
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24 (2005), Number 3

Fast Collision Detection for Skeletally Deformable Models

L. Kavan†, J. Žára

Czech Technical University in Prague

Abstract

We present a new method of collision detection for models deformed by linear blend skinning. The linear blend
skinning (also known as skeleton-subspace deformation, vertex-blending, or enveloping) is a popular method to
animate believable organic models. We consider an exact collision detection based on a hierarchy of bounding
spheres. The main problem with this approach is the update of bounding volumes – they must follow the current
deformation of the model. We introduce a new fast method to refit the bounding spheres, which can be executed on
spheres in any order. Thanks to this on-demand refitting operation we obtain a collision detection algorithm with
speed comparable to the standard rigid body collision detection. The algorithm was tested on a variety of practical
situations, including an animated crowd. According to these experiments, the proposed approach is considerably
faster than the previous method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Efficient collision detection (CD) is a crucial part of any ap-
plication simulating interaction between impenetrable ob-
jects. The problem of CD is well studied for the case of
rigid bodies moving in space. Unfortunately, these algo-
rithms do not generalize easily to deformable objects, i.e.
models whose shape changes during the simulation, for ex-
ample virtual humans, animals, plants etc.

We focus on CD based on a bounding-volume hierarchy
(BVH), which is very efficient for the case of rigid objects.
A classical approach how to extend a CD algorithm based
on a BVH to deformable objects is to refit all the bounding
volumes each time the shape of the object changes [vdB97].
However, the complete refitting of the BVH has inherently
at least linear complexity in the number of vertices. It means
that the refitting operation is a bottleneck of the CD algo-
rithm, because the CD test itself runs in a sublinear time in
common situations.

Therefore, it looks appealing to replace the eager BVH
refitting by a lazy method, which refits the bounding vol-

† kavanl1@fel.cvut.cz

umes in an on-demand way, only prior to an intersec-
tion test. An intelligent (on-demand) refitting operation has
been published so far only for two classes of deformations:
linear morphing [LAM03], and reduced deformable mod-
els [JP04].

We present an efficient on-demand refitting operation for
another important class of objects, deformed by linear-blend
skinning (LBS, also known as skeleton-subspace deforma-
tion, vertex-blending, or enveloping). In general, the LBS
deforms the model’s skin using an auxiliary structure – a
skeleton, whose posture influences the shape of the skin. The
LBS algorithm is easy to implement and is applied in many
virtual reality applications and computer games.

We employ our new refitting operation in a CD algorithm
for LBS models. The resulting algorithm is output-sensitive
and runs in a sublinear time in configurations without a large
number of contacts. The speed of our algorithm is similar
to the classic CD algorithms for rigid objects. When com-
pared to the complete BVH refitting, we observe a signif-
icant speed-up. The algorithm has been tested on a variety
of scenarios, including an animated crowd consisting of 50
models in close proximity. All collisions (without approx-
imation) in more than 650 thousand triangles are detected

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

in real-time, see Figure 1. This was not possible using the
previous method.

In the next section we summarize the related work. In sec-
tion 3 we briefly recapitulate the LBS algorithm and sphere-
tree construction. Our proposed refitting operation is pre-
sented in section 4, with details elaborated in the Appendix.
Section 5 describes various experiments used to test our CD
algorithm from different viewpoints.

Figure 1: The scenario for a crowd collision detection ex-
periment: 50 animated creatures with more than 650 thou-
sands triangles together. Our CD algorithm needs an aver-
age 52.83ms per frame, whereas the CD based on the com-
plete BVH refitting needs 779.3ms (15-times more).

2. Related Work

A detailed survey of CD methods is presented in [Eri04].
We focus on CD based on a BVH. The BVH algorithms dif-
fer mainly in the choice of bounding volumes. The classic
bounding volumes are spheres [Qui94], AABBs [vdB97],
OBBs [GLM96], and k-DOPs [KHM∗98].

An interesting branch of CD algorithms are so called time-
critical CD algorithms. Their advantage is that they can be
interrupted and asked for an approximate solution, which is a
desirable feature in real-time applications. Time-critical CD
uses mostly sphere-trees [Hub96, BO02, BO04].

Another important class are continuous CD algorithms.
They consider not only collisions in discrete time inter-
vals, but search for intersections of moving objects during
a time interval [RKC02]. There exist also continuous CD
algorithms for articulated models [RKL∗04, RKLM04], but
working only with objects consisting of rigid parts (without
skin deformation, such as robots).

In this paper, we focus on collisions of deformable ob-
jects. [TKZ∗04] presents a recent survey of deformable CD.
The classic approach to deformable CD is based on a com-
plete BVH refitting, which recomputes all the bounding vol-
umes for new vertex positions (after deformation). [vdB97]
presents a bottom-up refitting for an AABB-tree, which is
reported to be about ten times faster than tree rebuilding.

This algorithm is further improved in [LAM01] by com-
bining bottom-up and top-down update and by using trees
of higher order than binary. Another method of deformable
CD [GDO00] uses a BucketTree, which is based on an oc-
tree. The refitting of a sphere-tree for deformable object is
studied in [BSB∗01]. Their algorithm optimizes the refitting
procedure by considering only the vertices with non-zero
displacement. Although this optimization can help in some
applications, it is useless if the whole model is deformed.

Other approaches to deformable CD are not based on
a BVH. This is the case of techniques based on spatial
hashing [THM∗03] and image-space techniques [HTG04,
GRLM03]. The latter can be executed on a GPU, exploit-
ing its efficient visibility queries. The advantage of the non-
BVH methods is that they do not need any preprocessing.
The disadvantage is the necessity of either hashing or raster-
izing all primitives, which disables the sublinear execution
time.

In the following, we study the CD based on a BVH. The
advantage of a complete BVH refitting is its generality –
the CD does not depend on the actual deformation model,
because it works directly with the displaced vertices. The
drawback is the inefficiency: many bounding volumes may
be refitted uselessly, because the subsequent CD query usu-
ally needs not all the bounding volumes. As a result of ea-
ger refitting, the time complexity is at least linear in the
number of vertices. The more efficient strategy is to exploit
the properties of the deformation model and avoid check-
ing of all vertices. This makes possible to refit only those
bounding volumes that are really necessary for the CD. This
has been successfully implemented for models deformed by
linear morphing [LAM03]. In this case, the bounding vol-
umes are simply deformed by the same algorithm as the ac-
tual object. This is correct, but leads to conservative bound-
ing volumes. A tight bound for linearly combined shapes is
achieved in [KA04]. Another model works with so called re-
duced deformations, which use a linear superposition of dis-
placement fields. An efficient on-demand refitting operation
for this model is described in [JP04].

Nevertheless the virtual characters and similar objects are
usually modeled and visualized using other techniques, such
as the linear blend skinning [MTG03, MG03]. Although it
is possible to use the complete BVH refitting for this case,
it is prohibitively slow for detailed objects, because of its
at least linear complexity. Therefore common applications
such as computer games use typically only a crude approx-
imation of the object geometry in order to detect collisions
quickly. We demonstrate that using our new on-demand re-
fitting operation, the exact CD of LBS models is possible
even in real-time applications.

Conventions

We denote the d-dimensional Euclidean space as Rd , and
write its elements (vectors) in bold. The i-th component of

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

vector v is denoted as vi. We work extensively with con-
vex combinations, and therefore we introduce set of convex
weights

Wd = {x ∈ Rd : x1 ≥ 0, . . . ,xd ≥ 0,
d

∑
i=1

xi = 1}

The convex hull of set A ⊆ Rd , i.e. the smallest convex set
containing A is denoted as CH(A). We denote the length (Eu-
clidean norm) of vector v as ‖v‖.

3. Skeletally Deformable Models

This section briefly reviews the established methods of
skeletal animation. The input consists of a triangular mesh
representing a digital skin, a skeleton, and vertex weights
for each vertex-joint pair. The digital skin is simply a 3D tri-
angular mesh. The skeleton is, formally speaking, a rooted
tree, whose nodes are associated with joints and the edges
conveniently interpreted as bones. The vertex weights rep-
resent the skeleton to skin binding. The triangular mesh and
the skeleton are designed in some reference position, e.g.
virtual humans are often posed in the da Vinci posture.

We label the joints by integer numbers, assigning zero to
the root. Each joint in the reference posture is associated
with a local coordinate system. In the animated posture, the
joints are transformed by rotation (we do not consider nei-
ther translating nor scaling joints). The transformation from
the reference position and orientation of joint j to its posi-
tion and orientation in the animated posture can be described
by a homogeneous matrix. This matrix can be expressed as
a multiplication of successive joint transformations, and we
denote it as Cj , standing for the "complete" matrix.

The most simple skin deformation algorithm assigns each
vertex to only one joint and computes

v′ = Cjv

where v is a vertex in the reference skin associated with
joint j and v′ is its position in the deformed mesh. Some
older computer games animated characters in this way, even
though it does not produce nice, smooth deformations.

The linear blend skinning allows assignment of one ver-
tex to multiple bones. Assume that vertex v is attached to
joints j1, . . ., jn with weights w = (w1, . . . ,wn). The n usu-
ally is a small number, typically from 1 to 4. The weights
are coefficients of a convex combination, which can be ex-
pressed using our abbreviation as w ∈Wn. We call the joints
j1, . . . , jn as the joint-set influencing the vertex v and denote
it as J(v). The weight wi represents the amount of influence
of joint ji. The vertex position in the mesh deformed by LBS
is then computed as

v′ =
n

∑
i=1

wiCji v (1)

The interpretation is straightforward: we transform v by each

associated joint’s matrix Cji and take a convex combination
of individual transformations. The weights w are constant
during the animation.

It is possible that a triangle has each of its vertices as-
signed to a completely different joint-set. Note that LBS is
non-linear with respect to joint angles, which are the val-
ues that actually change during the animation (LBS is linear
only in vertex weights). It indicates that computing bound-
ing volumes for the skin deformed by LBS is not trivial.
Naive approaches, such as deforming bounding volumes in
the same way as the skin, will fail. The methods developed
in [LAM03,KA04,JP04] are also not applicable to the LBS,
because they consider different deformation models.

3.1. Sphere-tree Construction

The basic step of any BVH algorithm is the construction of
the bounding volume tree. We have chosen the most sim-
ple bounding volume – a sphere, because of its one unique
feature: the invariance under rotation. This property is very
advantageous for the on-demand refitting operation. Our
sphere-tree is built by a simple top-bottom algorithm. The
sphere-tree hierarchy is constructed for the skin in the refer-
ence position.

Since our goal is a precise algorithm, we must ensure that
each triangle of the skin is covered by a bounding sphere en-
tirely. (We do not allow covering of one triangle by several
bounding spheres, although this could be advantageous for
long thin triangles.) In the first pass, we construct only a bi-
nary sphere-tree in a way similar to [Qui94]. The tree is built
in a top to bottom manner, bounding first the whole mesh by
one big sphere. Next, we divide the geometry into two parts
by a heuristics according to [Qui94] and proceed recursively.
In contrast to the previous algorithm, we compute the mini-
mal enclosing sphere for a set of vertices in each node. For
this task we use a fast exact algorithm described by [Gae99].
This ensures that our spheres in the reference position are as
tight as possible.

In addition to the standard algorithm, we propose a second
pass which optimizes the sphere tree. We observed that it
may happen that the radii of the children and parent spheres
do not differ considerably (see example in section 5). If a
node c has a sphere of similar size as its parent node p,
it means that it has only a small discriminating power for
the CD query. We can therefore remove the node c from the
tree and assign its children directly to the node p. It does
not violate the correctness of the algorithm, but saves an in-
tersection test and several refitting operations. Therefore in
the second pass, we collapse the binary tree to a general n-
ary tree, following a simple rule. Let us denote the radii of
spheres in nodes c and p as cr and pr. The node c is deleted if

cr > C · pr

where C is a constant. We found the number C = 0.6 to work
well in practice.

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

4. On-demand Sphere Refitting

In this section we describe our main contribution: the effi-
cient method for an on-demand sphere refitting, which is a
key part of fast CD algorithm. Our goal is to detect collisions
between models deformed by LBS in an arbitrary posture.
During preprocessing, a sphere tree for the model in the ref-
erence position is built according to section 3.1. During the
CD query, it is necessary to transform the bounding spheres
from the reference position to the current (animated) posture
preserving their bounding property, i.e. ensuring that a trans-
formed sphere encloses all the geometry that it enclosed in
the reference position. It does not affect the result of the CD
if the transformed sphere is bigger than necessary, although
it may affect the performance.

Observe that the only thing that changes the shape of the
deformed skin during the animation are the joint rotations,
i.e. the transformation matrices Cj. The number of joints in
a typical model is much smaller than the number of ver-
tices. The main idea of our on-demand refitting operation
is to update the bounding spheres using only the joint trans-
formations Cj (and some precomputed information which is
invariant during the animation). As mentioned in section 3,
the LBS does nothing else but a convex combination of indi-
vidual vertex transformations. In order to enclose the trans-
formed geometry, it is sufficient to enclose only the trans-
formed vertices (since triangles are convex).

Assume that we are refitting a sphere S containing vertices
v1, . . .,vl in the reference posture. The list of all joint-sets
influencing v1, . . . ,vl is precomputed and stored in the node
(together with bounding sphere). First assume for simplicity
that all vertices v1, . . . ,vl are influenced by only one joint-set
J, i.e. J = J(v1) = J(v2) = . . . = J(vl).

The LBS transforms the vertex vi to v′i according to equa-
tion (1). From this equation it can be seen immediately that

v′i ∈CH({Cjvi : j ∈ J})
Since vi ∈ S, it indicates that we can transform the whole
sphere S instead of individual vertices. To transform a sphere
by a homogeneous matrix it is sufficient to transform only
the center of the sphere and keep the radius intact (thanks to
the rotation invariance). Since Cjvi ∈CjS for any j ∈ J, we
can write

v′i ∈CH

(
�

j∈J

CjS

)
(2)

for any i = 1, . . . , l. Note that the bounding volume in (2) de-
pends only on the bounding sphere S and the current joint
transformations Cj , i.e. it can be computed in time sublinear
to l – the number of vertices. In practice, we work with mini-
mal enclosing sphere instead of a convex hull. This is correct
indeed, because the sphere is convex and therefore contains
the convex hull.

Unfortunately, the bounding volume according to (2) is

very loose (conservative). This is especially apparent if
sphere S contains only a few vertices. The bad approxima-

tion quality of CH
(�

j∈J CjS
)

follows from the fact that it

contains points v′i for arbitrary convex weights. Put in other
words, it encloses not only the current LBS deformation,
but all possible LBS deformations that could be achieved by
varying vertex weights. We can make the bounding spheres
much more tight by taking the actual model’s vertex weights
into account.

This is illustrated in Figure 2. In the left image we see
three vertices v1,v2,v3 bounded by sphere S in the reference
position. These vertices are influenced by joints j1 and j2,
let us say that the weights of v1 are 0.6,0.4 (for j1 and j2),
of v2: 0.5,0.5, and of v3: 0.4,0.6 (indicated by the color).
The middle image shows the animated skeleton. All possible
positions of the deformed vertex v′i form the set

Li = {wCj1 vi +(1−w)Cj2vi : w ∈ 〈0,1〉}
which are the line segments illustrated in the picture. The
bounding volume BV1 given as the convex hull of trans-
formed spheres Cj1 S and Cj2 S encloses the lines L1,L2,L3
and therefore also the new vertex positions v′1,v′2,v′3. A
smaller bounding volume BV2 is depicted in Figure 2 right. It
is created by considering that vertex weights for j1 fall into
interval 〈0.4,0.6〉. Therefore it is sufficient to enclose only
shorter line segments

{wCj1 vi +(1−w)Cj2vi : w ∈ 〈0.4,0.6〉}
which gives BV2. The next section describes how to exploit
this observation to create tighter refitted spheres.

4.1. Optimized Sphere Refitting

Let us return to the general situation, assuming that J =
{1, . . . ,n}. For any j ∈ J we define the smallest interval of
weights 〈l j,h j〉 such that all vertex weights for joint j fit
into this interval. These weight intervals are used to create
smaller refitted spheres. The following construction is based
on a concept of convex combination of spheres – a general-
ization of convex combination of points. We discuss and jus-
tify this concept in the Appendix. For now it is sufficient to
suppose that a convex combination of spheres C1S, . . . ,CnS
with weights w ∈Wn, written as

n

∑
j=1

w jCjS

is a sphere whose center (resp. radius) is a convex com-
bination of centers (resp. radii) of CjS with weights w. In
order to simplify the notation we define S j = CjS for each
j = 1, . . . ,n.

In the Appendix we also show that it is possible to rewrite
the bound (2) to

CH

(
�

j∈J

S j

)
=
�

w∈Wn

n

∑
j=1

w jS j (3)

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

j1 j2

jointmesh

vertices

C Sj2

C Sj1

v1
v2 v3 sphere S

BV1
BV2

bone

C v1j1

C v1j2

v1' v2' v3'

Figure 2: Left: the reference posture, middle and right: the animated posture. Cj1 (resp. Cj2 ) is the transformation matrix of
joint j1 (resp. j2). Bounding volume BV1 is bigger than necessary, because it encloses all possible deformations of vertices
v1,v2,v3. Our algorithm uses an optimized bounding volume BV2, which considers the actual vertex weights.

which is a generalization of a well-known identity for convex
hulls of points. Using this expression, we can take the weight
intervals into account by defining W ′

n = {x ∈Wn : li ≤ xi ≤
hi, i = 1, . . .n} and changing the bounding volume to

M′ =
�

w∈W ′
n

n

∑
j=1

w jS j (4)

This is correct, because only the weights that actually ap-
pear among the bounded vertices are important, and all these
weights are within 〈l1,h1〉× · · ·× 〈ln,hn〉. Because of equa-
tion (3), we call the set M′ as the generalized convex hull of
spheres S1, . . . ,Sn. It is obvious that the generalized convex
hull is always a subset of the non-generalized one, and they
are equal iff all weight intervals are 〈0,1〉.

The resulting refitted sphere computed by our algorithm
is therefore the bounding sphere of M′. From the definition
it is not straightforward to see how M′ looks like, and how
its enclosing sphere could be efficiently computed. This is
an essential part of the proposed algorithm and therefore de-
serves our attention.

The main trick is that instead of working directly with
spheres S1, . . . ,Sn, we compute another set of spheres
R1, . . . ,Rm, whose ordinary (non-generalized) convex hull
will be equivalent to the generalized convex hull of spheres
S1, . . .,Sn. The spheres R1, . . . ,Rm reduce the problem to
computing the minimal enclosing sphere of spheres.

Our task now is to transform the set of spheres
S1, . . .,Sn with weight intervals 〈l1,h1〉, . . ., 〈ln,hn〉 into
spheres R1, . . . ,Rm, turning the generalized convex hull into
the standard one. Let us examine the set W ′

n . Assuming nat-
urally 0 ≤ li ≤ hi ≤ 1, the set W ′

n can be written explicitly
as

W ′
n = {w ∈ Rn : li ≤ wi ≤ hi, i = 1, . . .n,

n

∑
i=1

wi = 1}

We can interpret W ′
n geometrically as an intersection of

2n half-spaces and one hyperplane. It means that W ′
n is an

(n − 1)-dimensional convex set in Rn, and it can be ex-
pressed as a convex hull of some points in Rn. We call these
points corners and denote them as r1, . . . ,rm. Because the
set W ′

n depends only on constant vertex weights, the cor-
ners can be precomputed and stored along with the model.
We employed only a simple brute-force computation of cor-
ners: testing all intersections and discarding those outside
〈l1,h1〉 × . . .× 〈ln,hn〉. Once the corners are known, the
spheres R1, . . . ,Rm can be computed as

Ri =
n

∑
j=1

ri jS j, i = 1, . . . ,m (5)

In order to justify this formula, consider that W ′
n is a con-

vex hull of r1, . . . ,rm, and thus can be expressed as W ′
n =

{∑m
i=1 uiri : u ∈Wm}. Therefore

�

w∈W ′
n

n

∑
j=1

w jS j =
�

u∈Wm

n

∑
j=1

(
m

∑
i=1

uiri j

)
S j

because the j-th component of ∑m
i=1 uiri is ∑m

i=1 uiri j . Since
the convex combination of spheres is nothing but a convex
combination of their centers and radii, we can swap the sums

�

u∈Wm

n

∑
j=1

(
m

∑
i=1

uiri j

)
S j =

�

u∈Wm

m

∑
i=1

ui

(
n

∑
j=1

ri jS j

)

and
(

∑n
j=1 ri jS j

)
is the sphere Ri. Putting the equations to-

gether we see that

�

w∈W ′
n

n

∑
i=1

wiSi =
�

u∈Wm

m

∑
i=1

uiRi

It shows that the generalized convex hull of spheres
S1, . . . ,Sn is really equal to the ordinary convex hull of
spheres R1, . . . ,Rm.

An example is presented in Figure 3. In the picture, the
CH1 is the convex hull of spheres S1,S2,S3. The CH2 is
the generalized convex hull of spheres S1,S2,S3 with re-
spect to weight intervals 〈0,0.6〉, 〈0,1〉, 〈0,1〉. The right part

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

of the picture demonstrates that CH2 can be also expressed
as CH(R1,R2,R3,R4) where spheres R1,R2,R3,R4 are com-
puted according to equation (5).

S1

S2

S3

R1

R2

R3

R4

CH1 CH2

Figure 3: The standard and generalized convex hull of
spheres S1,S2,S3. The generalized convex hull of S1,S2,S3
is equivalent to the ordinary convex hull of spheres
R1,R2,R3,R4.

4.2. Algorithm Overview

In this section we summarize our CD algorithm for mod-
els deformed by LBS. First, we make some off-line prepro-
cessing for every model. The preprocessing involves build-
ing the sphere tree, as discussed in section 3.1. For each
bounding sphere S in the tree we perform further precom-
putations. Let us assume that the sphere S encloses vertices
v1, . . .,vl . Primarily we determine the joint-sets J1, . . . ,Jk
that cover all the joints-sets within v1, . . . ,vl , i.e. such that
J1 ∪ . . .∪ Jk = J(v1)∪ . . .∪ J(vl ). We discard potential du-
plicates, ensuring that Ji 	= Jj for each i 	= j.

For each joint set Ji = { ji1, . . . , jipi}, we compute the
weight intervals as follows. We start with empty weight
intervals and check all vertices associated with Ji. Their
weights are included into 〈li1,hi1〉, . . . , 〈lipi ,hipi〉, inflating
the intervals if necessary. Then we compute the corners
ri1, . . .,rimi of the resulting weight bound, as indicated in the
previous section. We store the corners and the joint-sets in
the final tree, while the vertices v1, . . . ,vl can be discarded.

When processing a collision detection query for animated
(deformed) models, we apply the standard algorithm: it first
tests the parent spheres for intersection. If they intersect, it
proceeds recursively to the children – possibly even to the
individual triangles. If there is no intersection, then the rou-
tine reports no collisions. We modify this algorithm only by
adding the refitting operation, which is inserted just prior
to the sphere intersection test. This ensures that we work
with correct bounding spheres even though the model has
changed its shape.

In order to refit the bounding sphere S, we consider each
of its joint-sets J1, . . . ,Jk. For each Ji = { ji1, . . . , jipi} we
transform S by the transformations of joints ji1, . . . , jipi .

It gives spheres Si1 = Cji1 S, . . . ,Sipi = Cjipi
S, which are

blended using the equation (5) and the corners ri1, . . . ,rimi .
The result of blending is another set of spheres Ri1, . . . ,Rimi .
We put together those spheres for all joint-sets. Finally,
we enclose the spheres R11, . . . ,Rkmk

by a single bounding
sphere, which is the result of the refitting operation. We use
only a simple approximation of minimal enclosing sphere of
spheres: the center of the resulting bounding sphere is set to
the average of centers of R11, . . . ,Rkmk

. The radius is then de-
termined so that the resulting sphere encloses R11, . . . ,Rkmk

.
The same approximation is used in [JP04], because the speed
is much more important for the CD than the accuracy of the
smallest enclosing sphere. Note that according to the previ-
ous section, the CH(R11, . . . ,Rkmk

) bounds the current defor-
mation of the mesh.

The time complexity of the refitting operation can be de-
rived as follows: the computation of spheres Si1, . . . ,Sipi is
only the transformation of the center of sphere S by the ho-
mogeneous matrix. Since the radius is unchanged, this re-
quires only 18pi floating point operations (the pi is the num-
ber of joints in the i-th joint set). The blending of spheres
according to equation (5) is also fast, because the corners
are precomputed, and the blending of spheres is nothing
but blending of their centers and radii. The computation of
spheres Ri1, . . . ,Rimi requires 8pimi − 4mi flops (the mi is
the number of corners of the i-th joint set). The approxi-
mate smallest enclosing sphere of spheres Ri1, . . . ,Rimi can
be computed using 15mi −2 flops. The total number of flops
necessary for the refitting operation is thus ∑k

i=1(18pi +
11mi + 8pimi − 2). The important fact is that the execution
time of the refitting operation does not depend on the geom-
etry that S actually encloses.

5. Results and Comparison

We tested our collision detection algorithm on three models,
whose complexities are described in Table 1. First we ex-

Vertices Triangles Joints
Dwarf 859 1664 45
Man 4435 8270 27
Creature 6682 13590 56

Table 1: Complexities of example models

amine the tightness of the bounding spheres. Before the tree
optimization, the total number of spheres for the creature
model is 27079 and the sphere-tree depth is 22. The average
radii of spheres for each level are: 34.55 31.82 23.63 18.86
13.07 7.32 4.86 3.46 2.60 1.92 1.47 1.14 0.90 0.72 0.61 0.53
0.47 0.42 0.39 0.38 0.37 0.36. Note that the average radii
on certain neighbouring levels are close to each other. This
is improved by collapsing the tree according to section 3.1.
After this step with C = 0.6 only 18679 spheres remain in the
tree and its depth decreases to 9, while the number of chil-
dren increases from 2 to 15 (the extremal case). The result

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

is presented in Figure 4. In the top row of the picture we see
the reference position of the model, and in the bottom an an-
imated one. The spheres on levels 4 and 6 of the tree, refitted
by our algorithm, are also visualized in Figure 4.

Figure 4: Top: reference posture of the creature with spheres
on levels 4 and 6 of the tree (precomputed according to sec-
tion 3.1), down: an animated posture with spheres refitted by
our algorithm (during run-time).

The average radii of the resulting spheres in the refer-
ence position are in the second column of Table 2 (Refer-
ence). The third column of Table 2 (On-demand) lists av-
erage radii of spheres refitted by our algorithm for the ani-
mated posture (Figure 4 bottom). Results for bottom-up re-
fitted spheres are in the fourth column. The average radii
of minimal enclosing spheres are reported in the last col-
umn of Table 2. They are computed directly from the de-
formed vertices and thus represent the best possible result of
any refitting. From Table 2 as well as from Figure 4 it as ap-

Level Reference On-demand Bottom-up Best
1 34.55 43.89 45.68 33.33
2 18.86 26.17 24.63 19.39
3 7.38 8.05 9.21 7.31
4 3.68 3.95 4.58 3.70
5 1.69 1.77 2.27 1.70
6 0.91 0.94 1.17 0.92
7 0.61 0.63 0.74 0.61
8 0.42 0.43 0.49 0.42
9 0.30 0.30 0.35 0.30

Table 2: Average radii of spheres on each level of the sphere
tree for the creature model. The column "Reference" consid-
ers spheres in the reference position, while the other columns
refer to spheres in the animated posture.

parent that our on-demand refitting operation produces tight
bounding spheres. On most levels, the on-demand refitting
overcomes the bottom-up refitting, and is not far from the op-
timal solution. Notice that the gap between on-demand and
best possible results is smaller in higher levels. This is un-
derstandable, because the on-demand refitted spheres deep
in the tree are typically only transformed reference spheres,
which are optimal (section 3.1).

We tested the performance of the collision detection on
a 2.5Ghz Athlon CPU under normal working conditions. In
the first scenario, two men are walking towards each other.
One frame of the animation is presented in Figure 5, together
with spheres refitted by our algorithm. Our algorithm detects

Figure 5: A collision of two man models with spheres on
level 5 and 6 of the tree. Our lazy algorithm does not refit
the red spheres, in contrast to eager bottom-up refitting.

all collisions in average 0.36ms per frame, while the algo-
rithm using the complete bottom-up refitting needs 18.13ms.
The almost 50 times faster execution is achieved by refitting
only the spheres that are important for the CD query. Our
algorithm refits only the blue spheres in Figure 5, while the
bottom-up refitting has to refit all spheres, both blue and red.
The time for the bottom-up refitting itself is 17.28ms, which
reveals that this is the bottleneck of the CD indeed. The re-
fitting of all the 15339 spheres by our on-demand refitting
operation takes 20.21ms (1.3µs per sphere). This shows that
our refitting operation is quite fast in practice, which com-
plements the flops count derived in the end of section 4.2.

The previous scenario resulted in great speed-up because
the number of intersections was not big. In order to test the
algorithm in a more complex situation, we designed a "worst
case" scenario: two creatures walking through each other,
see Figure 6. Such a scenario is unlikely to occur in prac-
tice, because collision response algorithms usually prevent
large interpenetrations automatically. In this animation the
average time of our CD test is 6.97ms, and the CD using the
bottom-up refitting takes 37.1ms. The speed-up of our ap-
proach is not as high as in the previous example, but shows
that the on-demand refitting still performs much better than
the bottom-up.

Some applications do not need to determine the whole set

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

Figure 6: The worst case scenario for our algorithm, involv-
ing a lot of collisions.

of colliding triangles – the information whether the mod-
els are intersecting is sufficient, e.g. for backtracking to a
collision-free state. In such a situation, the CD algorithm
can stop after finding the first intersecting triangle pair. The
CD algorithm with our on-demand refitting operation ben-
efits greatly from this fact, unlike the complete bottom-up
refitting. In this case, the average time of our CD test for the
same scenario drops down to 0.82ms, while the CD with the
bottom-up refitting time improves only slightly: to 30.18ms.

Another important aspect of a CD algorithm is its scalabil-
ity, i.e. how its performance changes when the size of input
data increases. We executed a test on a pair of dwarf models
in an animated posture, both in collision free and interfering
position, see Figure 7. Starting with a low-polygonal model,
we subdivided each triangle to four smaller ones, which en-
sures the same shape for all CD queries. The results for the
colliding situation are presented in Table 3. The speed-up
of our algorithm increases with the size of the model. This
could be expected because the proposed on-demand refitting
does not depend on the actual geometry of the model, unlike
the bottom-up refitting algorithm. On the posture from Fig-
ure 7 right we performed also a comparison with rigid body
CD. A brand new sphere tree built for unsubdivided ani-
mated dwarves detects collisions in 0.7ms, whereas our al-
gorithm needs 1.33ms. (However, the building of a tree for

Figure 7: The meshes of dwarf models were subdivided sev-
eral times in order to evaluate the performance of our al-
gorithm while increasing the size of the input. The collision
free position (left) gives great speed-ups: 32, 126, 502 and
1995 times for subdivision levels 0,1,2,3 respectively. The
more decent results for the interfering situation (right) are
reported in Table 3.

Subdivisions 0 1 2 3
Triangles 1664 6656 26624 106496
Spheres 2046 8821 36506 147025

Collisions 46 90 178 350
On-demand time 1.33 2.17 3.8 8.04
On-demand S-S 4866 9309 17083 37682
Bottom-up time 5.24 18.1 66.37 260
Bottom-up S-S 9515 19833 40527 86437

Speed-up 3.9 8.34 17.47 32.34

Table 3: The performance comparison for subdivided dwarf
models, Figure 7 right. "Spheres" is the total number of
spheres in the tree and "S-S" stands for the number of
sphere-sphere overlap tests. The row "Speed-up" is the ratio
between average time for CD using the bottom-up refitting
and CD with our on-demand refitting.

the rigid body CD lasts 1549ms, thus this is not a method
of choice.) It shows that the performance of our deformable
CD algorithm is comparable to rigid body CD.

Finally, we tested our CD algorithm on a crowd simula-
tion. The scenario consists of 50 creature models moving in
a close proximity, see Figure 1. In this case, we obtained a
15-times faster collision detection query.

6. Conclusions

We demonstrate that an exact and fast collision detection
is possible for models deformed by linear blend skinning.
The key part of the new collision detection algorithm and
our main contribution is an efficient operation that refits
the bounding spheres in any order. This refitting operation
speeds up the full collision detection considerably when
compared to the bottom-up refitting. It outperforms the
bottom-up refitting especially when testing only for the in-
tersection (without reporting all colliding triangles).

The proposed algorithm suggests several directions of fu-
ture work. The collision detection is nothing but an exam-
ple of application of our new refitting method. It can speed-
up many other algorithms as well, e.g. visibility culling. A
possible improvement would be the support of interruptibil-
ity: our on-demand refitting operation could be useful even
in time-critical collision detection, although we did not in-
vestigate this yet. We also did not address the problem of
continuous collision detection, which can be especially in-
teresting in deformable objects. To the best of our knowl-
edge, no quantitative comparison of BVH-based collision
detection methods with hashing and image-space techniques
has been presented in the literature. A thorough comparison
could help to determine the direction of the prospective re-
search in collision detection.

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

7. Acknowledgments

This work has been partly supported by the Ministry of Ed-
ucation, Youth and Sports of the Czech Republic under re-
search program MSM 6840770014 (Research in the Area of
the Prospective Information and Navigation Technologies).

We would like to thank to the anonymous reviewers as
well as to Daniel Sýkora and Ivana Kolingerová for numer-
ous valuable comments. We thank also to Štěpán Prokop
and Psionic for providing the example models and to Eliška
Žárová and Ondřej Žára for help with the accompanying
video.

Appendix A: Generalized Convex Combinations

We define the convex combination of spheres S1, . . .Sn (or
any general convex sets) with weight vector w ∈Wn as:

n

∑
i=1

wiSi ≡
{

n

∑
i=1

wixi : xi ∈ Si

}

i.e. the set of convex combinations of all points from
S1, . . .,Sn. This definition is a natural extension of standard
convex combination of points. The following lemma claims
that a convex combination of spheres is a sphere which can
be computed as a convex combination of sphere centers and
radii.
Lemma 1: Let S1, . . .Sn be spheres in Rd with centers ci ∈
Rd and radii ri. If w ∈Wn then

n

∑
i=1

wiSi = S

where S is a sphere with center c = ∑n
i=1 wici and radius

r = ∑n
i=1 wiri.

Proof: Let x ∈∑n
i=1 wiSi. According to the definition of con-

vex combination of convex sets, we have xi ∈ Si such that
x = ∑n

i=1 wixi. Obviously ‖xi − ci‖ ≤ ri for each i = 1, . . .n.
Multiplying the equations by wi and summing them together
yields

n

∑
i=1

‖wixi −wici‖ ≤
n

∑
i=1

wiri

The triangle inequality says that∥∥∥∥∥
n

∑
i=1

wixi −
n

∑
i=1

wici

∥∥∥∥∥≤
n

∑
i=1

‖wixi −wici‖

Putting both inequalities together gives

‖x− c‖ =

∥∥∥∥∥
n

∑
i=1

wixi −
n

∑
i=1

wici

∥∥∥∥∥≤
n

∑
i=1

wiri = r

which shows that x∈ S, and therefore ∑n
i=1 wiSi ⊆ S. In order

to show the opposite inclusion, choose x ∈ S, i.e. satisfying
‖x− c‖ ≤ r. Consider points

xi =
(x− c)ri

r
+ ci

for i = 1, . . .n. Note that that xi ∈ Si, because

‖xi − ci‖ =
∥∥∥∥ (x− c)ri

r

∥∥∥∥≤ r ri

r
= ri

Moreover,
n

∑
i=1

wixi =
x− c

r

n

∑
i=1

wiri +
n

∑
i=1

wici =
(x− c)r

r
+ c = x

which shows that x ∈ ∑n
i=1 wiSi, and therefore also S ⊆

∑n
i=1 wiSi. �

The lemma 1 is interesting by itself, but we use it also to
proof that the bounding volume from equation (3) is convex
indeed.
Lemma 2: Let S1, . . .Sn are spheres in Rd . Then the set

M =
�

w∈Wn

n

∑
j=1

w jS j

is convex.
Proof: Let us assume that sphere Si has center ci ∈ Rd and
radius ri. We fix an arbitrary x ∈ M,x′ ∈ M and λ ∈ 〈0,1〉,
and we have to proof that x′′ = (1−λ)x+λx′ ∈ M. By the
definition of M, there exist weight vectors w ∈Wn and w′ ∈
Wn such that x ∈ ∑n

i=1 wiSi and x′ ∈ ∑n
i=1 w′

iSi. According to
lemma 1, it means that

‖x−
n

∑
i=1

wici‖ ≤
n

∑
i=1

wiri, ‖x′−
n

∑
i=1

w′
ici‖ ≤

n

∑
i=1

w′
i ri

Consider weights

w′′
i = (1−λ)wi +λw′

i , i = 1, . . . ,n

and observe that w′′ ∈Wn: obviously w′′
i ≥ 0 and ∑n

i=1 w′′
i =

(1−λ)∑n
i=1 wi +λ∑n

i=1 w′
i = 1. Using the triangle inequality

we derive∥∥x′′−∑w′′
i ci
∥∥ =∥∥(1−λ)x−∑(1−λ)wici +λx′−∑λw′

ici
∥∥≤

(1−λ)
∥∥x−∑wici

∥∥+λ
∥∥x′−∑w′

ici
∥∥≤

(1−λ)∑wiri +λ∑w′
i ri = ∑w′′

i ri

Again by lemma 1, this means that x′′ ∈ ∑n
i=1 w′′

i Si and thus
also x′′ ∈ M. �

The correctness of equation (3) is then straightforward:
Lemma 3 Let S1, . . .Sn are spheres in Rd . Then the set M =�

w∈Wn ∑n
j=1 w jS j is the convex hull of S1 ∪· · ·∪Sn.

Proof: By lemma 2 we know that the set M is convex, and
M obviously contains S1, . . . ,Sn. Therefore it is sufficient to
show that if any other convex set C ⊆ Rd contains S1, . . .Sn,
then it contains also M. To show that C contains M, it is
sufficient to show that ∑n

i=1 wiSi ⊆ C for any w ∈ Wn. Let
us choose x ∈ ∑n

i=1 wiSi. By definition, for any i = 1, . . . ,n
we have xi ∈ Si such that x = ∑n

i=1 wixi. We assumed Si ⊆C
which means that xi ∈C for each i = 1, . . . ,n. The convexity
of C assures x ∈C. This verifies that ∑n

i=1 wiSi ⊆C. �

c© The Eurographics Association and Blackwell Publishing 2005.



L. Kavan & J. Žára / Fast Collision Detection for Skeletally Deformable Models

References

[BO02] BRADSHAW G., O’SULLIVAN C.: Sphere-
tree construction using dynamic medial axis approxima-
tion. In SCA ’02: Proceedings of the 2002 ACM SIG-
GRAPH/Eurographics symposium on Computer anima-
tion (2002), ACM Press, pp. 33–40.

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive
medial-axis approximation for sphere-tree construction.
ACM Trans. Graph. 23, 1 (2004), 1–26.

[BSB∗01] BROWN J., SORKIN S., BRUYNS C.,
LATOMBE K., STEPHANIDES M.: Real-time simu-
lation of deformable objects: Tools and application.
Computer Animation (2001).

[Eri04] ERICSON C.: Real-Time Collision Detection.
Morgan Kaufmann Publishers Inc., 2004.

[Gae99] GAERTNER B.: Fast and robust smallest enclos-
ing balls. In ESA ’99: Proceedings of the 7th Annual
European Symposium on Algorithms (1999), Springer-
Verlag, pp. 325–338.

[GDO00] GANOVELLI F., DINGLIANA J., O’SULLIVAN

C.: Buckettree: Improving collision detection between
deformable objects. In Proceedings of the 16th Spring
Conference on Computer Graphics (2000), Comenius
University, Bratislava.

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.:
OBBTree: A hierarchical structure for rapid interference
detection. Computer Graphics 30, Annual Conference Se-
ries (1996), 171–180.

[GRLM03] GOVINDARAJU N. K., REDON S., LIN

M. C., MANOCHA D.: Cullide: interactive collision de-
tection between complex models in large environments
using graphics hardware. In HWWS ’03: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware (Aire-la-Ville, Switzerland, 2003),
Eurographics Association, pp. 25–32.

[HTG04] HEIDELBERGER B., TESCHNER M., GROSS

M.: Detection of collisions and self-collisions using
image-space techniques. In Proceedings of Computer
Graphics, Visualization and Computer Vision WSCG’04
(2004), pp. 145–152.

[Hub96] HUBBARD P. M.: Approximating polyhedra with
spheres for time-critical collision detection. ACM Trans.
Graph. 15, 3 (1996), 179–210.

[JP04] JAMES D. L., PAI D. K.: BD-Tree: output-
sensitive collision detection for reduced deformable mod-
els. ACM Trans. Graph. 23, 3 (2004), 393–398.

[KA04] KLUG T., ALEXA M.: Bounding volumes for lin-
early interpolated shapes. In Computer Graphics Interna-
tional (2004), pp. 134–139.

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL

J. S. B., SOWIZRAL H., ZIKAN K.: Efficient colli-
sion detection using bounding volume hierarchies of k-
DOPs. IEEE Transactions on Visualization and Computer
Graphics 4, 1 (/1998), 21–36.

[LAM01] LARSSON T., AKENINE-MOLLER T.: Colli-
sion detection for continuously deforming bodies. In Eu-
rographics (2001).

[LAM03] LARSSON T., AKENINE-MOLLER T.: Efficient
collision detection for models deformed by morphing.
The Visual Computer 19, 2–3 (2003), 164–174.

[MG03] MOHR A., GLEICHER M.: Building efficient, ac-
curate character skins from examples. ACM Trans. Graph.
22, 3 (2003), 562–568.

[MTG03] MOHR A., TOKHEIM L., GLEICHER M.: Di-
rect manipulation of interactive character skins. In Pro-
ceedings of the 2003 symposium on Interactive 3D graph-
ics (2003), ACM Press, pp. 27–30.

[Qui94] QUINLAN S.: Efficient distance computation be-
tween non-convex objects. In ICRA (1994), pp. 3324–
3329.

[RKC02] REDON S., KHEDDAR A., COQUILLART S.:
Fast continuous collision detection between rigid bodies.
Comput. Graph. Forum 21, 3 (2002).

[RKL∗04] REDON S., KIM Y. J., LIN M. C., MANOCHA

D., TEMPLEMAN J.: Interactive and continuous collision
detection for avatars in virtual environments. In VR ’04:
Proceedings of the IEEE Virtual Reality 2004 (VR’04)
(2004), IEEE Computer Society, p. 117.

[RKLM04] REDON S., KIM Y. J., LIN M. C.,
MANOCHA D.: Fast continuous collision detection for
articulated models. In Proceedings of ACM Symposium
on Solid Modeling and Applications (2004).

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MUELLER M., POMERANETS D., GROSS M.: Op-
timized spatial hashing for collision detection of
deformable objects. In Proc. Vision, Modeling, Visualiza-
tion VMV’03 (Munich, Germany, 2003), pp. 47–54.

[TKZ∗04] TESCHNER M., KIMMERLE S., ZACHMANN

G., HEIDELBERGER B., RAGHUPATHI L., FUHRMANN

A., CANI M.-P., FAURE F., MAGNETAT-THALMANN

N., STRASSER W.: Collision detection for deformable
objects. In Proc. Eurographics, State-of-the-Art Re-
port (Grenoble, France, 2004), Eurographics Association,
pp. 119–135.

[vdB97] VAN DEN BERGEN G.: Efficient collision detec-
tion of complex deformable models using AABB trees.
Journal of Graphics Tools: JGT 2, 4 (1997), 1–14.

c© The Eurographics Association and Blackwell Publishing 2005.


