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Fig. 1. Physics-based simulation facilitates a number of advanced effects for facial animation, such as applying wind forces, fattening and slimming of the
face, wearing a VR headset, and even turning into a zombie.

We present a novel physics-based approach to facial animation. Contrary to
commonly used generative methods, our solution computes facial expres-
sions by minimizing a set of non-linear potential energies that model the
physical interaction of passive flesh, active muscles, and rigid bone struc-
tures. By integrating collision and contact handling into the simulation,
our algorithm avoids inconsistent poses commonly observed in generative
methods such as blendshape rigs. A novel muscle activation model leads to
a robust optimization that faithfully reproduces complex facial articulations.
We show how person-specific simulation models can be built from a few
expression scans with a minimal data acquisition process and an almost
entirely automated processing pipeline. Our method supports temporal dy-
namics due to inertia or external forces, incorporates skin sliding to avoid
unnatural stretching, and offers full control of the simulation parameters,
which enables a variety of advanced animation effects. For example, slim-
ming or fattening the face is achieved by simply scaling the volume of the
soft tissue elements. We show a series of application demos, including artistic
editing of the animation model, simulation of corrective facial surgery, or
dynamic interaction with external forces and objects.
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1 INTRODUCTION
Accurate simulation of facial motion is of paramount importance in
computer animation for feature films and games, but also in medical
applications such as regenerative and plastic surgery. Realistic facial
animation has seen significant progress in recent years, largely
due to novel algorithms for face tracking and improvements in
acquisition technology (Klehm et al. 2015; von der Pahlen et al.
2014).

High-end facial animations are most commonly produced using a
sophisticated data capture procedure in combination with algorith-
mic and manual data processing. While video-realistic animations
can be created in this manner, the production effort is significant
and costly. A main reason is that complex physical interactions are
difficult to recreate with the commonly employed reduced model
representations. For example in blendshape rigs, collisions around
the lip regions or inertial effects of the facial tissue are typically not
accounted for. To remedy these shortcomings, artists often introduce
hundreds of corrective shapes that need to be carefully sculpted
and blended to achieve the desired effect in each specific animation
sequence (Lewis et al. 2014).
Recent work (Barrielle et al. 2016; Ichim et al. 2016) proposes to

avoid these shortcomings by augmenting the generative approach
of blendshape animation with a simulation-based solution. A key
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benefit of physics-based simulation is the ability to correctly han-
dle collision and contact, both for internal contact of facial tissue
or bones, as well as for collisions with external objects. In addi-
tion, secondary motion, such as inertial deformations or other time-
dependent effects can easily be integrated into the optimization
pipeline.

One major difficulty in simulation-based approaches is to achieve
the required level of realism, which is particularly challenging for
facial animation, due to the heightened human sensitivity for facial
motion perception (Bruce and Young 1986). Accurate simulation
requires building a detailed volumetric face model that faithfully
represents the shape and dynamics of the captured subject. However,
acquiring such a volumetric face model is challenging. Volumetric
data produced by CT or MRI scanners is often difficult to convert
into a simulation-ready representation. So far, successful pioneering
methods required a significant amount of manual editing (Sifakis
et al. 2005), which makes them difficult to deploy at scale.
We approach this problem by combining easy-to-obtain facial

surface scans with a template model that integrates rigid bone struc-
tures, active muscle tissues and passive flesh, fat, and skin layers
in a fully volumetric simulation model of the human face (see Fig-
ure 3). By scanning the subject in multiple facial poses, we obtain
a representation of the geometry and expression dynamics of the
acquired person. We then solve an inverse problem to estimate the
activation parameters of the registered template rest pose in order
to best reproduce the scanned expressions under activation.

We propose a novel muscle activation model in order to match the
input scans more accurately. Unlike previous models that are con-
strained by fixed fiber directions, our model introduces additional
degrees of freedom to support any deformation devoid of global
rotation (since a muscle cannot rotate itself). This generalized model
avoids the problem of relying on pre-determined fiber directions
which are often inaccurate.

Subsequently, we can create new animations driven by muscle
activations using a forward physics simulation that incorporates
collision handling, volume preservation, inertia, and external forces
such as wind forces or gravity. Muscle activations can be computed
from a temporal sequence of blendshape weights, which enables
straightforward integration into existing animation environments.

Contributions. The main technical contributions of our work are:

• a novel muscle activation model that offers more flexibility
than standard fiber-based models,

• a physics-based simulation method that retains realism
even with significant external forces or substantial modifi-
cations of the face geometry and tissue material properties,

• an inverse modeling optimization to adapt the simulation
template to a series of expression scans of a specific person.

An important feature of physics-based approaches is that their
parameters can be controlled to achieve the desired effects. In our
case, the parameters include the stiffness of simulation elements,
their rest shape volume, the static bone structure, or the muscle
activation parameters. This detailed control facilitates numerous
new applications that are difficult to achieve with existing methods.
Examples we show in this paper include

• slimming and fattening of the face by adapting the volume
of soft tissue,

• simulation of corrective facial surgery, such as orthognathic
surgery to correct for jaw malformations,

• dynamic interaction with external forces (e.g. wind) and
objects (e.g. VR headsets),

• artistic editing of facial expression dynamics by modifying
tissue stiffness or muscle behavior.

Overview. Figure 2 provides a visual summary of our physics-
based face modeling and animation approach. Central to our method
is a face template model that combines volumetric and surface ele-
ments as shown in Figure 3. Physics-based optimization is performed
on a tetrahedralized volumetric model composed of rigid bones and
deformable tissue. The latter is further separated into activemuscles,
and passive flesh and skin. Muscles actively deform to drive the dy-
namic motion of the face model. In order to control the animation,
we augment the volumetric template with a surface blendshape ba-
sis that represents the facial expression space. This also provide an
interface to the surface scans used to build actor-specific simulation
models.

The core algorithmic components of our method are the inverse
and forward physics simulation modules. Inverse physics is used
in a model building stage to create a simulation-ready anatomical
face model of a specific person. As input to this preprocessing stage,
we assume a set of surface scans that are first transformed to a
user-specific blendshape model. An anatomy transfer step warps
the volumetric template towards the neutral expression of the blend-
shape model. Subsequently, our inverse physics solver computes
suitable muscle activations of the simulation model to best approxi-
mate each expression blendshape.
Given the person-specific simulation model and corresponding

muscle activation patterns, we can apply forward physics simulation
to compute dynamic face articulations. This animation stage takes
as input a temporal series of blendshape weights that are mapped
to per-frame muscle activations. External effects such as gravity or
object collisions can be incorporated in the simulation to support a
wide range of dynamic effects.

The rest of the paper is organized as follows: we first put our
work in context by discussing related work in Section 2. In Section 3
we present our simulation template model. Then we introduce the
forward and inverse physics simulation algorithms in Sections 4
and 5, respectively. Section 6 explains how these components are
integrated into the model building and animation stages. In Section 7
we analyze the behavior of our method and provide comparisons
to previous work. We show several application demos in Section 8,
before concluding with a discussion of limitations and future work.

2 RELATED WORK
Data-driven methods. A significant body of work in facial anima-

tion is based on data-driven techniques. Multi-view stereo acqui-
sition systems are used extensively to acquire detailed geometry
and texture models, e.g., (Alexander et al. 2010; Amberg et al. 2007;
Beeler et al. 2010). Avatar creation based on simple cell-phone cam-
era acquisition was proposed by Ichim et al. (2015), while depth
sensors are often used to create 3D avatars suitable for realtime
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Fig. 2. Schematic workflow of our method.

tracking, e.g., (Bouaziz et al. 2013; Li et al. 2013; Weise et al. 2011).
These methods typically rely on data-driven priors to guide the
reconstruction process, in particular morphable face models (Blanz
and Vetter 1999) or multi-linear (tensor) decomposition (Cao et al.
2014; Vlasic et al. 2005). They can be used in combination with up-
sampling methods, for example to add subject-specific details such
as wrinkles (Bermano et al. 2014). Data-driven methods typically
do not capture dynamic effects, even though some recent progress
on this front has been made in the case of full-body animation
(Pons-Moll et al. 2015).

Advanced acquisition. In recent years we have witnessed sig-
nificant improvements in acquisition of facial performance and
morphology, in particular detailed skin microstructure (Nagano
et al. 2015), eyes (Bérard et al. 2016, 2014), eyelids (Bermano et al.
2015), hair (Hu et al. 2015), lips (Garrido et al. 2016) and teeth (Wu
et al. 2016a). Modern methods can also capture medium-scale de-
tails (wrinkles) from monocular input in real-time (Cao et al. 2015).
Anatomical constraints have proven useful in estimating the rigid
transformation of the skull (rigid stabilization) (Beeler and Bradley
2014) and extracting detailed flesh deformations (Wu et al. 2016b).

Anatomical models. Early anatomical models were based on proce-
dural models such as FFD (Chadwick et al. 1989). Procedural muscle
models were also used in pioneering work on facial reconstruction
(Kähler et al. 2003). Physics-based models of muscles and passive
soft tissues were explored by Teran and colleagues (2003; 2005a;
2005b), later extended into a comprehensive biomechanical model of

the upper body (Lee et al. 2009), and combined with fluid simulation
to study swimming (Si et al. 2014).
Biomechanical modeling is a complex task and several software

platforms support soft tissue simulation, such as Sofa (Allard et al.
2007), ArtiSynth (Lloyd et al. 2012), or FEBio (Maas et al. 2012). An
important aspect of soft tissue modeling is the capture of material
properties (Bickel et al. 2009) and their reproduction using modern
fabrication methods such as 3D printing (Bickel et al. 2012).

Algorithmic and numerical aspects of soft tissue simulation con-
tinue to be a topic of active research; recently, Fan et al. (2014)
proposed an Eulerian-on-Lagrangian method to simulate dynamic
musculoskeletal systems, while Saito et al. (2015) applied Projective
Dynamics (Bouaziz et al. 2014) to simulate hypertrophy or atrophy
of the muscles or fat.

More recently, Kadlecek et al. (2016) studied the inverse problem
of full-body modeling, inferring effects such as hypertrophy or
atrophy of skeletal muscles from input 3D scans. Despite certain
similarities to faces, a key difference is that full-body animation
is characterized by muscles moving the bones, e.g., biceps moving
the elbow. In facial animation, the skeletal articulation is limited to
the jaw bone and facial expressions are created mainly by muscles
pulling one another without any associated bone motion.

Physics-based face animation. The pioneering work of Sifakis et
al. (2005) proposed a fully physics-based facial animation model,
built from MRI and laser scan data of one specific subject. The key
differences of our method are a more flexible muscle activation
model combined with a more efficient inverse physics solver (Sec-
tion 5). While Sifakis et al. (2005) also solve the inverse activation
problem, their approach needs to invert a dense n ×n matrix, where
n is the number activation variables. This limits their method to
using only low-dimensional activations, such as one activation per
muscle, as opposed to our approach that allows for a richer high-
dimensional activation model. A key benefit of our approach is that
building the simulation model for different people is an almost en-
tirely automatic process, as opposed to the substantial manual work
required in previous work (Sifakis et al. 2005). Without the need
of detailed parameter tuning, our approach also simplifies facial
modifications such as slimming/fattening or geometric edits of the
rigid bones.

The problem of scaling physics-based animation to different sub-
jects has also been addressed in Cong et al. (2015). They propose a
method that uses only the neutral expression to adapt an anatomical
face model to different characters, including fictional ones. However,
they do not attempt to closely match specific expressions of the
target character as in our approach.

Cong and colleagues (2016) introduce “art-directed muscles”, i.e.,
blendshape models applied to the muscles. This approach caters to
experienced visual artists who appreciate direct control over their
anatomical rigs. However, the art-directed muscles lack translation
and rotation invariance which limits their ability to generalize, e.g.,
to significant facial modifications or large external forces inducing
displacements of entire muscle groups. We propose a translation
and rotation invariant muscle activation model and an automatic
inverse physics procedure for inferring muscle activations from
target expressions.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 153. Publication date: July 2017.



153:4 • Alexandru - Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly

Fig. 3. Our template model consists of a volumetric representation of the tissue and bones (a), and a surface blendshape basis to represent the expression
space (d). Muscles are embedded into a non-conforming tetrahedral mesh discretization (b). We explicitly model jaw kinematics with a 5 DoF joint (c) and
utilize low-resolution geometry proxies for faster collision detection for the teeth region (e). Dynamic skin sliding is supported by introducing both sliding
(green) and fixed (red) constraints for bone-tissue connections (f).

Alternative approaches to physics-based facial animation use
mass-spring systems (Ma et al. 2012) or finite element modeling of
the face as elastic thin shell (Barrielle et al. 2016). While these meth-
ods support certain types of physics-based effects, a surface-only
approach does not correctly handle collisions or support volumetric
face modifications, such as visualizing the outcome of facial surgery.
Modeling interior tissue and bones is also important when the face
is subjected to inertial or external forces that visibly expose the
rigidity of the internal bone structure.
Volumetric blendshapes as proposed in Ichim et al. (2016) intro-

duce energy terms attracting deformation gradients to their target
values derived from input facial expressions of a given person. The
volumetric blendshapes are translation invariant, but they lack ro-
tation invariance, introducing similar artifacts as linear elasticity,
especially in situations with large external forces (Figure 10). In this
paper, we create a model compatible with traditional blendshape
interfaces, but we push the anatomical realism further by utilizing
a novel muscle activation model, separating active and passive soft
tissue layers, and introducing sliding constraints to attach soft tissue
to the bones. As a consequence, our model implements a variety
of advanced animation effects and supports significant modifica-
tions of the face simulation model, which enables a number of new
applications as demonstrated in Section 8.

3 TEMPLATE FACE MODEL
Our approach starts from a generic face model – an anatomical face
template corresponding to an average human subject (see Figure 3).
We created this model from a commercially available anatomical
data set (Zygote 2016) that contains polygonal representations of

the bones (the skull, the jaw, including teeth), skin (including a
realistic model of the oral cavity), and 33 facial muscles. Using the
winding-number method of Jacobson et al. (2013) we generate a
tetrahedral mesh discretizing the soft tissue of the face. Our tet-
mesh conforms to the skin and the bones, but not to the muscles,
because a conforming discretization of the numerous thin facial
muscles would require prohibitively many elements. Instead, we
use non-conforming discretization where every tetrahedron can
represent multiple types of soft tissues. We distinguish between two
types of soft tissues: active corresponds to muscles, while passive
corresponds to subcutaneous fat, connective tissue and the skin, i.e.,
tissue that is not voluntarily activated by neural signals (Figure 3-b).
Up to the accuracy of the discretization, the active layer corre-

sponds to the union of all facial muscles, while the passive layer
forms the region between the active layer and the skin and fills in ar-
eas between the bones. Even though this model is not as accurate as
modeling every muscle individually, it captures the key fact that the
shape of the skin is affected by facial muscles only indirectly, i.e., the
contracted muscles deform passive soft tissue, which consequently
induces skin deformations.

Jaw kinematics. The relative motion of the jaw with respect to
the skull contributes significantly to the final articulation of the face.
The kinematics of the temporomandibular joint is non-trivial, con-
sisting of both rotational and translational motion. In our model (see
Figure 3-c), we define the major rotation axis (x-axis, corresponding
to mouth opening) as the axis passing through the centers of the
mandibular condyles. Halfway through the condyles, we define a
perpendicular axis (y-axis) corresponding to vertical jaw rotation.
The jaw does not normally rotate about the third orthogonal axis
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(z-axis), but it can translate (slightly) in all three directions. This
amounts to 5 DoFs for the jaw motion, expressed with respect to
the skull, which is treated as a free rigid body (our model does not
include the craniocervical junction). We concatenate the kinematic
parameters of the jaw bone into a vector b ∈ R5.

Template blendshapes. Given an anatomical model of the face, a
natural control interface would be activation signals for all motor
units. While biologically meaningful, such controls would not be
user-friendly, because many motor units can affect a surface point
in a complex, non-linear way. Instead, we augment our template
model with a set of 48 blendshapes inspired by FACS (Ekman and
Friesen 1977) that have been sculpted by an artist on our generic face
model. These blendshapes are only defined on the skin as a basis
for parametrizing the space of facial expressions. They provide no
information about the internal deformations, which are handled by
physics-based simulation (Section 4 and Section 5). This combination
of surface blendshape basis and volumetric simulation model allows
us to retain compatibility with commonly used blendshape controls,
while offering the benefits of advanced physics-based simulation
effects.

4 FORWARD PHYSICS
The goal of the forward physics algorithm is to compute the de-
formed soft tissue and resulting skin surface given bone kinemat-
ics and muscle activation parameters. We model the latter with a
vector a (see “Active tissue” below) that represents the amount of
activation (contraction) of all facial muscles. Even though in reality
the jaw motion is controlled by muscle activations (in particular
the masseter muscle) our model assumes the bones are directly con-
trolled kinematically and the muscle activations are used only to
create the facial expressions.

At the heart of our method is a physics-based model of soft tissue
elasticity including muscle activation. We define this model using
linear finite elements on our tet-mesh adapted for a given subject.
Let x denote a vector stacking all degrees of freedom of the soft
tissue, i.e., the 3D coordinates of all nodes.

Passive tissue. For passive tissue we define deformation energy

Epass (x) =
∑
i

min
Ri ∈SO (3)

W
pass
i µ∥Fi (x) − Ri ∥2F +

W
pass
i λ(det(Fi (x)) − 1)2, (1)

where the index i goes over all tets andW
pass
i ≥ 0 denotes the

volume of the i-th tetrahedron that is occupied by passive tissue, pre-
computed during template construction with Monte-Carlo sampling.
The first term in Eq. 1 corresponds to the commonly used co-rotated
elasticity (measure of deviation from rigid motion), while the second
term models the resistance to changes of volume. Fi (x) denotes the
deformation gradient, and Ri is an auxiliary rotation matrix used in
the co-rotated model (Sifakis and Barbic 2012). µ and λ are material
parameters that we set by default to µ = 1 and λ = 3. We can change
these parameters to achieve specific effects as discussed in Section 8.

Active tissue. For tets corresponding to the active layer (muscles),
we propose a novel activation model. Previous muscle models typ-
ically assume a given direction of muscle fibers along which the

a = [2.0, 0.7, 0.7, 0.0, 0.0, 0.0]

a = [1.7, 0.7, 1.0, 0.0, -0.6, 0.0]

a = [1.8, 1.2, 0.8, 0.2, 0.1, 0.6]

a = [0.9, 1.2, 1.7, 0.5, -0.5, 0.2]

Fig. 4. Visualization of the capabilities of our 6-DoF activation model by
squishing a cube, corresponding to a small sample of muscle tissue.

muscle contracts (Lee et al. 2009; Teran et al. 2005a). While this
corresponds to the biological structure of muscles, the problem is
that the exact muscle fiber directions are in general not known.
Medical imaging techniques such as diffusion tensor imaging are
prohibitively expensive and time consuming, and the signal quality
is limited.

Previous work in graphics (Saito et al. 2015) applied ad-hocmuscle
fiber approximations which worked well for major skeletal muscles
(such as the biceps), but are not sufficiently accurate for the delicate
facial muscles. Along with the exact location of muscle insertion
points, tuning of these parameters to obtain realistic facial expres-
sions is possible, but tedious (Sifakis et al. 2005). To circumvent
these issues, we propose a different muscle activation model that
does not require explicit knowledge of fiber directions, but relies on
the elementary bio-mechanical fact that muscles can generate only
internal forces. In other words, an isolated muscle is not capable
of translating or rotating by itself (even though the muscle can of
course be translated or rotated due to contact with the surrounding
tissues).
The property that the muscle cannot translate itself is already

guaranteed by the translation invariance of the deformation gradi-
ent operator Fi (x). Since a muscle tet should also not rotate itself,
we require the activation to be a symmetric 3 × 3 matrix. Every
symmetric matrix in R3×3 has an eigendecomposition of the form
QΛQT, where Q ∈ SO (3) and Λ ∈ R3×3 is diagonal. Therefore, the
symmetric activation matrix corresponds to non-uniform scaling
(Λ) in an arbitrary orthonormal coordinate system (Q). In other
words, the symmetric matrix represents pure distortion without any
change of orientation (Shoemake and Duff 1992) (see Figure 4).
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For each active tet, we define an activation vector ai ∈ R6 and
use a linear operator S : R6 → R3×3 to generate the correspond-
ing symmetric matrix S (ai ) ∈ R3×3. Muscles, like most biolog-
ical soft tissue, are approximately incompressible, which means
that det(S (ai )) = det(QΛQT) = det(Λ) should be close to 1. How-
ever, to compensate for discretization errors, we do not enforce
det(S (ai )) = 1 strictly, but only as a soft constraint, as discussed in
Section 5.
We use this activation model to define the deformation energy

Eact (x, a) of active tissue, where a is a vector stacking the 6-dimensional
activation parameters for all active tets. Specifically, we define:

Eact (x, a) =
∑
i

min
Ri ∈SO (3)

W act
i µ∥Fi (x) − RiS (ai )∥2F +

W act
i λ(det(Fi (x)) − det(S (ai )))2, (2)

where the index i goes over all tets andW act
i ≥ 0 represents the

volume of the i-th tet that corresponds to active tissue. Here the
co-rotated term aims to find the rotation Ri that best aligns the
deformation gradient Fi (x) withS (ai ). The second term encourages
the volume ratio of the deformed tet (i.e., det(Fi (x))) to align with
the volume ratio of the activation matrix det(S (ai )), which should
be close to 1, i.e., volume conserving.

Bone attachments. Muscles are connected to the bones using a
complex network of connective tissue, whose exact function is a
matter of active research (Schleip et al. 2013). In animation, the
visual importance of skin sliding is well recognized (Li et al. 2013).
To distinguish areas where soft tissue is directly attached to the
bones from areas where soft tissue slides over the bones, we create
two types of constraints: 1) pin constraints and 2) sliding constraints.
The pin constraints are straightforward to implement usingDirichlet
boundary conditions. The sliding constraints are modeled as point-
on-plane constraints on the tangent planes of the bone surfaces. We
found this approximation to be sufficient even for curved regions,
since the amount of sliding displacement is generally small.
Formally, we express both pin and sliding constraints using a

function c(x, b) that depends also on the kinematic parameters
b ∈ R5 of the jaw bone. All of the constraints are satisfied if and
only if c(x, b) = 0. We have manually distributed the pin and sliding
constraint as shown in Figure 3-f. The constraint types were chosen
to achieve realistic deformations. For example, for an eyebrow raise
expression, the skin slides over the skull as illustrated in Figure 5.

Quasi-static solution. In this section we discuss how to compute
the quasi-static solution of the forward physics simulation, defer-
ring the discussion of dynamics to Section 6. Quasi-statics means
calculating a steady state where all dynamic motion has settled. The
quasi-static regime is useful in generating static expressions and is
particularly important when solving for muscle activations from
observed shapes, as discussed in Section 5. Finding the steady state
can be formulated as the following optimization problem:

minimize
x

Epass (x) + Eact (x, a) + Egrav (x)

subject to c(x, b) = 0, p(x) ≥ 0,
(3)

where Egrav (x) represents a linear gravitational potential (i.e., the
familiarmдh). The inequality constraints p(x) are used to resolve

Fig. 5. An eyebrow raise expression uses the skin sliding feature of ourmodel.
The blue arrows show the displacement of the contact vertices between the
cranium and the flesh.

penetrations (collision response) as follows. When collision detec-
tion finds a surface vertex penetrating the volumetric face model
(see below for more details), an inequality constraint is appended
to p. For each offending vertex we find its projection onto the surface
and create a tangent plane at this point. The inequality constraint
requires the vertex to be at the half-space opposite the volume.
We solve Eq. 3 by alternating between an interior point solver

used to minimize Eq. 3 for fixed collision constraints p, and collision
detection to update p. We have initially implemented a “homebrew”
augmented Lagrangian solver, but ultimately decided to use the
IPOPT package (Wächter and Biegler 2006), which has proven to be
more robust and usually needs fewer iterations to converge.

Collisions - implementation details. We implemented collision han-
dling between lips and the teeth and between the upper and lower
lip, which are the areas most prone to inter-penetration. Because the
geometry of the teeth is quite detailed (and we are not aspiring to
simulate e.g. flossing where the detail would be necessary), we start
by creating proxy collision shapes for the upper and lower teeth
(see Figure 3-e). The upper and lower lip geometries are already
sufficiently smooth and we do not need any special collision proxy.
We detect collisions using AABB hierarchies built for the upper and
lower teeth proxy geometries and the upper and lower lips. Since
lips are deforming, we recompute the AABB hierarchies at run-time.
We did not use techniques to avoid or amortize this recomputation
costs as this was not a bottleneck in our implementation.
For each of the collision proxies and the lips, we also manually

define a “projection region”, i.e., subset of triangles where inter-
penetrating vertices can be pushed to resolve collisions. Previous
work considers all surface points as valid candidates for projection
(McAdams et al. 2011). In our case this occasionally created problems
such as resolving lip-teeth collisions by projecting the lip vertices
behind the teeth, i.e., inside the mouth, which is rarely a plausible
solution. Instead of more complicated continuous collision detection,
we therefore disallowed these implausible projections. For each of
the projection regions, we compute another AABB hierarchy that
is used to find the closest point in the projection region, i.e., the
location where an inter-penetrated vertex will be pushed in order to
resolve the collision. A collision handling example during animation
is shown in Figure 6.
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Fig. 6. Importance of collision handling. Without collisions, intersections
between the teeth and the deformable tissue can occur (left). Our method
correctly detects and handles the contact (right).

5 INVERSE PHYSICS
The previous section explains how to compute face articulations
for given bone positions and muscle activations. In this section we
discuss the inverse problem. For a given target shape of the skin, we
want to compute the corresponding bone parameters b and muscle
activations a, which, when used in the forward simulation (Eq. 3),
will produce a skin surface close to the input shape.

Optimization formulation. Let t denote the target vertex positions
of the skin. The inverse modeling problem can be written as

min.
x,a,b

∥Sx − Tt∥2 + Ract (a) + Rsparse (a)

subj. to c(x, b) = 0, p(x) ≥ 0
∇xEpass (x) + ∇xEact (x, a) + ∇xEgrav (x) = 0

(4)

where Ract (a) and Rsparse (a) are regularization terms discussed be-
low. The objective term ∥Sx − Tt∥2 measures how close state x is to
the target t. The matrix S selects the simulation nodes correspond-
ing to the skin surface. In addition S and T encode both position
(point-to-point) and point-to-plane distance terms (Rusinkiewicz
and Levoy 2001). The point-to-plane terms enable some amount of
sliding (tangential motion) which is useful if we do not completely
trust the correspondences represented by t. The last vector equal-
ity constraint describes the condition of quasi-static equilibrium,
i.e., the sum of all forces (gradients with respect to x) is zero. Even
though x is also an optimization variable, the desired output are the
optimal values of muscle activations a and bone parameters b.

Regularization. Without regularization, the optimization of Eq. 4
can lead to over-fitting and anatomically implausible activations a.
To provide an appropriate prior on activation patterns, we exploit the
geometric structure of the muscles by estimating an approximate
preferred contraction direction. Following Choi et al. (2013) we
compute these directions by solving a Laplace equation and encode
the corresponding orientations for the i-th tet as Qi ∈ SO (3). The
regularizing prior softly penalizes deviations in muscle contraction
from the preferred direction and is defined as:

Ract (a) =
∑
i,m

fi,m

��������

��������
QT
i



γ−1m (i ) 0 0
0 √

γm (i ) 0
0 0 √

γm (i )


Qi − S (ai )

��������

��������

2

Fig. 7. Muscle activation regularization. Red lines indicate the direction and
magnitude of the dominant muscle contraction, computed from the SVD of
the activation matrix.

where i sums over all active tets andm over all muscles. Since our tet
mesh does not conform to the muscles, some tets may be occupied
only partially by a muscle, or be occupied by several muscles. We
calculate the fraction fi,m ∈ [0, 1] of tet i occupied by musclem
by Monte-Carlo sampling (if an active tet contains some amount of
passive tissue, we get

∑
m fi,m < 1 and the regularization strength

is proportionally reduced as expected). The contraction parame-
ters γm ≥ 0 are auxiliary variables representing the contraction of
musclem. Recall that S (a) is our symmetric muscle activation ma-
trix introduced in Section 4. Intuitively, Ract (a) encourages all tets
corresponding to a single muscle to contract in a uniform, volume
preserving way (because γ−1m (i )

√
γm (i )

√
γm (i ) = 1).

In addition to the muscle-activation regularization term Ract, we
found it beneficial to also include the following term to promote
sparse muscle activations:

Rsparse (a) =
∑
m

√∑
i

fi,m ∥ai ∥2 (5)

Specifically, this is a group sparsity term similar to L1 regulariza-
tion, but applied to entire groups – in our case, muscles. This term
encourages all activations corresponding to one muscle to remain
zero unless contributing significantly to the result. We introduced
this term to avoid small spurious activations of remote muscles,
which is justified when our target shapes t correspond to traditional
FACS-type blendshape models which isolate individual action units.
Figure 7 shows that compared to a naive L2 regularization approach,
our method leads to sparser activations that are better aligned with
the geometric structure of the muscles.

Numerical solution. As in Section 4, we use interior-point methods
(Wächter and Biegler 2006) to solve the constrained optimization
problem in Eq. 4. Our implementation of the Hessian of the La-
grangian of Eq. 4 ignores third-order derivatives of E (pretends
they are zero), amounting to the commonly used Gauss-Newton
approximation of the Hessian (Bickel et al. 2012; Sifakis et al. 2005).
We alternate the interior point solver with collision detection that
determines the non-penetration constraints p as in Section 4.
Even though including the regularization term Ract could be di-

rectly incorporated into our optimization objective (adding γm as
auxiliary variables), we found that this significantly increases the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 153. Publication date: July 2017.



153:8 • Alexandru - Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly

Fig. 8. Inverse physics finds jaw transformation and muscle activations that
accurately reproduce the target blendshapes.

non-linearity of the problem and forces the non-linear solver to take
many iterations, each making only slow progress towards the solu-
tion. To avoid this problem, we instead use a local-global approach
(Sorkine and Alexa 2007). In the local step, the activations a are
fixed and we compute optimal γm by finding roots of a 6-th order
polynomial using the method of Brent (1971). In the global step, we
call the interior point solver to optimize a for fixed γm , which is an
easier optimization problem exhibiting fast convergence.
Figure 8 shows an example of an inverse physics solve for two

blendshapes of a user-specific blendshape model, visualizing sepa-
rately the effect of the jaw motion and the effect of muscle activa-
tions.

6 PHACE MODELING AND ANIMATION
In this section we explain how we integrate the optimization al-
gorithms presented above into a complete system for creating and
animating subject-specific face simulation models.

Model Building. We start by 3D scanning the face of our subject
in neutral expression and about 5-10 additional premeditated facial
expressions using a multi-view stereo setup as described in Ichim
et al. (2016). Each of the scans is approximately aligned with the
skin of our template model (Section 3)
using rigid registration (plus uniform
scale). Then we apply non-rigid ICP
(Rusinkiewicz and Levoy 2001) to find
dense correspondences between the tem-
plate skin and the target scan, guided with
a few manually chosen markers as shown
in the inset. We denote the registered skin
surfaces as sneut for the neutral and sk for
k-th expression.

Next, we deform our volumetric template model such that its
boundary (skin) alignswith sneut. This is accomplishedwithAnatomy
Transfer (Dicko et al. 2013; Ichim et al. 2016). Note that during this

process the generic face model can deform freely, i.e., the shape
and/or volume of all cells can change, including the bones (in con-
trast to the deformation model considered in Section 4). We then use
Example-Based Facial Rigging (Li et al. 2010) to convert the regis-
tered expressions sk to subject-specific blendshapes cj , j = 1, . . . , 48.
The processing steps so far essentially rely on existing methods

to align the volumetric template to the neutral expression and to
create the subject-specific blendshape model. We refer to the above
cited papers for implementation details on these algorithms. After
this geometric preprocessing, we now solve for activations aj and
jaw bone parameters bj that correspond to each of the blendshapes
cj using the Inverse Physics optimization of Section 5.

Animation. To animate the created face model, we need to feed
appropriate muscle activations and jaw bone parameters to the For-
ward Physics optimization of Section 4 for each animation frame.
Given per-frame blendshape weights w = {w1, . . . ,w48}, we com-
pute muscle activations as a = aneut+

∑
j w j (aj −aneut), where aneut

corresponds to neutral activations, i.e., each activation S (aj,i ) =
I ∈ R3×3. Linear blending of the activation parameters is justified
because there is no rotational component in symmetric matrices
(Shoemake and Duff 1992). Similarly, we compute the blended jaw
kinematics parameters b =

∑
j w jbj . While blending of rotation

angles is in general not recommended, we found that for the limited
range of rotations of the jaw this simple scheme does not produce
any visible artifacts.

Dynamics. Adding inertia corresponds to a minor change of Eq. 3.
We use the popular backward Euler integration, which in its op-
timization form (Liu et al. 2013) corresponds to augmenting the
objective of Eq. 3 with the term: 12 ∥x− (xn +hvn )∥2M, where xn and
vn are positions and velocities in the previous frame, h > 0 is the
time step, and M is the mass matrix. We use a diagonal matrix M
(mass lumping) with a soft tissue density of 1д/cm3. The minimizer
x of Eq. 3 then becomes the new state xn+1 and the new velocity
is vn+1 = (xn+1 − xn )/h. The main difference from the quasi-static
solution is that the dynamic solution depends on the previous state
(xn , vn ), i.e., we need to execute the time steps in sequence. To add
non-conservative external forces, such as wind, we proceed as in
Projective Dynamics (Bouaziz et al. 2014) and change the additional
term to 1

2 ∥x − (xn + hvn + h2M−1fext)∥2M. Here fext ∈ R3 is the ex-
ternal force vector, e.g., a wind force is a function of triangle normal,
area, and wind direction.

Plasticity. To support effects such as fattening or slimming, we
use a standard model of plastic deformations. Specifically, each total
deformation gradient Ftotal (x) is assumed to be composed of an elas-
tic deformation component and plastic deformation component, i.e.,
Ftotal (x) = Felast (x)Fplast or, equivalently, Felast (x) = Ftotal (x)F−1plast.
Note that Fplast does not depend on the current deformed state x.
The deformation gradient Fi (x) used in Eq. 1 and Eq. 2 corresponds
to the elastic deformation component, because plasticity is a sep-
arate process, e.g., tissue growth, which is decoupled from elastic
deformations. Therefore, the only modification we need to make to
account for plasticity is to replace the Fi (x) in Eq. 1 and Eq. 2 by
Fi (x)F−1plast,i , where Fplast,i describes the plastic deformation of the
i-th tet. In our system, we use only uniform scaling, i.e., Fplast,i = si I,
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Fig. 9. Our 6-DoF muscle activation model (rigt) leads to more accurate
reconstruction of the target expression (left) than previous 1-DoF fiber-
aligned activations models (middle).

where si > 0 is a scaling coefficient (corresponding to growth for
si > 1 and shrinking for 0 < si < 1). The settings of the si pa-
rameters for each tet depend on the effect we wish to achieve as
discussed in Section 8. Plasticity, as well as inertia and external
forces are applied in forward physics only.

7 EVALUATION
Before showing application results of our method in Section 8, we
evaluate the behavior of our optimization algorithms and provide
comparisons to previous work.

Muscle activation model. As mentioned in Section 4, previous
methods constrain the deformation alongmuscle fibre directions (Lee
et al. 2009; Saito et al. 2015; Sifakis et al. 2005; Teran et al. 2005a).
In our experiments we found that muscle fiber directions can be
unreliable and lack the flexibility to accurately reproduce all facial
expressions. This insight triggered the design of our more general
activation model. In Figure 9 we compare the results of inverse
physics with our method and the previous fiber-restricted model,
where fiber directions are computed from our geometric muscle
models using the method of Choi et al. (2013) (these directions are
shown in Figure 7). The active tetrahedra of the 1-DOFmuscle model
act based on the following constraint energy:

Fig. 10. A boxing punch to the nose results in artifacts with an elastic model
lacking rotation invariance as in Ichim et al. (2016) (left). More realistic
deformations are obtained with our rotation-invariant model (right).

Eact_1DOF (x, a) =W act
i µ∥Fi (x) − RiQTS1DOF (ai )Q∥2F +

W act
i λ(det(Fi (x)) − det(S (ai )))2,

where Q encodes the muscle fiber orientations and
S1DOF (ai ) = diaд(ai , 1, 1) . As Figure 9 illustrates, muscle activa-
tions constrained to the fiber directions fail to closely match the
desired target shape, while our activation model leads to a much
more accurate reconstruction of the target expression.

Comparison to volumetric blendshapes. Defining a deformation
model that is invariant under rigid motions is essential for correct
tissue behavior. The volumetric blendshape approach of Ichim et
al. (2016) lacks rotation invariance, which can lead to artifacts, e.g.,
when large rotation of the soft tissues are induced by external forces,
such as the boxing punch shown in Figure 10. We propose rotation-
invariant models for both passive and active soft tissue, leading to
more realistic results. While we distinguish between passive and
active tissue, previous work (Ichim et al. 2016) assumes that all soft
tissue can activate. In addition, our approach includes a kinematic
model for the jaw, whereas Ichim et al. (2016) only approximated the
jaw by using a more stiff (but not exactly rigid) material. Finally, our
method also allows for skin sliding, facilitating more realistic flesh
deformations especially in areas such as the forehead (Figure 5).

Model adaptations. Our approach supports animating a charac-
ter after significant modifications of the neutral pose (e.g. slim-
ming/fattening, bone modifications, see Section 8) using the same
muscle activation patterns. One might argue that the same effects
could be obtained by using deformation transfer (Sumner and Popović
2004) on traditional linear animation models. For example, similar
modifications as the ones we propose could be applied on the surface
mesh of the neutral blendshape. Deformation transfer on all expres-
sion blendshapes will then yield new face rig that incorporates the
desired changes. However, this approach has the significant draw-
back that the new blendshapes are not necessarily consistent with
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Fig. 11. Model adaptations such as increased lip volume are handled accu-
rately in our approach, while deformation transfer (Sumner and Popović
2004) leads to self-intersections.

the same blendshape weights, e.g., self-intersections easily occur as
shown in Figure 11.
In addition, direct transfer of modifications to the neutral pose

cannot account for the complex force interactions in the elastic
tissue. For example, when increasing the volume of the lips, the
expression dynamics will change as a consequence of the changed
stress distribution. Our indirect approach, that solves for the facial
pose given muscle activations, can accommodate such scenarios
and leads to more natural expressions.

Statistics. The interior point solver of the forward physics opti-
mization requires on average 8 iterations per frame to converge.
This takes approx. 22 seconds including the collision detection up-
date on a consumer laptop with a 3.1 GHz Intel Core i7 processor
and 16GB of main memory. The inverse problem needs approx. 15
iterations to compute the jaw transformation and muscle activa-
tions, averaging at about 3 minutes per target shape. The volumetric
face template model of the passive flesh and active muscles used
for the results presented in this paper has 8098 vertices and 35626
tetrahedra. The active muscle layer covers approx. 27% of the entire
flesh. The surface mesh model of the entire skin has 6393 vertices
and 12644 faces.

8 APPLICATION DEMOS
We present a series of application demos to highlight the versatility
of our approach. A key benefit of our physics-based simulation
is that we can modify the static and dynamic parameters of the
model to achieve a number of advanced animation effects that would
be difficult to obtain with purely generative geometric methods.
Please also refer to the accompanying video to better appreciate the
dynamics of the animations.
All animation examples were driven by a temporal sequence of

blendshape weights obtained from the performance capture system
of Weise et al. (2011). The tracking software also provides a rigid

body transformation T ∈ SE (3) corresponding to the global rotation
and translation of the head, as well as pitch and yaw for each of the
eyeballs, which are parented to the head transformation T.

Body mass index changes. Figure 12-a illustrates how an animated
avatar can be modified to slim or fatten the person’s face by adapting
the plasticity scale for the soft tissue tets. As this adaptation alters
the face geometry, simply re-animating the blendshape model would
lead to unnatural expressions and visual artifacts caused by self-
intersections. Our simulation approach avoids self-collisions and
balances the stress distribution in the facial tissue while preserving
the actuation forces, which leads to more plausible expressions and
natural dynamics.
To create the scaling parameters si > 0, we start from a surface

“fat map” painted by the user that specifies which areas of the face
are more prone to fat accumulation. The values of the fat map are
propagated into the volumetric tet-mesh by a diffusion process, sim-
ilar to standard polygon-mesh diffusion flow ((Botsch et al. 2010),
Chapter 4.2), but using the volumetric Laplacian instead of the sur-
face Laplace-Beltrami. We apply forward Euler integration with
time step and number of steps adjusted by the user in an interac-
tive graphical tool to achieve the desired volumetric propagation
effect. We used the same fat map for both characters in Figure 12-a,
uniformly scaled to achieve slimming or fattening. To account for
the increased fat content in the soft tissue, we lower the stiffness µ
to 0.8, 0.5, 0.3 for the three levels of fattening shown in Figure 12-a.
For slimming, we keep the default stiffness µ = 1.

Facial surgery. Figures 12-b and 12-c demonstrate potential ap-
plications in visualizing the possible outcomes of facial surgery,
helping patients to choose between different versions of corrective
or cosmetic procedures. Our method allows direct manipulation of
the deformable soft tissue (e.g. lip fat injection) or the rigid bones
(e.g. chin displacement). The simulation then provides a detailed
visual preview of such interventions on the expression dynamics
of the animated person. We modeled the lip fat injection using our
plasticity model and diffusion tool, simulating the process of in-
jecting filler material with a syringe through several points on the
skin. To simulate the lower stiffness of the fat-like filler material,
we decreased the soft tissue stiffness µ to 0.8 for the medium, and
to 0.5 for the high lip volume effect (Figure 12-b). For the chin dis-
placement we directly edited the bone using an interactive mesh
modeling tool.

Inertia. Figure 13-a shows how our method incorporates inertial
deformations in the dynamic simulation. Such secondary motion
becomes particularly important in animations with strong accelera-
tions, such as jumping, head shaking, or boxing.

Interaction with external forces and objects. Figure 13-b shows how
an animation can be augmented with complex external force inter-
actions produced by a dynamic wind field. Figure 13-d illustrates
how a speech animation is affected when the subject is wearing
a VR headset. Our contact resolution method adapts the face de-
formations to account for the collisions with the headset, creating
non-linear bulging and wrinkling effects due to volume preservation
of the facial tissue.
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Fig. 12. Application Demos I: a) Body mass index changes and their impact on expressions. The original avatar is highlighted with dashed lines. More intense
red in the fat map means more volume change of the corresponding face region. b) Results of lip injection, where affected tets are shown in green on the right.
c) Effects of modifying the rigid bone structure of the chin.

Simulation of muscle paralysis. In Figure 13-c, we show how mus-
cle activations can be modified to simulate Bell’s palsy syndrome,
where the affected person is unable to activate certain facial muscles.
In this example, we marked the active muscles of the left half of
the face to behave like passive tissue, which simulates the effect of
partial facial paralysis.

Extreme face modifications. To push the limits of facial modifi-
cations, we created a virtual zombie character in Figure 13-e. We
designed two texture maps to modulate the mass and stiffness (see
Figure 13-e) and extrapolated their values into the volume using
our diffusion tool. The idea was to increase the mass of the cheeks
to create a flesh sagging effect, while increasing stiffness around
the lips and the eyes to avoid excessive pulling of the flesh. The

final µ values vary between 0.7− 5.7 and the density varies between
1 − 3д/cm3, achieving artistic “undead” effects.

9 LIMITATIONS AND FUTURE WORK
In our approach we rely solely on a generic volumetric template and
a set of surface scans of the modeled person to derive the interior
facial structure. This inherently limits the accuracy of our approach
in terms of the true facial dynamics of the scanned actor. Getting
access to the internal structure through volumetric scanning devices
would allow building more faithful simulation models, but incurs
a high acquisition cost. A potentially more practical approach for
future work is to build a statistical model of the bone and tissue
structures from a sufficiently large set of volumetric scans, similar
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Fig. 13. a) Simulating inertia under sudden motion changes (e.g., jumping). b) Dynamic deformations in a wind force field. c) Simulating Bell’s Palsy affecting
half of the face of an actor. d) VR headset obstructing the full motion of expressions on the face. e) Artistic editing to create a zombie character by adapting
the mass and stiffness distribution as indicated in the color-coded maps.

to the morphable face models that have been successfully applied
for the skin surface (Blanz and Vetter 1999).

Detailed physical simulation is computationally involved and our
method is currently not suitable for realtime animation. While com-
putational efficiency was not the main focus of our work, we believe
that significant speedups can be achieved, in particular by more
explicitly exploiting spatial and temporal coherence. In the context
of realtime animation, our approach could potentially be used to
automatically create corrective shapes for a given blendshape basis
in an offline process. How to select an optimal set of such correc-
tives based on a given simulation is an interesting avenue for future
research.
Our tet-mesh discretization is currently too coarse to correctly

model small-scale effects such as skin wrinkles. However, increasing
the resolution to the appropriate scale would lead to prohibitive
computation times. Therefore, in future work, we want to explore

ways to combine our simulation model with procedural or data-
driven methods for wrinkle generation to further increase the visual
realism of the animations.

Other avenues for future work include modeling and simulating
hair, adding person-specific teeth models and a simulation of the
tongue, and generalizing our model to full body simulations.

10 CONCLUSION
We propose a physics-based simulation approach to face animation
that complements existing generative methods such as blendshapes.
These purely geometric methods can produce artifacts such as self-
intersections in facial poses that were not specifically considered
during the modeling of the blendshape basis – ensuring consistency
in all possible linear combinations quickly becomes intractable. Even
more challenging is the correct handling of dynamic effects such as
interactions with external objects or inertial deformations.

We advocate the use of physics-based simulation as a principled
solution to these issues. Our experiments validate that this approach
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leads to high-quality facial animations and facilitates new editing
capabilities, e.g., by manipulating the face model’s physical structure
or its dynamic behavior. These advanced effects come at the cost
of increased computational overhead. However, as computational
power increases and algorithms are improved, we believe that the
simulation-based approach to facial animation will become more
and more viable in the future. This path certainly offers a rich
set of opportunities for future research with applications not only
in movies and games, but also in surgery simulation, interactive
therapy, sports, or biomedical research.
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