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Abstract

Skinning is a simple yet popular deformation technique combining compact storage with efficient hardware accel-
erated rendering. While skinned meshes (such as virtual characters) are traditionally created by artists, previous
work proposes algorithms to construct skinning automatically from a given vertex animation. However, these meth-
ods typically perform well only for a certain class of input sequences and often require long pre-processing times.
We present an algorithm based on iterative coordinate descent optimization which handles arbitrary animations
and produces more accurate approximations than previous techniques, while using only standard linear skinning
without any modifications or extensions. To overcome the computational complexity associated with the iterative
optimization, we work in a suitable linear subspace (obtained by quick approximate dimensionality reduction)
and take advantage of the typically very sparse vertex weights. As a result, our method requires about one or two
orders of magnitude less pre-processing time than previous methods.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Linear blend skinning (also known as matrix palette skin-
ning) is a mesh deformation technique implemented in al-
most all modern 3D engines, most frequently used for vir-
tual characters driven by skeletal animation. However, re-
cent research suggests new possible applications, including
animation of highly deformable objects, such as cloth.

Standard linear blend skinning works as follows: let us
denote the i-th rest pose vertex as ṽi ∈ R4×1 (with the last
coordinate equal to 1 as usual), the palette of P affine trans-

formations for frame f as M( f )
1 , . . . ,M( f )

P ∈ R3×4 and vertex
weights as wi,1, . . . ,wi,P ∈ R. A skinned vertex position in
frame f is then computed as:

v( f )
i =

P

∑
j=1

wi, jM
( f )
j ṽi, v( f )

i ∈ R3×1 (1)

Motivated by skeletal animation terminology, the transfor-

mations M( f )
j are also sometimes referred to as bones (or

proxy-bones). The vertex weights wi,1, . . . ,wi,P are usually
required to be convex (i.e. non-negative and summing to 1)
and sparse—a maximum of 4 non-zero weights is a de facto

standard in most interactive applications. The sparsity con-
straint is crucial for efficient evaluation of Formula (1), es-
pecially when implemented on graphics hardware.

An animated mesh with fixed connectivitycan be repre-
sented by a 3F × N matrix A, where F is the number of
frames and N the number of vertices:

A =

⎛
⎜⎜⎝

v(1)1 · · · v(1)N
...

. . .
...

v(F)
1 · · · v(F)

N

⎞
⎟⎟⎠

The problem addressed in this paper is to approximate the
animation matrix A by skinning with a small number of
proxy-bones P. We can obtain useful insights about this
problem by rewriting Formula (1) in matrix form. If we
stack the skinning parameters in matrices T ∈ R3F×4P and
X ∈ R4P×N as follows:

T=

⎛
⎜⎜⎝

M(1)
1 · · · M(1)

P
...

. . .
...

M(F)
1 · · · M(F)

P

⎞
⎟⎟⎠ , X=

⎛
⎜⎝

w1,1ṽ1 · · · wN,1ṽN
...

. . .
...

w1,Pṽ1 · · · wN,PṽN

⎞
⎟⎠
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SMA, 22 bones (414s) SAD, 22 bones (1512s) Our method, 22 bones ( 22.8s)10 and 22.1 and Original, 5095 vertices

Figure 1: Skinning approximation of a skirt animation computed using SMA (Skinning Mesh Animations) [JT05], SAD (Skin-
ning Arbitrary Deformations) [KMD∗07] and our proposed method (execution times in brackets). Our method produces more
accurate skinning approximations in a fraction of the time required by previous methods (skirt dataset, see Table 2).

then Formula (1) can be written in matrix form as:

TX = A (2)

For small P, this equation typically cannot be satisfied ex-
actly. Therefore, the task is to minimize the Frobenius norm
‖TX−A‖F for a given number of proxy-bones P.

Formula (2) suggests that linear blend skinning can be
also considered as a special kind of matrix decomposition
(in the following, we will use the term skinning decom-
position). The main difference to standard matrix decom-
positions, such as the popular Singular Value Decomposi-
tion (SVD), is the limit on the number of non-zero ele-
ments in each column of X (typically 16—four non-zero
weights times four elements of ṽi). Compared to truncated
SVD [AM00], skinning typically requires more per-frame
data, but the amount of per-vertex data is small and fixed.
The constant number of vertex attributes is probably one of
the reasons for the popularity of skinning, as it simplifies
many implementation issues and enables very efficient hard-
ware processing.

Building on the results of previous work, we introduce a
technique that produces quite accurate skinning decomposi-
tions with low bone counts (see Figure 1). Our method em-
ploys only standard linear blend skinning without any modi-
fications or extensions and is thus suitable for many existing
applications. However, we do not attempt to organize our
proxy-bones into a hierarchy (see Figure 2), and we do not
address the problem of motion post-processing.

Figure 2: Example of vertex weights and bone transforma-
tions produced by our method.

2. Related Work

The problem of approximating mesh animation with skin-
ning was first addressed by James and Twigg [JT05].
Their method, called Skinning Mesh Animations (SMA),
works by applying mean-shift clustering to identify core
bone triangles (and thereby bone transformations). Subse-
quently, vertex weights are determined by truncated SVD or
non-negative least squares. The reconstruction quality can
be optionally improved by a corrective technique similar
to EigenSkin [KJP02], which works by compressing per-
vertex residuals using truncated SVD. SMAs work best with
models consisting of approximately rigid components (i.e.,
quasi-articulated), such as human or animal figures.

The follow-up work of Kavan and colleagues [KMD∗07]
aims to address the issues associated with highly deformable
animations. Their method, called Skinning Arbitrary De-
formations (SAD), uniformly distributes proxy-bones over
the rest pose mesh and optimizes their transformations us-
ing least squares. While this provides more accurate skin-
ning of highly deformable animations, it is slower than SMA
and requires a lot of proxy-bones (typically 100) and Eigen-
Skin corrections (typically 10) to achieve visually pleas-
ing reconstructions. SAD also produces suboptimal results
for quasi-articulated animations, because it does not attempt
to identify coherent mesh components. Focusing on quasi-
articulated animations, Schaefer and Yuksel [SY07] and
deAguiar and colleagues [dATTS08] develop methods to ex-
tract not only the skinning parameters but also full hierar-
chical skeletons, thus enabling convenient editing. Both also
propose faster clustering methods than mean-shift and alter-
native vertex weights optimization methods, but highly de-
formable animations (lacking any natural skeletal hierarchy)
are not considered. Baran and Popović [BP07] show how to
rig characters using only the rest pose and skeleton, without
any training animation.

While standard linear blend skinning according to For-
mula (1) is the most popular method, several modifications
are studied in the literature (we review only the most closely
related work, please see [GB08] for a survey). Animation-
Space [MMG06a] is a linear skinning technique which re-
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laxes the constraints on matrix X from Formula (2) (simi-
larly to its predecessor Multi-weight Enveloping [WP02]).
The elements of XAnimationSpace can be arbitrary and do
not have to have the form wi, jṽi as in standard skinning.
However, the sparsity pattern of XAnimationSpace remains un-
changed, i.e., there is a maximum of 16 non-zero elements in
each column. The fitting process described in [MMG06a] as-
sumes the bone transformations matrix T to be known (e.g.,
specified by an animated skeleton).

Clustered PCA [SSK05] can also be considered as ma-
trix decomposition according to Formula (2), but with a dif-
ferent sparsity pattern—in particular, XCPCA is required to
be a rectangular block diagonal matrix (while T can be an
arbitrary dense matrix). On one hand, this allows for more
flexibility within every single cluster, but on the other hand,
every vertex belongs to one cluster only (i.e., the clusters are
not allowed to overlap). Because of the latter property, the
resulting reconstruction may be non-smooth, see Figure 7.
This can be alleviated by reducing the number of clusters
and increasing their dimension instead, which in the limit
leads to truncated SVD (i.e., only one cluster) [AM00].

Nonlinear skinning techniques, such as dual-quaternion
skinning [KCŽO08], have also been studied in the con-
text of skinning decomposition [KMD∗07, FKY08]. Dual-
quaternion representation of bone transformations is more
compact (8 scalars instead of 12) and avoids the sometimes
undesirable non-rigid transformations. Unfortunately, even
though the resulting optimization problem is still linear, it
has different system matrix for every frame and therefore, its
solution is rather time consuming. In this paper, we trade off
the advantages of dual quaternions for faster pre-processing.
This is not a major limitation, because nonlinear skinning
can always be converted to linear skinning with extra proxy-
bones [MG03, KCO09].

Formula (2) reveals that skinning decomposition is a spe-
cial case of sparse matrix factorization—a more general
problem with applications also in rendering [RK09] and
statistics [WTH09]. While sharing certain common princi-
ples, each application considers different kinds of data and
specific factorization constraints. Linear blend skinning is
differentiated by the special structure of matrix X (see Sec-
tion 1) and the requirement for convex vertex weights.

Another closely related field is general animation com-
pression (see [Váš08]). While techniques such as those
based on predictive coding [KG04] or progressive meshes
[GK04, KG05] achieve high compression ratios, they typi-
cally require sequential decompression, which poses chal-
lenges for implementation on parallel graphics hardware.

Linear blend skinning finds its use not only in
performance-critical interactive applications, but also in re-
lated research. Wang and colleagues [WPP07] employ skin-
ning decomposition to obtain a very fast system for synthe-
sizing non-linear deformations of quasi-articulated models.

Feng and colleagues [FKY08] skin highly deformable an-
imations (using an improved SAD procedure) to obtain an
efficient posing system based on canonical correlation anal-
ysis. In general, we believe skinning decomposition itself de-
serves further investigation, as attempted in this paper.

2.1. Overview of Our Method

Our main tool for obtaining accurate skinning decomposi-
tions is alternating least squares, i.e., a variant of coordinate
descent (proposed in a similar context already in [MG03]).
In contrast to previous work, we optimize all of the skin-
ning parameters respectively: bone transformations, vertex
weights and rest pose positions. Since several iterations are
required (we use 15, see Section 5), this results in a lot of
least squares problems to be solved, suggesting high compu-
tational costs.

Therefore, we propose to formulate our optimization pro-
cess in reduced coordinates, by decomposing the input ani-
mation matrix A∈ R3F×N to B∈R3F×d and C∈ Rd×N such
that BC ≈ A, where B has orthonormal columns and d <<
3F (Section 3). Intuitively, this corresponds to eliminating
vertex trajectories that can be expressed as linear combina-
tions of representative vertex trajectories (columns of B).
This allows us to pose the problem as finding Tr ∈ Rd×4P

and X ∈ R4P×N minimizing ‖BTrX−BC‖F = ‖TrX−C‖F
and not reconstruct the actual bone transformations matrix
T = BTr until the whole optimization is finished. When
combined with the sparse nature of X and our improved for-
mulation of fitting vertex weights, we obtain a fast and effi-
cient solver for each of the skinning parameters (Section 4).

3. Approximate Dense Dimensionality Reduction

Given the animation matrix A ∈ R3F×N , the task is to find
the dimension d and matrices B ∈ R3F×d , C ∈ Rd×N , where
BT B = I, such that:

‖BC−A‖F ≤ ε

We choose the error threshold ε conservatively to ensure that
the error incurred by using BC instead of A is close to im-
perceptible (see Section 5).

The optimal d and the corresponding matrices B and C
could be found using truncated SVD [GL96]. However, even
the very efficient LAPACK [ABB∗99] routines take an im-
practically long time to compute the SVD of our animation
matrices. Therefore, we propose an alternative dimension-
ality reduction technique which requires slightly higher d,
but runs much faster than SVD. One possibility would be
to apply Gram-Schmidt orthonormalization [JF03], but this
approach typically results in a too high d and not exactly
orthogonal basis vectors (the modified Gram-Schmidt pro-
cedure [GL96] is more numerically stable, but still not per-
fect). We propose Algorithm 1 which addresses both of these
issues.
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Algorithm 1

Input: Matrix A ∈ R3F×N , error threshold ε ∈ R
Output: Matrices B ∈ R3F×d , C ∈ Rd×N such that BT B = I
and ‖BC−A‖F ≤ ε

1: A1 = A,B0 =empty matrix,C0 =empty matrix, i = 0
2: repeat
3: i = i+1
4: mi =maximum norm column of Ai {mi ∈ R3F×1}
5: mi = mi −Bi−1BT

i−1mi {stabilization}
6: mi = mi/‖mi‖ {normalization}
7: Ai+1 = Ai −mim

T
i Ai {deflation}

8: Bi = (Bi−1|mi) {append column}

9: Ci =

(
Ci−1

mT
i Ai

)
{append row}

10: until ‖BiCi −A‖F ≤ ε
11: d = i,B = Bi,C = Ci

The vector mi defined on line 4 of Algorithm 1 is our ap-
proximation of the leading singular vector (principal compo-
nent). Several alternatives are possible. For example, setting
mi to columns of Ai one by one corresponds to the Gram-
Schmidt strategy. Another possibility we tried is to per-

form several iterations of the power method (i.e., m(k+1)
i =

AiA
T
i m(k)

i /‖AiA
T
i m(k)

i ‖), which gives results close to exact
SVD. The proposed strategy, i.e., selecting the maximum
norm column of Ai, presents a good compromise between
fast computations and a small dimension d (see Table 1).
Related techniques are also discussed in the literature, such
as variations of the power method [PC98] or discrete princi-
pal components [Mar06], but we prefer the maximum norm
strategy because of its simplicity and good performance.

Line 5 is the stabilization step and we can ignore it for
a moment (in exact arithmetics it has no effect on mi since
BT

i−1mi is a zero vector). Line 7 performs deflation, i.e., for
every column of Ai it subtracts its component in the direc-
tion mi, see Figure 3. This also guarantees that columns of
Ai+1 will be orthogonal to mi (and also to m j for j < i).
Since mi is always selected from the column space of Ai,
this means that the columns of matrix Bi will be orthogo-
nal. Line 9 incrementally updates Ci so that Ci = BT

i A. The
termination condition on line 10 can be simplified as fol-
lows: ‖BiCi −A‖2

F = ‖A‖2
F −‖BiCi‖2

F and because Bi has
orthonormal columns, ‖BiCi‖2

F = ‖Ci‖2
F (see supplemental

materials for a detailed justification). Therefore, it is not nec-
essary to explicitly compute the product BiCi to determine
the current approximation error.

Since B represents an orthonormal basis, it can be shown
that even when working with reduced transformations Tr

(and reconstructing T = BTr at the end as discussed in Sec-
tion 2.1), we can get an upper bound of the total error of the
non-reduced skinning decomposition:

‖TX−A‖F = ‖TX−BC+BC−A‖F

mi

Ai Ai+1

mi

Figure 3: Algorithm 1 selects mi as the point farthest from
the origin (line 4, left) and then subtracts projections in the
mi direction, obtaining Ai+1 (line 7, right).

≤ ‖TX−BC‖F +‖BC−A‖F

= ‖BTrX−BC‖F +‖BC−A‖F

= ‖TrX−C‖F +‖BC−A‖F

Algorithm 1 provides BC such that ‖BC−A‖F ≤ ε, which
is chosen to be very small, and therefore the error of the re-
duced skinning decomposition ‖TrX−C‖F is the dominat-
ing factor (its minimization is the topic of Section 4). How-
ever, if B does not have exactly orthogonal columns, it is not
the case that ‖BTrX−BC‖F = ‖TrX−C‖F and the error
‖TrX−C‖F may get amplified through the skewed basis.

Fortunately, there is a simple and efficient way (line 5 in
Algorithm 1) to prevent the accumulation of rounding er-
rors that cause the loss of orthogonality. This is essentially
a classical Gram-Schmidt step subtracting projected numer-
ical inaccuracies Bi−1BT

i−1mi, see [GLRvdE05] for a de-
tailed theoretical analysis. Figure 4 compares the precision
of the non-stabilized (without line 5) and stabilized (with
line 5) version, computed with double precision. We can see
that the non-stabilized version (left) exhibits an obvious loss
of orthogonality (up to the 12th decimal place), whereas the
stabilized version (right) is much more accurate.

-20

-12

-16

-18

-14

Figure 4: Decadic logarithm of absolute values of (BT B−I)
for the non-stabilized (left) and stabilized (right) versions of
Algorithm 1 (flag dataset, d = 101).

We also compared the performance of various strategies
for selecting the vector mi (line 4). While the asymptotical
complexity of Algorithm 1 is always O(FNd), the actual
performance varies significantly. For illustration, Table 1
summarizes the resulting dimension d and the total runtime
of Algorithm 1 on the flag dataset (N = 6906,3F = 600, see
Section 5) with the same ε in all cases.
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MAX GS PM1 PM2 SVD
d 101 278 80 72 69

time 2.78s 5.8s 6.3s 9.9s 27.9s

Table 1: Results of Algorithm 1 for various mi selection
strategies: our method (MAX), Gram-Schmidt (GS), and 1
and 2 iterations of the power method (PM1, PM2). The last
column (SVD) is the result of dgesdd [ABB∗99].

Note that while the Gram-Schmidt (GS) technique fea-
tures the fastest update, its uninformed mi selection strategy
results in a high number of iterations d and thus the total run-
time is longer than with our method (MAX). SVD is the the-
oretical minimum, i.e., it is not possible to obtain a smaller d
for the given error threshold. We prefer our maximum norm
strategy (MAX), because it is very fast and produces bases
with dimensions not too far from the optimum.

4. Skinning Decomposition

In this section we present our method to find matrices Tr ∈
Rd×4P and X ∈ R4P×N , where X is sparse and contains rest
pose vertex positions multiplied by weights (as discussed in
Section 1). For a given P, the task is to minimize ‖TrX −
C‖F , where C ∈ Rd×N was computed by Algorithm 1 from
Section 3.

We start by establishing initial rigid skinning weights X0
(Section 4.1), followed by computing the corresponding Tr,0
(Section 4.2). The reconstruction Tr,0X0 is typically crude
and non-smooth, but this is quickly improved after trans-
formation (Section 4.2), rest pose (Section 4.3) and ver-
tex weights optimization (Section 4.4), thereby producing
a more accurate Tr,kXk in the k-th step. We experimentally
found the order of optimization operations has little influ-
ence on the result.

4.1. Initialization

Since initialization of the rest pose is straightforward (for
example, we can use the first frame of the animation), the
main task is to cluster the vertices of the input animated
mesh (note that rigid skinning corresponds to segmenta-
tion). This problem has been studied extensively in the lit-
erature [Sha08] and we tested several previously proposed
approaches, such as mean-shift clustering [JT05], clustered
PCA [SSK05] and hierarchical clustering [WPP07, SY07].

While each method has certain unique features, we found
that the subsequent iterative optimization blends away the
differences between different initializations of X0 and typi-
cally results in quite similar errors ‖Tr,kXk −C‖F for higher
k. Therefore, in our algorithm, we have decided to apply only
a very simple segmentation based on multiple source region
growing. We start by selecting P seed triangles distributed
approximately uniformly over the rest pose mesh by solving
the p-center problem as in [KMD∗07] (only executed on tri-
angles instead of vertices). Each cluster will be required to

be contiguous and is initialized to the seed triangle vertices.
We extract deformation gradients D1, . . . ,DP of the seed tri-
angles and for every cluster c we maintain a priority queue of
immediately adjacent vertices, sorted by their Dc prediction
error. Checking the fronts of all the priority queues, we find
the vertex v with the minimal prediction error and append it
to its cluster, updating the data structures accordingly. This
process is repeated until all vertices are assigned a cluster.

Even though this approach is undoubtedly inferior to ad-
vanced clustering techniques, the subsequent vertex weights
optimization (Section 4.4) attracts proxy-bone influences to
their optimal locations (and also allows them to overlap).
For example, the initial sketchy segmentation of the charac-
ter’s head (Figure 5 left) is considerably improved after 15
iterations of our optimization process (Figure 5 right)—in
particular, note that the whole head becomes influenced by
one bone only. While more careful initialization may lead
to slightly lower approximation error, we prefer our region
growing technique because it is simple to implement and
very fast (e.g., the segmentation in Figure 5 was computed in
0.13s, which is several thousand times faster than mean-shift
clustering, requiring 618s—see Section 5).

Figure 5: Our clustering technique produces crude initial
segmentation (left), but this is fixed in subsequent optimiza-
tion (right) (samba dataset, see Table 2).

4.2. Transformations Optimization

For any given X ∈ R4P×N and C ∈ Rd×N , the task is to com-
pute the matrix Tr ∈ Rd×4P so that ‖TrX − C‖F is mini-
mized. This is a linear least squares problem and it can be
solved efficiently by inverting the normal equations:

TrXXT = CXT

while exploiting the sparsity of X (i.e., the maximum of 16
non-zero elements in each column). With indexed storage,
the product XXT can be computed in time O(PN +P2) in-
stead of O(P2N). Similarly, the asymptotic cost of comput-
ing CXT can be reduced to O(dP+dN).

We compute the inverse of XXT using Cholesky decom-
position [GL96]. If the Cholesky algorithm detects singu-
lar XXT , we fallback to a (slower) pseudoinverse computed
using eigen-decomposition. However, this happens only in
pathological cases (usually, the system is sufficiently overde-
termined). We also experimented with sparse Cholesky fac-
torization, but we found that XXT is typically not too sparse
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(and the Cholesky factor even less so) and therefore we
opt for the dense LAPACK routines dpotrf and dpotri
[ABB∗99].

4.3. Rest Pose Optimization

Recall that X ∈ R4P×N combines both rest pose vertices and
weights, i.e., Xi, j = w j,iṽ j ∈ R4×1. For a given Tr ∈ Rd×4P,
C∈Rd×N and vertex weights wi, j ∈ R, the task is to compute
the rest pose vertices ṽ1, . . . , ṽN ∈ R4×1 in X so that ‖TrX−
C‖F is minimized. Because of the special structure of X, it is
convenient to denote also the elements of Tr in vector form(
ti, j

)
where ti, j ∈ R1×4 for i = 1, . . . ,d, j = 1, . . .P. Using

this notation we can rewrite equations TrX ≈ C as:

P

∑
k=1

ti,kw j,k ṽ j ≈Ci, j i = 1, . . . ,d, j = 1, . . . ,N

The optimization thus reduces to N linear least squares prob-
lems of the form:⎛

⎜⎝ ∑P
k=1 t1,kw j,k

...
∑P

k=1 td,kw j,k

⎞
⎟⎠ ṽ j ≈

⎛
⎜⎝

C1, j
...

Cd, j

⎞
⎟⎠ , j = 1, . . . ,N

Since the fourth coordinate of ṽ j is usually supposed to
be 1 (homogeneous coordinates), we subtract the last col-
umn of the system matrix from the right hand side, obtain-
ing equations Λ j ṽ′j ≈ Γ j, where ṽ′j ∈ R3×1, Λ j ∈ Rd×3 and

Γ j ∈ Rd×1. The corresponding normal equations have espe-
cially compact form:

ΛT
j Λ j ṽ

′
j = ΛT

j Γ j

where ΛT
j Λ j is just a 3× 3 matrix and thus can be inverted

efficiently, e.g., using cofactors (with a fallback to pseudoin-
verse if det(ΛT

j Λ j) is close to zero. However, this is rarely
the case.)

4.4. Vertex Weights Optimization

For a given Tr ∈ Rd×4P, C ∈ Rd×N and rest pose vertices
ṽ1, . . ., ṽN ∈ R4×1, the task is to determine vertex weights
wi, j ∈ R in X so that ‖TrX−C‖F is minimized subject to
the constraints that wi,1, . . . ,wi,P are convex and only 4 of
them are non-zero for every i = 1, . . . ,N.

As above, the weights can be optimized separately for ev-
ery vertex ṽi. Using the notation of Tr elements introduced
in Section 4.3, the problem for the i-th vertex can be stated
in matrix form as follows:⎛

⎜⎝
t1,1ṽi · · · t1,Pṽi

...
. . .

...
td,1ṽi · · · td,Pṽi

⎞
⎟⎠

︸ ︷︷ ︸
Θ ∈ Rd×P

⎛
⎜⎝

wi,1
...

wi,P

⎞
⎟⎠≈

⎛
⎜⎝

C1,i
...

Cd,i

⎞
⎟⎠

︸ ︷︷ ︸
y ∈ Rd×1

We start by choosing the weights which will be allowed to be

non-zero by selecting the four columns of Θ that are closest
to the right hand side y (this corresponds to selecting the
bones that individually best predict the deformed vertices,
as in [JT05]).

If we denote the chosen columns as φ1, . . .,φ4 ∈ Rd×1 and
the set of their convex combinations as:

L =

{
4

∑
k=1

αkφk :
4

∑
k=1

αk = 1,αk ≥ 0

}
⊆ Rd×1

we can formulate the problem as finding m ∈ L which min-
imizes ‖y−m‖. While previous work typically solves this
problem using general purpose Non-Negative Least Squares
solver [LH74], we propose to take advantage of the small
and fixed number of influencing bones per vertex. In this
case, our approach is simpler, faster and more accurate (note
that with NNLS, the affinity condition ∑4

k=1 αk = 1 is not
enforced exactly, but is treated as a soft constraint [JT05]).

Geometrically, the set L is a tetrahedron in d-dimensional
space and the task is to find its closest point to y ∈ Rd×1.
We will show that this problem can be reduced to three di-
mensions, which simplifies its solution considerably. To ac-
complish this, we shift both the tetrahedron L and the point
y, obtaining L′ = L− φ4 and y′ = y− φ4. The new tetrahe-
dron L′ thus has one of its vertices coincident with the origin
and therefore, there is a 3D linear subspace S ⊆ Rd×1 such
that L′ ⊆ S. It can be shown that finding m′ ∈ L′ minimiz-
ing ‖y′ −m′‖ is equivalent to finding m′ ∈ L′ minimizing
‖y′S − m′‖, where y′S is the orthogonal projection of y′ on
the subspace S (see Figure 6 for an intuitive justification and
the Appendix for a formal proof).

yS'

y'

m'
L

2
'

S

Figure 6: Illustration of our problem for d = 3 and triangle
L′

2 (instead of tetrahedron). We can see that if m′ ∈ L′
2 is as

close as possible to y′S, it is also as close as possible to y′.

Therefore, if we pick an orthonormal basis b1,b2,b3 ∈
Rd×1 of S, we can express both the tetrahedron vertices
φ1−φ4,φ2−φ4,φ3−φ4,0 and the point y′S using three coor-
dinates only, thereby reducing it to the 3D problem of find-
ing the closest point on a tetrahedron to a point, which can be
solved efficiently [Eri04] (since calculations in three dimen-
sions are obviously much faster than in d dimensions). If the
optimal m′ (which always exists and is unique) is expressed
in barycentric coordinates, then these coordinates represent
exactly the desired vertex weights α1, . . . ,α4.
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The orthonormal basis b1,b2,b3 ∈ Rd×1 can be com-
puted by executing Gram-Schmidt orthonormalization on
vectors φ1−φ4,φ2−φ4,φ3−φ4 ∈Rd×1. Since there are only
three vectors, this is very simple and numerically stable even
with the most straightforward implementation. If the Gram-
Schmidt process detects the vectors φ1−φ4,φ2−φ4,φ3−φ4
to be close to linearly dependent, it means that one of the
chosen proxy-bones is redundant and we replace it with an-
other column of matrix Θ.

Note that while the above described procedure could be
generalized to h > 4 influencing bones, the number of faces
of a h-dimensional simplex grows exponentially with h and
therefore, for higher h, a generic solver such as NNLS would
be preferable. However, a high number of vertex weights is
not desirable anyway and, if present, weight reduction tech-
niques can be applied [LS09].

5. Runtime Implementation and Results

While the evaluation of Formula (1) is trivial, for a high per-
formance implementation it is often necessary to consider
particulars of the target graphics hardware [Lee07]. Most 3D
engines contain skinning routines and/or shaders optimized
for the supported platforms.

There are several strategies to handle vertex normals, the

simplest being to transform them by ∑P
j=1 wi, j

(
M( f )

j

)−T

[MG03]. This is only an approximation, but an accurate
solution is possible at the cost of extra vertex attributes
[MMG06b]. In our implementation we adopt the approach
of Wang and colleagues [WPP07], who compute vertex nor-
mals by averaging normals of the incident triangles. This re-
sults in smooth normal fields and allows for efficient imple-
mentation on modern graphics hardware.

In previous work [JT05, KMD∗07], approximation error
is typically reported in terms of the following error metric,
adopted from [KG04]:

100.0% · ‖A−Aapprox‖F/‖A−AtimeAverage‖F

where AtimeAverage ∈ R3F×N is a matrix representing a static
mesh (average of all keyframes). Unfortunately, this met-
ric is sensitive to global motion applied to the entire mesh.
For example, adding linear motion increases the denomi-
nator ‖A − AtimeAverage‖F but leaves the numerator ‖A −
Aapprox‖F unchanged because skinning can trivially repro-
duce translation (by simply adding the translation to all bone
transformations). For example, an on-spot walking sequence
will have higher error than exactly the same animation where
the character moves forward.

Therefore, we propose to simply use
√

3NF as the nor-
malizing factor, obtaining:

ERMS = 1000
‖A−Aapprox‖F√

3NF

Since 3NF is the total number of elements of matrix A, ERMS

is simply the average error per element (scaled by 1000 for
convenience). To be able to compare ERMS between objects
with different proportions, we uniformly scale every anima-
tion so that its first frame is tightly enclosed by a unit ball.
Therefore, roughly speaking, ERMS can also be interpreted
as the number of pixels on a 1000×1000 parallel-projection
viewport displaying our mesh full screen. With our method,
the error threshold ε in Algorithm 1 (Section 3) is always set
to 0.0005

√
3NF to obtain approximately half-pixel accuracy

of the initial dense dimensionality reduction. The results for
various testing animations are summarized in Table 2. Please
note the ERMS reported for our method accounts for the final
skinning error ‖TX−A‖F (and not the error in the reduced
coordinates ‖TrX−C‖F , which would be slightly lower).

With SMA, we used the (best possible) results from
[JT05], where available. In the case of the skirt and cloak
animations, we were unable to configure mean-shift cluster-
ing to produce enough clusters. This is probably an issue
with the applied mean-shift software [GSM03], mentioned
also in [KMD∗07]. Our implementations of SMA and SAD
use flexible (affine) bones and non-negative vertex weights,
just like our method.

For comparison, we also report the results of two re-
lated methods: clustered PCA [SSK05] and truncated SVD
[AM00]. The number of clusters for CPCA is set to the num-
ber of bones P and the number of dimensions per cluster is
set to 4, to obtain the same amount of per-frame data as with
skinning. While the approximation error of CPCA reported
in Table 2 is attractive, the actual visual quality suffers from
the fact that clusters are not allowed to overlap (see Fig-
ure 7). With truncated SVD, the number of dimensions is set
to 4P (in order to obtain the same amount of per-frame data,
as above). Even though the approximation error of SVD is
very low, note that SVD requires much more per-vertex data
(i.e., 4P) than skinning (which is constant). In other words,
each SVD “bone” is global and can affect the whole mesh
(unlike bones in skinning which have localized influences).
In practice, this implies not only higher memory consump-
tion, but especially more complex vertex reconstruction, re-
quiring O(P) arithmetic operations and data fetches (while
skinning requires only O(1)).

From Table 2 we can see that our method is never worse
and is typically several times better than SMA, SAD and
CPCA in terms of approximation error. In many cases, our
method outperforms SMA and/or SAD even after rank-10
EigenSkin corrections (no corrective techniques were ap-
plied with our method). Note that while SMA performs bet-
ter for quasi-articulated animations (Table 2 bottom) and
SAD for highly deformable ones (Table 2 top), our method
handles both cases equally well, as well as animations with
both quasi-articulated and highly-deformable components
(Table 2 middle).

We measured the execution time of all algorithms on an
Intel Core 2 Duo (3.0GHz) processor with 2GB RAM. The
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Input Data Approximation Error ERMS Execution Time
Model Vertices Frames Bones SMA SAD Our CPCA SVD SMA SAD Our total (init, 1 step)

elasticCow 2904 204 18 17 (9.2) 16 (9.1) 3.6 7.3 1.3 2.3m 2.8m 5.0s (1.8s, 0.21s)
clothHorse 8431 53 6 48 (1.3) 26 (0.8) 8.3 12.4 1 2.7m 3.5m 3.5s (0.5s, 0.20s)

flag32 6906 200 32 27 (7.6) 7 (2.6) 1.6 3.2 0.3 6.7m 22m 13.3s (4.0s, 0.62s)
flag100 6906 200 100 1.9 (1.6) 1.6 (1) 0.7 1.4 0.01 10.5m 68m 23.9s (4.0s, 1.32s)
skirt22 5095 360 22 34 (22) 6.6 (6.4) 2.5 4.6 1.2 6.9m 25.2m 22.8s (9.9s, 0.86s)
skirt50 5095 360 50 - 3.4 (3) 1 2.6 0.2 - 32.1m 24.4s (9.9s, 0.97s)
cloak10 3069 360 10 13 (12) 6.6 (5.8) 3 5.6 1.9 4.3m 9.8m 6.3s (3.2s, 0.21s)
cloak35 3069 360 35 - 2.8 (2.5) 0.8 2.2 0.2 - 15m 7.0s (3.2s, 0.25s)

samba 9971 175 30 8.6 (3.6) 11.4 (6) 1.5 4 0.2 10.3m 20.2m 15.8s (4.2s, 0.77s)
crane 10002 175 40 6 (2.8) 5.9 (4.5) 1.4 3.6 0.2 12.6m 20.6m 21.7s (5.6s, 1.08s)
swing 9971 175 30 8.8 (3.5) 26 (16) 1.6 4.2 0.3 10.6m 18.7m 18.6s (5.0s, 0.91s)

horse 8431 48 30 2.3 (0.3) 4.9 (2.9) 1.3 2.4 2E-5 2.7m 6m 4.3s (0.4s, 0.26s)
camel 21887 48 23 3.1 (0.5) 4.7 (2.2) 1.4 2.8 2E-4 16.4m 7.5m 11.3s (1.0s, 0.69s)

elephant 42321 48 25 2.6 (0.5) 15 (6.5) 1.4 2.3 6E-5 26.3m 20.1m 21.9s (1.9s, 1.34s)

Table 2: Results for Skinning Mesh Animations (SMA), Skinning Arbitrary Deformations (SAD), Our method, Clustered PCA
and truncated SVD. With SMA and SAD we report also approximation error after rank-10 EigenSkin corrections (in brackets).
Note that the time for SMA and SAD (without EigenSkin) is measured in minutes and the time for our method in seconds (with
a breakdown to initialization and iteration time in brackets).

Clustered PCA Our method Original

Figure 7: In contrast to skinning computed with our method,
clustered PCA may result in non-smooth reconstruction
(cloak10 dataset).

time reported for SMA is only the time of mean-shift clus-
tering computed using the publicly available implementa-
tion [GSM03]. In the case of SAD, the execution time is
dominated by the LSQR solver [PS82]. The total running
time of our method is the sum of the initialization time (Sec-
tion 3) plus the time for 15 iterations of coordinate descent
(Section 4). From Table 2 we can see that our algorithm runs
about one to two orders of magnitude faster than SMA and
SAD.

To examine the convergence of our iterative optimization
process (Section 4), we measured ERMS after each iteration,
see Figure 8. We can see that the error quickly approaches
its optimal value regardless of the animation type—in our
implementation we therefore terminate the optimization af-
ter 15 iterations. Each iteration takes typically less than 1

second (see Table 2), which enables almost interactive pre-
viewing of the optimization process. Note that the initializa-
tion needs to be done only once regardless of P, and there-
fore, manual selection of the number of bones is quite com-
fortable. If a fully automatic pipeline is required, we can
find the optimal P for a given global error threshold (e.g.,
ERMS = 1.5) using binary or interpolation search at the cost
of running the optimization multiple times.

5 10 15 20 25 30

1

1.5

2

2.5 swing

horse

skirt50

1

Figure 8: Approximation error ERMS (vertical axis) vs. num-
ber of iterations of our optimization process (horizontal
axis).

5.1. Applications

The main advantages of skinning are compact animation
representation combined with efficient hardware accelerated
rendering. For example, in applications featuring large num-
bers of characters with limited motion styles (such as pedes-
trian crowds), we can precompute physically based cloth an-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



L. Kavan, P.-P. Sloan & C. O’Sullivan / Fast and Efficient Skinning of Animated Meshes

imations for the given set of skeletal motions (perhaps orga-
nized in a motion graph) and use our method to create their
skinned approximations, which can be trivially exported to
any 3D engine that supports linear blend skinning. This en-
ables us to enhance fidelity of virtual characters with mini-
mal computational and implementation costs, see Figure 9.
Many other applications of skinning decomposition were
discussed in the literature, ranging from rest pose editing
and efficient collision detection [JT05, KMD∗07] (includ-
ing the recently proposed technique for self-collision de-
tection [SGO09]) to advanced non-linear deformation sys-
tems [WPP07] and animation interfaces [FKY08].

Figure 9: Application of our method in practice: both the
bodies and the cloth are rendered with linear blend skinning
(skirt50 and cloak35 datasets).

6. Conclusions and Future Work

We present an algorithm to quickly construct high qual-
ity skinned approximations of arbitrary mesh animations,
demonstrating that even complex highly deformable anima-
tions can be skinned efficiently without any corrective tech-
niques or excessive pre-processing. We believe that these
features will make our method appealing for applications,
such as in games development.

There are several possible avenues for future work. If
higher pre-computation speeds were required, we could im-
plement our algorithms on parallel computing architectures
such as CUDA, taking advantage of easily parallelizable ma-
trix computations. One limitation of skinning is that it only
addresses spatial coherence. For longer (or finely sampled)
animation sequences, it may be desirable to tackle tempo-
ral coherence also using methods such as in [Ari06]. From a
broader perspective, skinning can be considered as a special
kind of sparse matrix decomposition and does not have to be
limited to mesh animation—one could, for example, “skin”
ambient occlusion or precomputed radiance transfer.
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Appendix

Lemma: Let L′ be a compact convex set and S a three di-
mensional linear subspace such that L′ ⊆ S ⊆ Rd . Let y′ be
an arbitrary point from Rd and let y′S ∈ Rd be its orthogonal
projection on the subspace S. Then point m′ ∈ L′ minimizes
‖y′−m′‖ if and only if m′ minimizes ‖y′S −m′‖.

Proof: Let b1,b2,b3 ∈ Rd be an orthonormal basis of S and
let b4, . . . ,bd ∈ Rd be its orthonormal complement to the ba-
sis of Rd . Therefore, y′ = ∑d

i=1 βibi for βi ∈ R and its or-
thogonal projection on S is simply y′S = β1b1+β2b2+β3b3.
Similarly, any m′ ∈ L′ can be written as m′ = µ1b1+µ2b2+
µ3b3 for some µi ∈ R. Therefore,∥∥y′−m′∥∥2

=
∥∥∥∑3

i=1(βi − µi)bi +∑d
i=4 βibi

∥∥∥2

=
∥∥∥∑3

i=1(βi − µi)bi

∥∥∥2
+
∥∥∥∑d

i=4 βibi

∥∥∥2

=
∥∥y′S −m′∥∥2

+∑d
i=4 β2

i

where we used the fact that b1, . . . ,bd ∈ Rd are orthonormal.
Since the term ∑d

i=4 β2
i is fixed (it is determined solely by y′

and S), it follows that
∥∥y′−m′∥∥2

is minimized if and only if∥∥y′S −m′∥∥2
is minimized (and the same applies after taking

their square roots). �
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