
15

Building Accurate Physics-based Face Models from Data

PETR KADLEČEK, University of Utah, USA and Charles University, Czech Republic
LADISLAV KAVAN, University of Utah, USA

Fig. 1. We build a static anatomical face model from the MRI and use 3D surface scans as training data to
learn mechanical parameters that explain deformations of the real face using physics-based simulation.

The human face is an anatomical system exhibiting heterogenous and anisotropic mechanical behavior. This
leads to complex deformations even in a neutral facial expression due to external forces such as gravity. We
start by building a volumetric model from magnetic resonance images of a neutral facial expression. To obtain
data on facial deformations we capture and register 3D scans of the face with different gravity directions
and with various facial expressions. Our main contribution consists in solving an inverse physics problem
where we learn mechanical properties of the face from our training data (3D scans). Specifically, we learn
heterogenous stiffness and prestrain (which introduces anisotropy). The generalization capability of our
resulting physics-based model is tested on 3D scans. We demonstrate that our model generates predictions of
facial deformations more accurately than recent related physics-based techniques.
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1 INTRODUCTION
Facial appearance plays an important role in many areas of life, including communication and
interpersonal relationships. The human face is a fascinating mechanical system able to generate
facial expressions by contractions of delicate facial muscles. Forces due to contractions of these
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muscles are transmitted to adjacent muscles, the bones and the skin via a network of connective
tissues. Despite decades of progress, accurate biomechanical face modeling remains a challenge.
Computer graphics typically employs direct deformation models such as blendshapes which capture
only the surface (skin) shapes and do not attempt to model the internal biomechanics or anatomy
of the face. Anatomical face models [Sifakis et al. 2005] have been recently gaining popularity [Bao
et al. 2018; Cong et al. 2016; Ichim et al. 2017; Kozlov et al. 2017]. One of their advantages is the
ability to add realistic physics-based effects such as collisions or inertia. Physics-based simulation
in computer graphics typically involves tuning of geometric and material properties to achieve the
desired visual effect. This process is non-trivial and time consuming even for experienced technical
artists. Measurement-based approaches for determining mechanical parameters of biological soft
tissues have been developed in biomechanics, typically involving mechanical loading experiments
with excised samples of tissues [Lapeer et al. 2011] or using a specifically designed aspiration
device [Luboz et al. 2014].

In this paper we propose a new approach to creating realistic physics-based face models, aiming
to bridge the gap between graphics and biomechanics. We designed a simple synthetic experiment
shown in Figure 2 to determine whether we can learn complex material properties of a cylinder
affected by known external forces and observations of its surface deformations. The results showed
(Figure 2 c) that even a single observation can be used for a non-trivial material parameter fitting.
This sparked the idea of using various observations of facial soft tissue to discover its complex
structure. We start by building a static face model in a neutral expression from an MRI scan. Note
that MRI is not essential for our method and any template model adapted [Dicko et al. 2013] to
the neutral scan can be used with some loss of accuracy depending on the distance of the adapted
template model from the subject-specific skull geometry as shown in Section 5. We generate our
segmentations and tet-meshes using existing tools [Fedorov et al. 2012] and claim no contributions
in this part. Our main contribution consists of automated learning of mechanical properties of our
subject’s face from data (3D scans of facial deformations).

An interesting fact attributable to the high elasticity of the face is that changing the direction of
the gravity leads to surprisingly large deformations [Ozsoy et al. 2015]. By varying the direction
of the gravity (by posing the subject’s head in various orientations) and by observing various
facial expressions created by voluntary muscle activations, we can deduce the composition and
mechanical properties of facial soft tissues. To be able to explain our captured facial deformations,
we found that in addition to realistic muscle activation models, it is important to use heterogeneous
elastic properties including prestrain. Prestrain refers to a biomechanical model of rest-pose stresses
of biological tissues [Gee et al. 2010], analogous to the tension in the strings of a guitar. Adding
prestrain introduces anisotropic trainable parameters which improves the explanatory power
of our model while being well motivated biologically. Our method does not require any manual
segmentation of individual muscles, nor any prior knowledge of muscle fiber directions of a template
model.

Fig. 2. Synthetic experiment for learning material parameters. a) Tetmesh in a rest pose with color coded
varying stiffness not affected by gravity. b) The mesh in quasi-static equilibrium fixed on sides with applied
gravity force c) Our prediction of stiffness parameters given the rest pose and surface of the tetmesh in b)
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Fig. 3. Given a static face model, we use 3D surface scans as training data in our inverse modeling problem.
The result is a physics-based mechanical model with material parameters that explain deformations of the
real face.

Contributions. To our knowledge, computation of mechanical parameters of soft tissues from
in-vivo surface measurements (3D scans) has not been attempted before. We present a formulation
of a physics-based inverse problem that is estimating anatomical model parameters while addressing
challenges stemming from fitting living tissue scans. Our problem can be robustly solved using
state-of-the-art solvers. We believe that our work makes a step forward towards realistic physics-
based modeling capable of explaining mechanical response of soft tissues and formation of facial
expressions.

2 RELATEDWORK
Facial animation dates back to the pioneering work [Blanz and Vetter 1999; Terzopoulos and Waters
1990]. More recently, high-fidelity capture setups of actor’s faces have become important in the
film and game industries, such as Medusa system [Beeler et al. 2010; Beeler and Bradley 2014;
Beeler et al. 2011] or other [Alexander et al. 2010; Smith et al. 2017; von der Pahlen et al. 2014].
Method for accurate registration and stabilization have been explored, including kinematics models
of a jaw [Beeler and Bradley 2014; Yang et al. 2018; Zoss et al. 2018]. Industrial pipelines typically
involve data-driven blendshape-type models which continue to be an important topic of research
[Ichim et al. 2015; Lewis et al. 2014; Li et al. 2017; Yoon et al. 2017; Zell et al. 2017]. In general,
the chief advantage of blendshape-type approaches is direct control of skin deformations which
translates into high visual fidelity. Achieving high quality with biomechanical facial modeling is
harder, because facial muscles influence the shape of the skin indirectly and are sensitive to the
precise geometric and material modeling of anatomical shapes [Cong et al. 2015, 2016; Sifakis et al.
2005]. Despite these challenges, the quest for high-fidelity anatomical face models continues both
in the academia and the industry [Lan et al. 2017].
Physics-based anatomical models have been explored in computer graphics especially in the

context of full-body animation [Lee et al. 2009; Teran et al. 2003, [n. d.], 2005]. Recent methods
explore new numerical simulation strategies such as Eulerian-on-Lagrangian simulation [Fan et al.
2013, 2014], Projective Dynamics [Kadlecek et al. 2016; Saito et al. 2015], or a combination of
data-driven and physics-based animation [Kim et al. 2017]. While sharing the same biological
underpinnings, the shape and function of facial muscles are quite different from large skeletal
muscles such as the biceps [Blemker et al. 2005]. In particular, facial muscles are very thin and are
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attached via connective tissues to each other and the skin; the primary function of facial muscles is
generation of facial expressions [Ekman and Friesen 1977].
Building upon seminal work [Terzopoulos and Waters 1990], in recent years there has been a

resurgence of interest in physics-based facial animation in computer graphics. Blendshape animation
has been enriched with dynamics effects using mass-spring systems [Ma et al. 2012], “Projective
Dynamics”-based surface simulation [Barrielle et al. 2016], or finite element simulation of an outer
volumetric layer attached to an inner blendshape model [Kozlov et al. 2017] (a hybrid approach
effective also for full-body animation [Kim et al. 2017]). Anatomical modeling is a non-trivial
task which can be facilitated using automatic methods [Stavness et al. [n. d.]], which is especially
challenging for facial modeling of stylized characters such as Yoda [Cong et al. 2015].

Accurate control of facial expressions via simulated facial muscles is a hard problem. Cong and
colleagues introduced “art-directed muscles” that allowed artists to sculpt facial muscle activations
[Cong et al. 2016]. This was further improved with careful modeling of facial anatomy [Lan
et al. 2017]. A different approach was explored by [Ichim et al. 2016], who proposed “volumetric
blendshapes”, allowing all tetrahderons in a finite element simulation to activate and thus achieve
desired shapes while enjoying the benefits of physics-based simulation. A blendshape-driven
muscle control approach was also successfuly applied for fitting monocular RGB images with a
fully differentiable pipeline [Bao et al. 2018]. Recently, [Ichim et al. 2017] fit a generalized muscle
model to training data (3D scans of an actor in different facial expressions). While related to our
approach, the muscle model of [Ichim et al. 2017] can produce biologically unrealistic activations
which compensate for the simplifying assumptions in material modeling. Specifically, the elasticity
model used in [Ichim et al. 2017] relies on a homogenous isotropic material with zero prestrain,
which is only a crude approximation of the real mechanical behavior of facial soft tissues. In this
paper, we propose methods to learn heterogeneous, anisotropic materials with prestrain from data,
allowing our model to predict realistic mechanical effects, such as changing directions of gravity.
Methods for learning material parameters from data have a long history in graphics [Pai et al.

2001]. [Bickel et al. 2009] captured non-linear heterogenous soft tissues by probing a deformable
object and measuring its elastic response using computer vision techniques. Even though their
results include a face example, the face model is passive (not actuated) and does not model muscles
or prestrains. Robotic actuation has been applied to create animatronic facial replicas with the aid
of 3D printing [Bickel et al. 2012]. Despite some similarities, the mechanics of man-made robotic
systems is quite different from living tissues. 3D printing of deformable objects that assume the
desired shapes under gravity motivated development of novel numerical methods [Chen et al. 2014],
later extended with data-driven modeling of dynamics [Wang et al. 2015].
Mechanical modeling of biological soft tissues has been extensively studied in biomechanics

[Weiss et al. 1996] and remains an active area of research aided with simulation platforms such as
the open source ArtiSynth [Lloyd et al. [n. d.]], SOFA [Faure et al. 2012], and FEBio [Maas et al.
2012] or the commercial Abaqus [Hibbitt et al. 2001]. In-vivo material parameter identification of
the breast was studied from gravity loading data and plate compression [Han et al. 2011]. Synthetic
experiments showed that three gravity loading orientations were required to identify heterogeneous
parameters of a silicon gel beam [Gamage et al. 2011]. [Barbarino et al. 2009] modeled elasticity of
the face using an advanced Rubin-Bodner material [Rubin and Bodner 2002], but did not consider
muscle activations or formation of facial expressions. In a similar vein as [Sifakis et al. 2005], an
MRI-based biomechanical face model was constructed by Wu [2013]. In contrast to this paper,
[Wu 2013] finds muscle activations for target expressions manually and relies on accurate muscle
segmentations from the MRI and material (Mooney-Rivlin) parameters from the literature [Nazari
et al. 2010; Tran et al. 2007].
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3 DATA CAPTURE AND PROCESSING
Even though modern MRI scanners are very powerful and provide good resolution volumetric
scans of the human body without any radiation, they have limitations. In addition to the high cost,
long scanning times and limited availability of MRI machines, an important limitation is that the
subject must remain motionless inside the MRI scanner for several minutes (depending on the
sequence). We scanned a neutral face in a supine position and segmented the bones and skin as
shown in Figure 4.

Long scanning time means that MRI scanning of most facial expressions is practically impossible
becausemuscle fatigue would prevent the subject from staying still for minutes. Instead, we captured
geometry of deformed facial shapes using a structured light scanner (Artec Spider), producing
detailed 3D scans of the skin (Figure 4). Specifically, in our deformed facial shapes we vary gravity
directions (by changing the subject’s head orientation) and facial expressions (by asking the subject
to smile, frown, etc.). The face is quite supple and varying gravity directions results in surprisingly
large skin displacements, see Figure 9. Please see the supplemental material for more details about
MRI data processing, segmentation, 3D surface scan processing and registration.

Fig. 4. Segmentation of soft tissues and the bones from our MRI scans and registration of textured 3D scans.

4 METHOD
The main technical challenge we address is an inverse problem where we solve for mechanical
parameters of a model that will match acquired 3D scans of real facial shapes under various external
loads and muscle activations. Solving it leads to a large optimization problem which can not be
solved separately per expression.

4.1 Mechanical model
We start by discussing the key mechanical modeling concepts used in our method. Building upon
the finite element method [Sifakis and Barbic 2012], we are optimizing for a rest shape xrest in a
static equilibrium subject to no external forces (including gravity). The rest shape can, however,
be subject to internal forces representing inherent residual biological strain which in addition to
varying material parameters µ, λ affect the behavior of soft tissue elastic deformation.

Modeling passive tissue.When excised from the body, biological soft tissues retract, i.e., release
stored elastic potential energy. This mechanical effect can be modeled with prestrain and it plays an
important role in the body, e.g., in stabilizing joints [Ellis et al. 2006]. We use linear finite elements
and model prestrain by introducing a material space-dependent functionG ∈ R3×3 which modulates
the deformation gradient. The total internal elastic potential energy of a prestrained deformable
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solid can be approximated as:

Eelast(x) =
m∑
i=1

viΨ(Fi (x, xrest)Gi )

where vi > 0 is rest-pose volume of i-th tetrahedron,Ψ is a hyperelastic energy density function,
Fi ∈ R3×3 is deformation gradient (function of the current deformed state x ∈ R3n and the rest
pose xrest ∈ R3n) and Gi ∈ R3×3 is the prestrain for i-th tetrahedron (m is the number of tets and
n the number of vertices of our tet-mesh). With Gi = I, Eelast becomes equivalent to a standard
FEM setup [Sifakis and Barbic 2012]. With general Gi , there can be non-zero potential energy
stored in the configuration xrest, i.e., Eelast(xrest) > 0, making the naming convention less intuitive.
Observing the object configuration xrest without prestrain or measuring the prestrain directly is
difficult. One would have to make infinitely small dissections corresponding to each material point
of our model [Maas et al. 2016]. An observable rest pose xrestO affected by prestrain and gravity is
a solution to ∇Eelast(xrestO ) + ∇Egrav(xrestO ) = 0, subject to boundary conditions (e.g., fixed skull
vertices).

Modeling muscles. Unfortunately, capturing the fiber direction of thin facial muscles is a
difficult task even with diffusion tensor imaging [Levin et al. 2011]. The 3D surface of facial
expressions are very sensitive to the directions of contractile muscle forces, which has been
identified to be a major obstacle in realistic facial modeling [Cong et al. 2016]. In our method,
we use general deformation model that can exert arbitrary internal force (i.e., not constrained by
an average fiber direction per one tetrahedron), formulated as a transformation of the rest shape
matrix: A(Ai ) ∈ R

3x3 where Ai ∈ R
6. This flexibility allows fitting arbitrary surface scans making

the method robust, but it can easily lead to overfitting of input data by treating passive deformation
as muscle contraction which leads to overly stiff model that does not generalize well to unseen
poses [Ichim et al. 2017]. To build as accurate of a model as possible, we need to clearly differentiate
between deformation due to internal passive, active and external forces. We achieve this by solving
simultaneously for both passive and active deformation and by regularization of muscle activation
inspired by the principle of least action in biomechanics [Nubar and Contini 1961]. This is important
even for neutral expressions. Even though a subject can be relaxed, some muscles are unconsciously
activated (e.g. pushing lower teeth against upper teeth). A large difference in neutral expression
can be observed in persons affected by Bell’s palsy.

Elastic deformation. Our internal elastic potential uses corotated linear elasticity [Sifakis and
Barbic 2012] augmented with prestrain and a muscle activation model:

Eelast(x,A,H) =

m∑
i=1

viµi ∥Pi (x, xrest,Gi ) − A(Ai ))∥
2
F

+vi
λi
2
tr 2(Pi (x, xrest,Gi ) − I )

(1)

The vertex positions x ∈ R3n and muscle activations A(Ai ) are time-varying parameters (where
n is the number of vertices,m the number of tets in our mesh and A(Ai ) ∈ R

3x3 is a symmetric
matrix). The notation H = (xrest,E,G) collects all time-invariant, subject-specific parameters: the
rest pose xrest, Young’s modulus E and prestrain G. While constant in time, these parameters vary
spatially, as indicated by the tetrahedron index i . Lamé coefficients µ, λ are linear functions of
Young’s modulus E and Poission’s ratio set to constant ν = 0.45. The prestrained corotated term
Pi (x, xrest,Gi ) = RiFi (x, xrest)Gi is obtained by factoring out rotational component of FiGi . The
first term is enforcing the shape of the tetrahedron to match the muscle activation, the second
term is minimizing relative volumetric change of the deformation. Passive tissues can be modeled
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by setting Ai to the 3 × 3 identity matrix. In practice, our tets are relatively coarse and may thus
contain a mix of passive and active tissues, so Ai can be seen as their blending.

Gravity. Accuracy of the gravity direction is one of the important factors in our material param-
eter estimation. Some 3D scanning devices (e.g., handheld scanners) do not provide information
about a gravity vector and it is therefore necessary to optimize for it. We initialize a gravity potential
Egrav(x, g) with a best guess of a gravity force vector g ∈ R3 corresponding to each of our surface
scan.

Constraints. We use Dirichlet boundary conditions corresponding to the bones (the skull and
the jaw), expressed as cbone(x, J) = 0, where J ∈ SE(3) is a time-varying rigid transformation of
the jaw relative to the skull. The cbone(x, J) function fixes the vertices of the skull in place, while
vertices of the jaw are rigidly transformed by J.

Forward problem. With this model, quasi-static facial deformations can be computed by mini-
mizing Eelast(x,A,H) + Egrav(x, g) subject to cbone(x, J) = 0. The inverse problem, i.e., computing
both H (expression-independent parameters) as well as muscle activations A and jaw transfor-
mations J (expression-dependent parameters) which best explain our training 3D scans of facial
expressions is explained in the following subsection.

4.2 Inverse problem formulation
The input data to our inverse modeling module are registered 3D scans of facial deformations and
tetrahedral template mesh as shown in Figure 3. The data capture and processing is discussed in
more detail in the supplemental material.

We denote the vertices of the “target” 3D scans as tk ∈ R3p , where k is the target scan index and
p the number of vertices in the triangle mesh representing the skin (the same for all targets due to
registration). Because our tet-mesh is volumetric and x ∈ R3n thus includes internal vertices, we
define a sparse selector matrix S ∈ R3p×3n such that Sx “selects” the skin vertices corresponding to
the targets tk . In the inverse optimization problem we will also solve for the rest pose xrest ∈ R3n
discussed in Section 4.1. Note that xrest is not subject to gravity. We formulate our inverse modeling
as the following optimization problem:

min.
xrest,xk ,Ak ,Jk ,gk ,H

∥Sxk − Tk tk ∥2 + Ereg(Ak , xrest,E,G,D)

subj. to ∇Eelast(xrest, xk ,Ak ,H) + ∇Egrav(xk , gk ) = 0
cbone(xrest, I) = 0, cbone(xk , Jk ) = 0, ccol(xk ) ≥ 0

(2)

This problem simultaneously solves for multiple tet-mesh deformations xk ∈ R3n , where k indexes
target 3D scans. In the objective function ∥Sxk − Tk tk ∥2, the Tk ∈ SE(3) is a rigid transformation
applied to the target triangle mesh tk in order to compensate for global rigid motions of the skull
(a process known as “rigid stabilization” [Beeler and Bradley 2014]). Ereg is a regularization term
discussed in the Section 4.3. The constraint cbone(xrest, I) = 0 means that the jaw in the rest pose is
closed (its rigid transformation is identity). In contrast, in non-neutral expressions the jaw vertices
are rigidly transformed by Jk ∈ SE(3). The constraints ccol(xk ) ≥ 0 are used to resolve collisions:
if we find a vertex in xk penetrating a tetrahedron, we find projection onto the closest surface
triangle and add a half-space constraint to ccol(xk ) ≥ 0 which pushes the vertex out of the collision.
Finally, the constraint ∇Eelast(xk ,Ak ,H) + ∇Egrav(xk , gk ) = 0 requests the deformed pose xk to
be in quasi-static equilibrium subject to gravity and boundary conditions. Our target 3D scans
intentionally contain different head orientations, i.e., the gravity directions for each target can be
different and are represented by trainable parameter gk ∈ R3.
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4.3 Solving the inverse problem
Solving Eq. 2 numerically is challenging. Our optimization problem has many variables because we
are solving for deformed vertex positions x1 ∈ R3n , x2 ∈ R3n , . . . for all of our targets. Furthermore,
the deformed vertex positions are coupled through the rest pose xrest and shared mechanical param-
eters E,G, which makes the problem not separable per each target. To further complicate matters,
the problem is ill-posed, because our data tk correspond only to skin (surface) measurements, but
we are solving for unknown volumetric properties.

Our optimization strategy is to use the idea of homotopy. In our case, we use a progression
from an initial state xinit which is in a quasi-static equilibrium, but does not match target scans,
to a state x fitting all target scans as close as possible in a sense of Eq. 2. Even though asymptotic
numerical method [Chen et al. 2014] can provide better convergence than standard Newton-type
optimization, the implementation for a general deformation problem is challenging. We found that
a linear increase of the target term weight (from 0 to 1), iterative update of regularization terms
Ereg and block coordinate descent optimization proved to be a good strategy for stable convergence
and allowed us to prepare an automatic procedure for the complete inverse optimization.

In the first phase, we fit a set of six scans with neutral expression but with varying directions of
gravity (see the top row in Figure 9). We compute an initial guess of the gravity-free rest pose xinitrest
by averaging all of our 3D scans of the neutral expression under different directions of gravity. This
is a good initial guess because for each gravity direction d, our dataset also contains the opposite
direction −d, e.g., for a supine head orientation (facing upwards), we also have a prone orientation
(facing downwards). We also use the xinitrest as a regularization term for xrest.

Next, we set G = I and optimize for the heterogenous material properties E. We assume constant
density of soft tissues. In the case of quasi-statics, variation of densities and stiffness results in
ambiguous fitting. If an MRI scanner is available, some sequences may provide a better initialization
of densities. Optimizing for spatially varyingmaterial parameters has been recognized as a challenge
in previous work [Kim et al. 2017; Wang et al. 2015], which proposed to simplify the problem by
sampling material properties only in a sparse set of points (such as 130 points). This reduces the
number of variables, but also reduces expressivity and relies on well-chosen locations of these
sample points, which is non-trivial in the face. Instead, we solve for a separate E for each tet
by progressive refinement. The process starts by optimizing a single E for all tets (homogenous
material), which theoretically corresponds to an infinitely strong Laplacian regularization term.
Specifically, we use the standard umbrella operator penalizing ∥Ea − Eb ∥2 summed over all pairs
(a,b) of adjacent tets, as in [Bickel et al. 2009]. Next, we use the homogeneous E as an initial
guess and progressively reduce the weight of the Laplacian regularization term. This way, we find
heterogeneous stiffness parameters E but so far only with isotropic material. Next, we allow the
optimizer to optimize for prestrains G (along with E and xrest), introducing anisotropy into our
model. We applied additional regularization on E and G with a closeness term to an initial guess
which we update in each iteration k : ∥Gk

i − Gk−1
i ∥2F (regularization plasticity). Finally, we enable

optimization of the muscle parameters A. We use an order of magnitude stronger weight for the
muscle activation regularization ∥Ai − I∥2F to enforce principle of least action (Section 4.1).

Additional free variables of our optimization process include kinematic parameters of the jaw (Jk ).
We allow arbitrary rigid transformation, parameterized with three DoFs for translation and three
Euler angles for rotation. We did not encounter any singularities with the Euler angles because the
set of physiological rotations of the jaw is limited. We used the same parametrization for global
head transformation (rigid stabilization) Tk , taking advantage of our “pre-stabilization” to ensure
that changes of global orientation at solver time will be small. Similarly, we parameterize gravity
directions with two angles (polar and azimuthal angle, the magnitude is fixed to ∥gk ∥ = 9.81m/s2).
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Fig. 5. Visualization of heterogenous stiffness of our model and prestrain at each tetrahedron.

We solve our optimization problems using an open source interior point solver IPOPT [Wächter
and Biegler 2006] with PARDISO [Schenk and Gärtner 2004] as the underlying linear solver. Our
mechanical model is twice differentiable. In most cases, we provide the solver with exact gradient
and Hessian. In the inverse problem, the quasi-static constraint Hessian is approximated. An exact
Hessian contains third derivative of the mechanical model resulting from the chain rule which we
ignore [Bickel et al. 2012]. Our problem converges in total of 25 iterations (5 iterations per each
phase) and takes approximately 20 minutes for the highest resolution tetmesh (21k tetrahedra) and
13 targets scans on a desktop CPU.

5 RESULTS
Stiffness. We visualize our resulting stiffness parameter in Figure 5. The computed Young’s
modulus values are in range of E ∈ [14.5, 89.3] with an average of E = 68.2kPa. These values are
aligned with in-vivo stiffness measurements [Luboz et al. 2014; Shinohara et al. [n. d.]]. However,
material properties reported in the literature must be interpreted judiciously, e.g., Lapeer et al. [2011]
surveyed literature on skin stiffness measurements and found large differences between the reported
values (attributed to differences between in-vivo/in-vitro measurements, nonlinearity of the skin
and differences in elastic models). In Figure 5 we can see that the stiffness is lowest in areas such
as the cheeks which contain the thickest layers of adipose tissues. Note that stiffness in the lips
region seem to be too large. We observed that in case of large noise in the data (e.g., lip motion
fitted by muscle deformation apparent in Figure 9), our isotropic stiffness fitting failed to capture
this deformation as passive. This was not the case for experiments using only selected scans with
minimal lip motion. Fortunately, the anisotropic prestrain model is more flexible and is able to
generalize better as shown in Fig. 9.

Prestrain. Prestrain models the fact that soft tissues retract when excised from the body. This
means that each tet in our mesh has a relaxed configuration with zero prestrain. Visualization of
such configuration becomes more complicated because tet vertices corresponding to neighboring
tets might not be aligned. Nevertheless, we can visualize prestrains by disconnecting our tet-mesh
into isolated tets, scaling them down by a factor of 0.8, and transforming them by G, see Figure 5.
The color corresponds to prestrain magnitude computed as ∥G − I∥2F ∈ [0, 3.7].

Muscle activations. Recall that ourAmatrices specify the deformation of each tet due to muscle
contractions. Similarly to prestrain, we visualize our resulting muscle contractions as a magnitude
α = ∥A − I ∥2F in Figure 6.

Evaluation. Validation of our method is challenging due to residual muscle activation which is
present in all facial expressions of healthy human beings.While measuring EMG signal is technically
possible, each sensor measures electrical activity integrated over multiple muscles at the surface
and the electrode placement affects the deformation. Ideal validation data would contain surface
scans of a completely paralyzed face under different external loads.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 2, Article 15. Publication date: July 2019.



15:10 Kadlecek et al.

Fig. 6. Explaining various facial expressions with our model using muscle deformations A. Second row: visu-
alization of normalized muscle activation magnitude α used to generate the corresponding facial expressions
with our method.

In Figure 9 we try to analyze how well our model predicts 3D scans under varying gravity
directions by ignoring the muscle activation. Although some scans clearly show deformation due
to motion and muscle activation (e.g., lips), we still find the comparison interesting. Each validation
scan was removed from training data. In the first row, we calculate the distance between the original
3D scans against optimized homogeneous material (single E for all tets). The largest difference
of 13mm is observed with prone head orientation (facing downwards), where the soft tissues sag
the most under gravity. Methods using elastic model with homogeneous material (e.g.,[Ichim et al.
2017; Mollemans et al. 2007]) either can not fit similar scans properly or need to compensate by
artificial muscle deformation. In the second row, we show the result of our method without fitting
prestrain parameters G. In the third row is the final result of our method with prestrain enabled,
achieving best generalization to all poses and prediction closest to all the 3D scans.

Input data ambiguity.We test our method with different subsets of input scans to show the
effect of ambiguity. Figure 7 shows optimized stiffness parameters for subsets a-e. The subset a
uses only one scan. Since we’re also optimizing for the rest-pose, the result mostly depends on
regularization weights. Subsets b and c use different subset of size two - showing different results
depending on how close input scans are with respect to gravity direction. Subset d with three scans
shows a result similar to a set using all six gravity directions.

Fig. 7. Stiffness parameters computed from limited scan data.
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Fig. 8. The first row shows our original skull segmented from MRI scan, the adapted skull from a template
model and color-coded distance. The second row shows stiffness computed using the original model and the
model with the adapted skull.

Template skull adaptation. We tested our method on a less accurate skull and mandible
geometry adapted from a template model to assess the importance of precise segmentation of
bones from MRI data. We started by smoothing high-frequency details on both template and target
model. Next, we registered both models with manually picked keypoints and prepared a tetrahedral
mesh that corresponds to the original surface mesh and the adapted skull. The result of our inverse
problem in Figure 8 shows that stiffness parameters near the surface are similar and only small
changes near areas of thin soft structures are present. Please note that the template skull geometry
after the adaptation is not very different from the segmented skull (maximum distance is 16mm).
Adapting skull to different subjects with varying fat distribution is a challenging task [Achenbach
et al. 2018].

Fig. 9. Comparison of elastic models – distances from 3D scans in various gravity directions (individually
excluded from training data) shown in the first row (reference measurements). Second row: simulation with
homogeneous material; Third row: heterogenous material without prestrain; last row: heterogeneous material
with anisotropic prestrain (our method).
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6 LIMITATIONS AND FUTUREWORK
Even though we believe our project is a significant step towards realistic facial modeling, there are
several limitations leading to opportunities for future work.

Input data. We tested our method with only one human subject. Our 3D scanning process also
needs to be improved, because our structured-light scanner (Artec Spider) is not ideal for capturing
facial expressions. One scan can take up to several minutes which makes scanning challenging
due to muscle fatigue.

Registration. Incorrect registration (e.g., around lips) and rigid stabilization is causing some
errors in the fitting. Ideally, our algorithm should run the inverse problem together with corrections
for inaccurate correspondences.

Mechanical model. Our current mechanical model also leaves room for improvement. We note
that many different constitutive equations could be used instead of corotated elasticity. Our choice
was motivated mainly by tractability of the resulting inverse problem. The additional prestrain
can be understand as a simple way to improve an arbitrary elastic model. Whether the anisotropic
behavior would generalize well under larger loads is subject to further testing.

Muscle control. We briefly experimented with a model without kinematic jaw constraints
where the motion of the jaw was driven purely by muscle activation. The model was able to fit all
of our scans with jaw open and we are planning to experiment with purely muscle-driven control
without kinematic constraints in the future.

Even though an intuitive blendshape-driven control of muscle activations [Ichim et al. 2017]
can be directly applied to our method, our muscle model is overparameterized and might not be
suitable for accurate prediction of rest pose changes, e.g., during craniofacial surgical evaluation.
Anatomically plausible subject-specific muscle model is subject to future work.

Surface scan ambiguity. The current parameter learning is limited by surface scan observations.
Simple synthetic experiments can show that multiple material configurations can lead to almost
identical surface deformation under various conditions. Different ways of applying and measuring
external loads should be therefore studied. Note that aspiration device testing might not reveal
deep non-linearity without damaging the skin [Luboz et al. 2014].

Dynamics. Our current physics-based modeling methodology assumes quasi-static deforma-
tions corresponding to slowly moving faces. Even though we can of course add ad-hoc dynamics
effects, the proper approach would involve learning viscoelastic properties from data – dynamic
deformations of real faces, which would require a dynamic (4D) capture studio, as was recently
explored in the case of human bodies [Kim et al. 2017]. In this paper we focused on volumetric
modeling of facial soft tissues; production of realistic facial animations would require adding
accurate models of hair, teeth, tongue, eyes and eyelids.

7 CONCLUSION
Passive soft tissue deformation may initially seem less important than e.g. muscle activations.
However, one may be convinced otherwise when taking a selfie when lying on the back or even
upside-down (we encourage the reader to try!). Apart from differences in blood flow, the change in
shape of the face can be quite surprising.
The core idea of our method is to overcome the challenging problem of capturing mechanical

properties of biological tissues in-vivo from limited data. We believe our approach is an interesting
complement to general mainstream machine learning models such as neural networks which can
achieve impressive results, but need very large training data sets to do so. Our method has been
designed to minimize the amount of training data by taking advantage of domain-specific priors,
such as the principles of soft tissue elasticity. These priors contain trainable parameters such as soft
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tissue material parameters, which we estimated from training data. We hope that this approach
will contribute to the long-term goal of creating realistic models of the human face.
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