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Abstract

Skin deformation based on an underlying skeleton is a common
method to animate believable organic models. The most widely
used skeletal animation algorithm, linear blend skinning, is also
known as skeleton subspace deformation, vertex blending, or en-
veloping. It runs in real-time even on a low-end hardware but it is
also notorious for its failures, such as the collapsing-joints artifacts.
We present a new algorithm which removes these shortcomings
while maintaining almost the same time and memory complexity
as the linear blend skinning. Unlike other approaches, our method
works with exactly the same input data as the popular linear ver-
sion. This minimizes the cost of upgrade from linear to spherical
blend skinning in many existing applications: the data structures
and models need no change at all. The paper discusses also theoret-
ical properties of rotation interpolation, essential to spherical blend
skinning.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: skinning, deformation, skeletal animation

1 Introduction

Real-time animation of deformable objects is always a compromise
between visual fidelity and computation complexity. Other aspects
are quite important as well, for example the amount of artists work
necessary to design the model. Therefore, there exist many algo-
rithms for modeling deformable objects in the literature. They dif-
fer by the intended area of application and generality of allowed
models.

We focus on the real-time animation systems in this paper. Its most
popular representative, known generally as the skeletal animation,
is based on simple but versatile structure. It consists of joints,
given by their position and orientation. The segments connecting
the joints are conveniently interpreted as bones. The skeleton is,
formally speaking, a tree whose nodes are identified with the joints
and edges with the bones. The only displayed element is a skin, a
3D polygonal mesh, usually equipped with normal and texture data.

Although the terminology is adopted from the virtual humanoid
modeling, the skeletal animation is not limited to character ani-
mation – it can be applied to a wide range of soft objects, includ-
ing imaginary (cartoon) creatures, plants, furniture, etc. This is an
apparent advantage over complex systems which rely on explicit
anatomy.
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The skeleton simplifies the animation task considerably: instead of
animating each vertex individually, it is sufficient to manipulate the
skeleton, and the skin deforms automatically. The skeletal anima-
tion in general does not specify how exactly the skeleton posture
should be propagated to the skin. However, there is an established
standard used in majority of real-time 3D applications. It comes
by many names, all relating to the same algorithm: linear blend
skinning (LBS), skeleton subspace deformation, vertex blending,
enveloping, or simply skinning. Basically, this algorithm blends
between rigidly transformed vertices using vertex weights, which
denote the amount of influence of individual joints.

Although LBS is very fast and advantageous to graphics hardware,
it suffers from inherent artifacts, known as ”collapsing joints”,
”twisting elbow problem” or a ”candy-wrapper artifact”. In gen-
eral, the mesh deformed by LBS loses volume as the joint rotation
increases. The cause of this phenomena is explained in section 3,
together with the LBS algorithm itself.

The structure of the paper is as follows: in the next section, we
summarize the previous work concerning real-time skin deforma-
tion and sketch our solution. In section 3, we analyze the problems
of the LBS algorithm. Our approach to resolve these problems is
presented in section 4. In section 5, we compare the results and
discuss possible enhancements.

2 Related Work

An early contribution concerning the animation of deformable ob-
jects is [Magnenat-Thalmann et al. 1988], which considers the
movement of a human hand. First 3D characters used in numer-
ous computer games were animated by simple, often unpublished
algorithms. Later on, the basic principles of LBS were described
by the game development community [Lander 1998; Lander 1999].
The artifacts of LBS were discovered soon [Weber 2000]. An im-
provement based on addition of auxiliary joints has been also pro-
posed in [Weber 2000]. Although this reduces the artifacts, the
skin to joints relationship must be re-designed after joint addition.
The number and location of the additional joints remains question-
able. Another problem is how the movement of the original skele-
ton should be propagated into the augmented one.

More formal articles consider skin deformation as an interpolation
problem, such as [Lewis et al. 2000]. They use radial basis func-
tions to interpolate between example skins with different shapes.
Similar method is presented in [Sloan et al. 2001] and [Kry et al.
2002]. The latter de-correlates the deformation displacements using
principal component analysis, which reduces the memory require-
ments considerably. The advantage of example based methods is
that they capture the designed shape, including effects like muscle
bulging. The drawback is the necessity of acquiring the example
skins.

An interesting generalization of LBS is called multi-weight en-
veloping [Wang and Phillips 2002]. It introduces more parame-
ters and therefore greater flexibility to the deformation algorithm.
Instead of one weight per influence (joint) as in LBS, the multi-
weight enveloping uses twelve. These numerous parameters are
derived from examples using the least squares optimization. The



disadvantage is obvious: while the LBS models can be weighted
manually by artists [Steed 2002], this is questionable with multi-
weight enveloping. Tools that help animators to design the vertex
weights are described in [Mohr et al. 2003]. This article is inter-
esting also from the theoretical point of view, because it describes
how to explore the space of all possible LBS deformations.

Another deformation algorithm [Bloomenthal 2002] uses a com-
plex auxiliary structure – a medial. An idea similar to spherical
blend skinning (SBS) is bones blending proposed by [Kavan and
Žára 2003]. However, bones blending is limited to vertices attached
to only two joints. In addition, it requires hand-tuning of special pa-
rameters. Another algorithm removes the LBS artifacts by adding
additional joints, and computes the vertex weights automatically us-
ing examples [Mohr and Gleicher 2003]. A recent skin deformation
algorithm presented in [Magnenat-Thalmann et al. 2004] seems to
give results competitive to SBS, although it is based on a different
mathematical fundament [Alexa 2002]. However, this method is
considerably slower than LBS and therefore [Magnenat-Thalmann
et al. 2004] recommends to use rather the standard LBS if the joint
rotations are small.

To conclude, there are many methods correcting the problems of
LBS, but none of them is superior to LBS in all aspects. As a result,
the linear blend skinning is still widely used in many applications,
in spite of the artifacts.

2.1 Our Contribution

We observed that the artifacts of LBS are caused by the straightfor-
ward, linear interpolation of vertex positions. Intuitively, a linear
blending is not suitable to capture deformations induced by skele-
ton, because their nature is rather spherical. Our basic idea is to
change the interpolation domain: we interpolate transformations it-
self instead of transformed vertex positions. Because we consider
transformations consisting of a translation and rotation, we suggest
to use a quaternion representation.

The transition to non-linear interpolation domain is not elementary.
In order to achieve our goal, we cope with two main problems:
determination of the center of rotation, and interpolation of multi-
ple quaternions. The first problem follows from the fact that the
choice of the center of rotation influences the result of interpola-
tion considerably. We show how to compute a convenient center
of rotation in real-time. The second problem is simple in the case
of two quaternions [Shoemake 1985], but gets considerably harder
for more than two rotations [Buss and Fillmore 2001; Park et al.
2002; Alexa 2002]. Because the previous methods are not efficient
enough for our purpose, we use a simple linear quaternion aver-
aging. We justify both theoretically and experimentally that this
solution is appropriate for our task (and probably for many others).

Resolving those problems, we obtain a skin animation algorithm
that deforms the mesh in much more plausible way then LBS. Be-
cause we change only the interpolation domain and not the input
data, our program works with exactly the same models as LBS. The
proposed algorithm improves a deformed shape even of models that
have been designed and carefully tuned for LBS. Considering the
high speed and low memory demands of SBS, it provides an attrac-
tive alternative to classic LBS.

2.2 Conventions

Let us denote matrices by capital letters, while vectors and quater-
nions by bold. Vectors are considered column vectors, therefore a

multiplication of vector v by matrix M is written as Mv. We do
not introduce a different notation for the R3 vectors and their ho-
mogeneous R4 counterparts with last coordinate equal to 1. The
same convention is used for matrices. We denote the dot product of
two vectors v1,v2 as (v1,v2) and the norm ‖v1‖ as a shortcut for√

(v1,v1).

3 Linear Blend Skinning

The input to LBS consists of a polygonal mesh representing the
digital skin, a skeleton, and vertex weights for every vertex of the
skin. The polygonal mesh and the skeleton are designed in a refer-
ence position, e.g. virtual characters are often posed in the da Vinci
posture [Steed 2002].

Let us label the joints by integer numbers, assigning zero to the
root. Each joint in the reference posture is associated with a homo-
geneous matrix, describing its position and orientation in the world
coordinate system. For j-th joint, we denote this matrix by A j, like
”absolute” (or reference) position. This matrix is computed by mul-
tiplying all the transformations of individual joints in the chain from
root to joint j. To compute the shape of the deformed skin, we need
yet another set of matrices, describing the position and orientation
of joints in the actual, animated posture. We call them Fj , standing
for the ”final” placement of joint j. Matrices Fj are computed in a
similar way as the absolute matrices, but including the actual rota-
tion of each joint in the chain (we do not consider translating and
scaling joints).

The most simple skin deformation algorithm computes

v′ = FjA
−1
j v

where v is a vertex in the reference skin associated with joint j
and v′ is its position in the deformed mesh. The interpretation is
following: the first matrix A−1

j transforms v to the position with
joint j’s coordinate system aligned to the world coordinate system.
The following transformation Fj returns the vertex to its current
position induced by the animated skeleton. Because these trans-
formations usually occur together, we define the ”complete” matrix
Cj = FjA

−1
j . Some older computer games animated characters in

this way, even though it does not produce nice, smooth deforma-
tions.

The linear blend skinning allows assignment of one vertex to mul-
tiple bones. Assume that vertex v is attached to joints j1, . . . , jn
with weights w1, . . . ,wn. The weights are coefficients of a convex
combination, i.e. non-negative and ∑n

i=1 wi = 1. The weight wi rep-
resents the amount of influence of joint ji. The vertex position in
the mesh deformed by LBS is then computed as

v′ =
n

∑
i=1

wiCji v (1)

that is to say, making a convex combination of individual vertex
transformations. For example if n = 2 then vertex v′ lies on the
line segment connecting Cj1 v and Cj2 v. The actual position on the
segment is given by weight w1 (or w2, because w1 +w2 = 1). As ex-
plained in the next section, the SBS works on a circular arc instead
of segment, see Figure 1.

If the joint rotations are large, the LBS produces non-natural defor-
mations. In the extremal case of rotation by 180 degrees, the skin
can collapse to a single point. It is the notorious ”candy-wrapper”
artifact, which is demonstrated in Figure 2. The right shoulder of
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Figure 1: The set of possible results of LBS is a line segment, while
SBS gives a circular arc.

the model is twisted by 180 degrees, while the left shoulder is left
in the reference pose.

To understand why this undesirable effect occurs, it is sufficient to
re-arrange the equation (1)

v′ =

(
n

∑
i=1

wiCji

)
v (2)

This formula is less efficient, because it blends matrices instead
of vectors, but gives us a valuable insight. It is well known that
the component-wise interpolation of matrices produces odd results:
it does not preserve the orthogonality of the rotational part of the
matrix. In some situations, it does not preserve even the rank of the
interpolated matrices. This is exactly what happens in the ”candy-
wrapper” problem: the single point the skin collapses to is a result
of transformation by a singular matrix. A similar defect is visible
also in the proximity of the singular configuration. Although the
matrix is regular, it involves a non-uniform scaling and skewing,
which is responsible for the loss of volume of the deformed skin
even for small rotations.

4 Spherical Blend Skinning

Instead of trying to correct the bad results of LBS, we propose to
change the interpolation method in (2). We focus on the interpo-
lation of rotations – the linear interpolation of the translation part
of Cji matrices is all right. An established interpolation of two ro-
tations is spherical linear interpolation (SLERP) [Shoemake 1985].
Its key of success is the use of quaternions to represent rotations.
Unfortunately, it is not possible to simply replace matrices Cji in (2)
with corresponding pairs quaternion-translation. One of the prob-
lems is that the linear interpolation of quaternions is not equivalent
to SLERP. However, this is not the most serious difficulty, and we

Figure 2: Up – an extreme shoulder twist deformed by LBS, down
– the same posture deformed by SBS

address it in section 4.1. The more important problem is to compute
a convenient center of the interpolated rotations.

We show that this is really an important problem on an example of
human arm. Consider that the arm geometry is influenced by two
joints j1 and j2, such that j1 is a parent of j2, as in Figure 1. The
transformation of the whole mesh by Cj1 is illustrated in the top row
of Figure 3 and the transformation of the same geometry by Cj2 in
the bottom row (note that the results are identical in both columns
of these rows). The rows in the middle show the progress of inter-
polation between Cj1 to Cj2 . The only difference between the two
columns in Figure 3 is in the choice of the center of rotation. In
the left column, the rotation center rc is set to the translation part of
matrix A j2 (the position of joint j2 in the reference posture). Note
that Cj1 rc = Cj2 rc, therefore also the transformed rotation center is
constant during the interpolation. In the right column of the figure,
the rotation center rc is set to the translation part of A j1 . Because
Cj1 rc �= Cj2 rc, the transformed rotation center is linearly interpo-
lated from Cj1 rc to Cj2 rc. By comparison with the starting mesh
(drawn gray in each frame), it is obvious that the center of rotation
choice in the left column is much more advantageous. In this case,
the interpolation of every single point is a circular arc (as in Fig-
ure 1), whereas a disturbing drift is inherent to any other choice of
rotation center (such as rc).

Unfortunately, the condition of zero translation cannot be always
satisfied, typically for more than two influencing joints. But even if
the vertex is attached to only two joints k and l that are not neigh-
bours of each other, some translation may be inevitable. For exam-
ple consider that there is no relative rotation between Ck and Cl , but
there is a relative translation induced by the joints in the chain be-
tween k and l. Clearly no choice of the center of rotation can avoid
this translation, because the rotation is identity.

Anyway, it is possible to define the rotation center as the point
whose transformations by associated matrices are as close as pos-
sible. This minimizes the drift and works even if the vertex is as-
signed to n joints j1, . . . , jn. We find the center of rotation rc as the
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Figure 3: The correct center of rotation is chosen in the left column,
while the sub-optimal in the right column. In the middle rows, no-
tice the difference of the elbow position with respect to the original
skin.

least-squares solution of the system of
(n

2

)
linear vector equations

Carc = Cbrc, a < b, a,b ∈ { j1, . . . , jn}
Each homogeneous matrix Ci has structure

Ci =
(

Crot
i Ctr

i
0T 1

)

where Crot
i is a 3 × 3 orthogonal matrix and Ctr

i is a translation
vector. This enables us to re-write the linear system to

Crot
a rc +Ctr

a = Crot
b rc +Ctr

b

(Crot
a −Crot

b )rc = Ctr
b −Ctr

a

If we stack all these equations to one matrix D and the right-hand
sides to vector e, we can write the whole system as

Drc = e

where D is a 3
(n

2

)×3 matrix, rc is a 3-dimensional unknown vector
and e is 3

(n
2

)
-dimensional vector. In general, we cannot make any

assumptions about the rank of matrix D, which can vary from 0 to 3
(consider for example n = 2 and Cj1 = Cj2 ). We search the optimal
solution rc in the least-squares sense. If there are multiple solu-
tions giving the minimal ‖Drc − e‖, the rc with the minimal norm
is chosen. This can be done in a robust way using the singular value
decomposition (SVD), followed by computation of pseudo-inverse
matrix. To perform these computations, we use the LAPACK soft-
ware [Anderson et al. 1999].

Even though LAPACK routines are efficient, computation of the
center of rotation per each vertex would not result in a real-time al-
gorithm. Fortunately, the center of rotation depends only on the
transformations of the joints j1, . . . , jn and not the vertex itself.
Therefore, if we encounter another vertex assigned to the same set
of joints j1, . . . , jn, we can re-use the center of rotation computed
formerly (cached). Moreover, if there is only one, or two neighbor-
ing joints that influence the vertex, we can determine the center of
rotation precisely (as indicated in the beginning of this section) and
omit the SVD computation at all. It turns out that the number of
different non-trivial joint sets, and therefore the number of running
the SVD, is surprisingly small for common models – about several
tens. This enables the real-time performance.

4.1 Interpolation of Multiple Rotations

As mentioned in the introduction, the interpolation of multiple rota-
tions has already received some attention [Buss and Fillmore 2001;
Park et al. 2002] as well as interpolation of multiple general trans-
formations [Alexa 2002]. Unfortunately, all these methods are sub-
stantially slower then the simple linear interpolation used in LBS.
Since our goal is an algorithm with comparable time complexity as
LBS, we propose an approximate but fast linear quaternion blend-
ing. For the case of two rotations, we compare our method with the
established SLERP.

Recall that a rotation around axis a (unit length vector) with angle
2α corresponds to quaternion q′ = cosα + asinα . However, this
correspondence is not unique, because both quaternions q′ and −q′
represent the same rotation. The SLERP of two unit quaternions
p,q assumes that their dot product (p,q) ≥ 0. If the dot product
(p,q) < 0, we use −p instead of p, which is possible because both
p and −p represent the same rotation. The SLERP of p,q with
interpolation parameter t ∈ 〈0,1〉 is given by the following formula,
see for example [Eberly 2001].

s(t;p,q) =
sin((1− t)θ)p+ sin(tθ)q

sinθ
(3)

where θ is the angle inclined by quaternions p,q, i.e. cosθ = (p,q).

The linear interpolation of quaternions (QLERP) is computed as

l(t;p,q) =
(1− t)p+ tq

‖(1− t)p+ tq‖ (4)

The difference to SLERP is obvious: QLERP interpolates along the
shortest segment, and then projects to arc, which does not result in
the uniform interpolation of the arc. In spite of this, we claim that
QLERP is sufficient for our task. In order to justify this statement,
we face an interesting question by itself: how big can be the differ-
ence between QLERP and SLERP for the same input rotations?



For t = 0, both QLERP and SLERP return of course p. For t > 0, we
can imagine that both QLERP and SLERP work by concatenating
p with some rotation (multiplying p with some quaternion). For
SLERP, we denote this quaternion as rs(t). It can be expressed as
p∗s(t;p,q), because

prs(t) = pp∗s(t;p,q) = s(t;p,q)

The rotation rs(t) can be written out as

rs(t) = p∗s(t;p,q) =
sin((1− t)θ)1+ sin(tθ)p∗q

sinθ
(5)

The quaternion 1 represents the identity (zero angle rotation). From
the definition of quaternion multiplication it can be seen that the real
part of p∗q equals (p,q) = cosθ . Since p∗q is a unit quaternion,
we can express it as

p∗q = cosθ +usinθ

for some axis of rotation u. If we substitute this into equation (5),
we obtain

rs(t) =
sin((1− t)θ)+ sin(tθ)cosθ

sinθ
+usin(tθ)

which means that the direction of the axis u is independent on t.

Let us examine the rotation rl(t) following p in QLERP:

rl(t) = p∗l(t;p,q) =
(1− t)1+ tp∗q
‖(1− t)p+ tq‖ =

=
(1− t + t cosθ)
‖(1− t)p+ tq‖ +u

t sinθ
‖(1− t)p+ tq‖

which shows that the axis of rotation has the same direction. We
can conclude with an important property: the SLERP can be written
as prs(t) and QLERP as prl(t), where the rotations rs(t) and rl(t)
have the same axis. Moreover, this axis is constant, i.e. independent
on the interpolation parameter t.

It follows that the only difference between QLERP and SLERP is
in the angle of rotations rs(t) and rl(t). Note that both rs(t) and
rl(t) have a form of linear combination of quaternions 1 and p∗q.
It means that the results of both rs(t) and rl(t) always end up in
certain 2D subspace of R4. We can restrict our attention to this
subspace (the linear hull of 1 and p∗q).

Since SLERP assumes cosθ = (p,q) ≥ 0, the angle θ cannot ex-
ceed π/2. To obtain an upper bound of the maximal difference in
the angle, we consider the extremal case with θ = π/2, depicted
in Figure 4.

The angle α(t) on the picture can be computed by atan, and β (t)
by simple linear interpolation of the right angle, which yields the
difference function

d(t) = α(t)−β (t) = atan

(
t

1− t

)
− π

2
t

It remains to find the extremes of d(t) on the interval 〈0,1〉. The
elementary mathematical analysis discovers the global extremes in
points 1/2±√(1/π − 1/4). The absolute value of d(t) in these
points is approximately 0.071 radians (4.07 degrees). As mentioned
in the introduction of this section the angle of rotation is twice the
angle inclined by quaternions.

To conclude: both SLERP and QLERP interpolate by multiplying
the first quaternion with a rotation with the same, fixed axis. The
difference between SLERP and QLERP is only in the angle of this

t

1-t

1

1

�(t)

SLERP

QLERP

�(t)

Figure 4: The difference between QLERP angle α(t) and SLERP
β (t)

rotation, and is strictly less then 0.143 radians (8.15 degrees) for
any interpolation parameter t ∈ 〈0,1〉. This is an upper bound;
practical results are much smaller and could hardly cause an ob-
servable defect in the deformed skin. The big advantage of QLERP
is that it can be easily generalized to interpolate multiple rotations
– it suffices to make a convex combination and re-normalization of
multiple quaternions.

4.2 Algorithm Overview

Now we have prepared all the ingredients to describe how the SBS
algorithm works. The task is to transform a vertex v influenced by
joints j1, . . . , jn with convex weights W = (w1, . . . ,wn) to its posi-
tion v′ in the animated skin. In order to obtain an appealing defor-
mation, it is necessary to respect the computed center of rotation rc.
To achieve this, we extend the QLERP scheme to homogeneous ma-
trices Cji . We denote the interpolation of matrices Cji with weights
W as

q(W ;Cj1 , . . . ,Cjn) =
(

Q m
0T 1

)
(6)

and compute Q and m as follows. First, the rotation submatrices
Crot

ji are converted to quaternions q ji . One of them, for example
q j1 , is chosen as pivot. If (q j1 ,q ji) < 0 for any i = 2, . . . ,n, we
replace q ji with −q ji (by analogy to SLERP). Then the QLERP
computes s = w1q j1 + . . .+ wnq jn , which is subsequently normal-
ized to sn = s/‖s‖. Finally, sn is converted to the rotation matrix Q.
The translation part is just linearly interpolated, m = ∑n

i=1 wiCtr
ji .

In order to change the center of rotation from the origin to rc, we
define a homogeneous matrix

T =
(

I rc
0T 1

)
(7)

where I is a 3×3 identity matrix. Then the interpolation of homo-
geneous matrices with respect to the center of rotation rc can be
written as

T q(W ;T−1Cj1 T, . . . ,T−1Cjn T )T−1 (8)

Note that the shift of the center of rotation does not influence the
interpolated rotation – it manifests only in the translation part. The
desired transformation of vertex v is

v′ = T q(W ;T−1Cj1 T, . . . ,T−1Cjn T )T−1v



= Q(v− rc)+
n

∑
i=1

wiCji rc (9)

A detailed derivation of this formula can be found in appendix A.
The latter addend represents the translation induced by the new cen-
ter of rotation.

The equation (9) has to be evaluated once per each vertex, and
therefore should be as efficient as possible. The basic optimization
is to pre-compute the quaternions q ji , because they do not depend
on the actual vertex – only on the joint’s transformation, similarly
as the rotation centers rc. Nonetheless, QLERP has to be executed
for each vertex, since weights w1, . . . ,wn can vary. In order to chal-
lenge the speed of LBS, we apply a following trick.

The vertex v can be represented by a quaternion with zero real part.
In this representation, its rotation by quaternion q′ can be expressed
as q′vq′∗, which is a quaternion with zero real part as well [Eberly
2001]. Although this expression is not efficient for computation
(because of slow quaternion multiplication), it enables us to write
out the rotation of v by quaternion sn as

snvsn
∗ =

1
‖s‖2 svs∗ =

1
(s,s)

svs∗

This suggests to convert already the quaternion s to matrix Q′ and
normalize subsequently by dividing (s,s). Therefore, we can com-

pute the Q matrix from (9) as Q = Q′
(s,s) and save the sqrt operation.

Some attention must be paid because standard routines for quater-
nion to matrix conversion assume a unit-length quaternion. The
conversion of an arbitrary length q′ = w + xi + y j + zk leads to the
following matrix:⎛
⎝ x2 +w2 − y2 − z2 2xy−2wz 2xz+2wy

2xy+2wz y2 +w2 − x2 − z2 2yz−2wx
2xz−2wy 2yz+2wx z2 +w2 − x2 − y2

⎞
⎠

Vertex normal vn is transformed in a similar way as vertex position,
but ignoring the translation

v′n = Qvn

Using the formula (9) we can verify our previous intuitive thinking.
First, if we substitute rc in place of v, no rotation occurs, which
means that rc is indeed a center of rotation. Second, if n = 2 and
Cj1 rc = Cj2 rc (as in the beginning of section 4), the translation part
becomes

w1Cj1 rc +w2Cj2 rc = (w1 +w2)Cj1 rc = Cj1 rc

which is independent of interpolation parameters (weights), i.e.
the translation during interpolation is constant indeed. Third, the
equation (9) is nothing but a generalization of LBS to an arbitrary
method of rotation interpolation. The choice of QLERP is not im-
portant for (9), the matrix Q can be replaced by matrix resulting
from any other interpolation scheme, such as [Buss and Fillmore
2001]. If we substitute Q = ∑wiCrot

ji , i.e. a simple linear combina-
tion of rotation matrices, we obtain

v′ = Q(v− rc)+∑wiCji rc = ∑wiCrot
ji v−∑wiCrot

ji rc +

∑wiCrot
ji rc +∑wiCtr

ji = ∑wiCrot
ji v+∑wiCtr

ji = ∑wiCji v

which is exactly the LBS equation (1). This also shows that LBS is
a special case, which is independent of the center of rotation.

The whole algorithm can be summarized in the following steps:

Figure 5: 3D models used for testing

Hand Woman Creature
vertices 2402 3356 6802
triangles 4800 5205 13590
joints 23 78 56

Table 1: Complexities of example models

• compute matrices Ci for all joints and convert their rotation
parts to quaternions qi

• for each vertex v influenced by joints j1, . . . , jn

– compute (or re-use a cached) center of rotation rc ac-
cording to section 4

– blend quaternions q j1 , . . .q jn using QLERP and convert
the result to matrix Q

– compute the position of vertex v′ in the deformed skin
using the equation (9)

5 Results and Comparison

We tested the SBS algorithm on three models, see Figure 5 and Ta-
ble 1. We compare the shape of the deformed skin on the model of
woman, because human eye is most sensitive to the deformations
of human body. Figure 6 presents results of LBS and SBS executed
on the same posture of the model. Another example has been pre-
sented already in Figure 2. For small deformations, both algorithms
produce similar results, as in the second row of Figure 6 (although
a small loss of volume is noticeable even there). It is remarkable
that the results of SBS are better even though the models have been
optimised to work with the LBS algorithm.

The performance of both algorithms is compared in Table 2. The
measured value is an average time in milliseconds necessary to de-
form one model on a 2.5GHz Athlon PC (rendering time not in-
cluded). In the last row of the table the number of different non-
trivial joint sets is reported (trivial joint set consists of only one joint



Figure 6: Comparison of deformations by LBS (left) and SBS
(right)

or two neighboring joints). Put in another way, it is exactly the num-
ber of singular-value decompositions performed by the SBS algo-
rithm. This number participates considerably on the difference be-
tween times for LBS and SBS. Theoretically, the number of differ-
ent non-trivial joint sets could be very high. Fortunately, this num-
ber is surprisingly small in practice, because the joint influences
tend to be local (e.g. it is unlikely to find vertices influenced by
both left and right wrist). The additional memory needed for SBS
is dominated by caching the computed centers of rotation. How-
ever, this amount of memory is negligible, considering the number
of different non-trivial joint sets.

In order to test the accuracy of QLERP, we experimented with
spherical weighted averages presented in [Buss and Fillmore 2001].
The algorithm proposed in [Buss and Fillmore 2001] behaves like
SLERP for the case of two rotations (in contrast to QLERP, which

Hand Woman Creature
LBS time 3.28 3.59 9.0
SBS time 4.43 4.54 11.37
SVD executions 38 37 56

Table 2: First two rows: run-time of LBS and SBS algorithms in
milliseconds; last row: number of SVD executions

only approximates SLERP results). On the one hand, the differ-
ence in the deformed skin was barely observable, according to the
results from section 4.1. On the other hand, the increase in the ex-
ecution time was quite substantial. For the woman model, the time
increased from original 4.54ms to 22.74ms. This only confirmed
our choice of QLERP.

5.1 Conclusion and Future Work

The proposed skin deformation system is by no means perfect; it
cannot compete with complex, layered models. However, the SBS
algorithm offers reasonable price for elimination of the notorious
LBS artifacts. The time and memory complexity of both algorithms
is comparable. The overhead of replacing an existing LBS imple-
mentation by SBS is minimal, because the input data, as well as
the internal data structures, are the same. In contrast to other meth-
ods, the SBS does not need any additional information, such as the
example skins.

The presented algorithm opens many questions and suggests sev-
eral directions of future work. First of all, we worked only with
vertex weights optimised for LBS. These weights are designed to
suppress the LBS artifacts, even though they cannot remove them.
It would be interesting to find out how much can be the SBS results
improved by a set of weights especially designed for SBS. In order
to accomplish this, a tool to explore the space of SBS deformations
would help considerably. This tool has been presented for LBS
in [Mohr et al. 2003], but the situation of SBS is somewhat more
complex, because our interpolation method is non-linear. Similarly,
it would be possible to estimate the SBS vertex weights from exam-
ples, as was done for LBS in [Mohr and Gleicher 2003]. This could
also cover additional effects like muscle bulging.
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A Interpolation of Rotations with an Arbi-
trary Center

In this appendix we derive the formula (9), which describes the
interpolation of rotations with respect to rc – a custom center of
rotation. Let us denote by K the coordinate system with origin in
rc and identical basis vectors as the world coordinate system. Then



the matrix T (7) can be interpreted as a transformation from K to
the world coordinate system. By analogy, the inverse matrix

T−1 =
(

I −rc
0T 1

)

represents the transformation from the world coordinate system to
K. It follows that T−1Cji T is the transformation Cji expressed with
respect to K. By interpolating these matrices with QLERP

q(W ;T−1Cj1 T, . . . ,T−1Cjn T )

we obtain a matrix working also on vectors in K coordinates. We
can express this matrix with respect to the world coordinate system
easily

T q(W ;T−1Cj1 T, . . . ,T−1Cjn T )T−1

which is exactly the formula (8).

Recall that the matrix Cji has structure

Cji =
(

Crot
ji Ctr

ji
0T 1

)

which enables us to write out

T−1Cji T =
(

Crot
ji Cji rc − rc

0T 1

)

as can be simply verified. Please note that the change of the coordi-
nate system did not influence the rotation part Crot

ji at all. Therefore
the result of QLERP will be, according to equation (6)

q(W ;T−1Cj1 T, . . . ,T−1Cjn T ) =
(

Q −rc +∑n
i=1 wiCji rc

0T 1

)

where Q stands for the interpolation of pure rotations, computed as
indicated in section 4.2. Using T−1v = v− rc and T x = x+ rc, we
see that

v′ = T q(W ;T−1Cj1 T, . . . ,T−1Cjn T )T−1v

= T

(
Q −rc +∑n

i=1 wiCji rc
0T 1

)(
v− rc

1

)

= Q(v− rc)+
n

∑
i=1

wiCji rc

is true for any vector v. This is exactly the equation (9).
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