atxT FT
t Ftx

= xT Rgradx (12)

where Rgrad ∈RN×N is symmetric positive definite. It can be
shown Rgrad is closely related to the standard discretization
of the Laplace-Beltrami operator, i.e., the familiar cotangent
formula [LZ10].

Employing the regularization term Rgrad leads to a
smoother g, see Figure 3b. While Rgrad preserves bright-
ness, the side effect is a loss of contrast, because as α→∞,
the function g converges to the average of all samples on
each connected component of the mesh. This is obviously
suboptimal—for example, there is no reason to reduce the gra-
dient of an isolated triangle. Therefore, we propose a better

regularization term that explicitly penalizes large gradient dis-
continuities across internal mesh edges. Specifically, for each
pair of triangles t and u that share an internal (i.e., non-crease
and non-boundary) edge, we sum

∑
(t,u)

(at +au)‖∇̃g|t −∇̃g|u‖
2 =

∑
(t,u)

(at +au)xT (Ft −Fu)
T (Ft −Fu)x = xT Redgex (13)

where Redge ∈ RN×N is a symmetric positive definite edge-
based regularization term. Employing this new regularization
term instead of Rgrad results in solutions that better preserve
contrast; for example, notice the effect on the background
wall in Figure 3. This is because the matrix Redge encourages
smoother gradients over connected parts of the mesh without
penalizing gradient magnitudes at boundaries and creases.

3.3. Numerical Solution

So far we have described how to calculate the system ma-
trix. It remains to evaluate the signal-dependent right hand
side b from Equation (5). Because an explicit formula for
f is typically unavailable, we use Monte Carlo integration.
Specifically, given approximately uniformly distributed sam-
ples p1, . . . ,pM ∈ S, we estimate bi as

bi ≈
µi

|Xi| ∑
j∈Xi

hi(p j) f (p j) (14)

where Xi is the set of samples in the triangles incident to ver-
tex i and µi is the sum of the areas of the triangles incident to
i. For ambient occlusion, f (p j) is calculated by importance
sampling the hemisphere of rays starting at p j and ray casting
against the scene geometry using 256 directions. For precom-
puted radiance transfer, this process is modified to account
for spherical harmonics basis functions and 1-bounce indirect
lighting [SKS02]. Monte-Carlo integration can also be used
to estimate the coefficient c from Equation (6), but this is
only necessary if the actual numerical value of the error term
E(x) is needed.

The system matrix A+αR for α≥ 0 is sparse, symmetric
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Figure 4: Three levels from the videogame we used for testing (vertex-baked ambient occlusion computed using our method).

Scene Vertices Triangles Samples Epoint Eavg Eour, α Elsqr Raycast Solve time/mem

Half Box 12 6 104 2.35 0.928 0.159 0 0.159 9ms <1ms 26kB
Sibenik 71654 75987 106 2.1 0.203 0.136 0.05 0.103 16s 0.4s 37MB
Level A 52274 48327 106 4.13 0.871 0.79 0.1 0.643 15s 0.3s 26MB
Level B 66836 65042 106 1.37 1.06 0.567 0.1 0.47 17s 0.3s 33MB
Level C 38379 47097 106 3.23 0.506 0.466 0.1 0.329 14s 0.3s 20MB

Table 1: Results for vertex baked ambient occlusion in our test scenes using point sampling (Epoint ), weighted averaging (Eavg)
and our method (Eour, edge-based regularization with parameter α). Elsqr is the error for α = 0, i.e., the lowest possible. Raycast
is the total time for calculating ambient occlusion at all samples, Solve is the time and memory for solving the linear system.

positive definite and depends only on the mesh geometry.
Typically, this class of linear systems can be most efficiently
solved using direct sparse solvers [BBK05]. In our imple-
mentation, we used PARDISO [SG06]. Even though the nu-
merical factorization needs to be recomputed for different
values of α, the system matrix has simple structure and per-
mits solves fast enough for interactive feedback, facilitating
parameter tuning. For ambient occlusion, one complication
is that while the input values are within [0,1], the resulting
vertex values xi can under/overshoot (an effect similar to the
Gibbs phenomena). An accurate constrained solution could
be obtained with quadratic programming, but we found sim-
ple clamping to [0,1] is sufficient for our purposes. In our
experiments, only about 5% or fewer of the values xi are
outside [0,1] and often violate the bounds only slightly. Al-
ternatively, we could also store arbitrary values of xi and
perform the clamping after interpolation (i.e., in the pixel
shader).

4. Results and Discussion

Our main practical motivation was to efficiently represent am-
bient occlusion. Aside from the Sibenik cathedral in Figure 1
and the didactic example in Figure 2, we tested our algorithm
on three levels from a shipped game, see Figure 4 and Fig-
ure 9. To facilitate comparisons, the images are also available
as supplementary materials. Note that the game meshes have
occasional artifacts such as unintended penetrations or in-
consistent winding orders which show up in the result but
do not cause our algorithm to malfunction. We compare the
results of our method to point sampling, weighted averaging,
and ground truth (raytraced using 1024 rays per pixel). Point
sampling requires fewer samples, but produces noticeable

aliasing artifacts. Weighted averaging uses more samples and
produces higher quality results, but mesh dependent mach
band artifacts are apparent. Moreover, in large coarse trian-
gles some contrast is lost (see Figure 2b) due to excessive
blurring. Our method employing edge-based regularization
with a small α uses the same samples as weighted averaging
but produces smoother results, better preserves contrast and
results in lower approximation error.

We report the quantitative results in Table 1. Note that the
reported vertex counts include duplicates created on creases
(i.e., vertices that have the same spatial location but different
sample values). The error is calculated according to Equa-
tion (1), divided by the total mesh area and multiplied by
100. The times were measured on a 6 core dual 2.9GHz
Intel X5670 CPU with 24GB memory. The number of sam-
ples is a user specified parameter; in our scenes we used the
rather conservative number of 106 samples. Increasing the
sample count further has only negligible impact on the final
vertex signal (see Figure 5). While fewer than 106 samples
would probably also suffice, the raytracer performance makes
this question less practically important. The additional time
and memory complexity of the linear solve required by our
method is negligible, see Table 1.

A useful feature of our technique is that the amount of
smoothing is controllable by the parameter α. For lower val-
ues of α, we obtain sharp gradients aggressively approximat-
ing the input signal, while higher values result in a softer look
with more prominent creases, see Figure 10. For even more
flexible art control, we could also consider combining the
gradient- and edge-based regularization terms.

While our main motivation was efficient representation of

c© 2011 The Author(s)
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Figure 5: Vertex signal calculated with (left) 106 samples
is visually indistinguishable from using (right) 108 samples
(Level A scene, α = 0.1 edge-based regularization).

ambient occlusion, our method can be successfully applied
to other input signals, including vector ones. For example,
we consider precomputed radiance transfer [SKS02] repre-
sented with 6th order spherical harmonics. Each of the 36
dimensions is vertex-baked separately using our method. In
Figure 6, we compare the results of weighted averaging to our
method (α = 0.1 edge-based regularization). Similarly to am-
bient occlusion, our method produces a smoother and more
accurate approximation resulting in more visually pleasing
dynamic relighting.

Our technique outperforms previous methods especially
with coarse and irregularly tesselated meshes, but more subtle
differences can be visible even with finer geometry. We illus-
trate this on a simple uniformly tessellated L-shaped mesh

Figure 6: Dynamic relighting with 36-dimensional precom-
puted radiance transfer with vertex values calculated by (top)
weighted averaging and (bottom) our method.

Figure 7: Precomputed radiance transfer shadow at various
mesh resolutions (top to bottom): 16×16, 32×32 and 64×64;
(left) weighted averaging, (right) our method.

with varying resolution, see Figure 7. While the deficiencies
of weighted averaging begin to disappear with increased res-
olution, the costs of additional geometry can be prohibitive
in large scenes.

While vertex baking is best suited for low-frequency light-
ing signals, our method is general and applicable even in
the presence of sharp edges and noise. To illustrate this, we
execute progressive meshes to represent a 298×298 image
using a 2000 triangle mesh with a vertex baked RGB sig-
nal [Hop96]. Because progressive meshes optimize vertex
attributes in a greedy way without any optimality guarantees,
our method results in a more accurate approximation for the
same coarse mesh, see Figure 8.

5. Conclusion and Future Work

We present a mathematical framework for vertex-level repre-
sentation of signals on triangle meshes, explicitly exposing
the trade-offs between accuracy and smoothness. Compared
to previous methods (point sampling and weighted averag-
ing), our technique generates more accurate results, helps to
eliminate the mach band artifacts and better preserves con-
trast of the input signal. Compared to using textures, vertex
baking requires less storage and memory bandwidth, result-
ing in significant savings for real-time applications, such as
games. Our method is best suited to low-frequency lighting
signals such as ambient occlusion or precomputed radiance
transfer. While our approach is applicable to any signal, for
higher frequencies and/or repeated patterns, textures are of-
ten a better choice. In future work, it would be interesting to
couple our technique with mesh optimization [HDD∗93] to
further improve reconstruction accuracy, consider non-linear
regularization terms [ROF92] and combine our method with

c© 2011 The Author(s)
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Figure 8: An image represented by a vertex baked RGB signal on a coarse mesh (left to right): (a) the original progressive
meshes result, (b) weighted averaging and (c) our method. Compare to (d) the original image.

emerging texturing schemes [YKH10]. An extension of our
method to higher order basis functions [SSD03] could be
derived by replacing our piecewise linear hat functions hi
(Section 3) with higher order ones. The increased cost of
runtime interpolation would be balanced by higher approxi-
mation quality for the same number of degrees of freedom,
especially with strictly C1-conforming schemes [CO01].
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Figure 9: Three levels from our game with vertex ambient occlusion values calculated by (left to right): (a) point sampling, (b)
averaging triangle samples, (c) our method and (d) ground truth per-pixel rendering.

Figure 10: Varying the regularization parameter (left to right): (a) α = 0 (no regularization), (b) α = 0.01, (c) α = 0.1
(recommended), (d) α = 1.
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