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Numerical dissipation acts as artificial viscosity to make smoke viscous. Reducing numer-
ical dissipation is able to recover visual details smeared out by the numerical dissipation.
Great efforts have been devoted to suppress the numerical dissipation in smoke simulation
in the past few years. In this paper we investigate methods of combating the numerical dis-
sipation. We describe visual consequences of the numerical dissipation and explore
sources that introduce the numerical dissipation into course of smoke simulation. Methods
are investigated from various aspects including grid variation, high-order advection, sub-
grid compensation, invariant conservation, and particle-based improvement, followed by
discussion and comparison in terms of visual quality, computational overhead, ease of
implementation, adaptivity, and scalability, which leads to their different applicability to
various application scenarios.
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1. Introduction

Smoke is desirable in visual effect and video game
industries. It is also one of challenging problems in com-
puter graphics due to its complexity and turbulence. To
obtain realistic smoke and gaseous phenomena, physically
based methods with Navier–Stoke Equations (NSEs) have
been explored to model underlying fluid dynamics.
Although numerically integrating NSEs have been studied
in computational fluid dynamics (CFD), computer graphics
researches focus on simplified discretization and numeri-
cal schemes when visual quality matters most. Simplifica-
tions make physically based methods possible for smoke
simulation but introduce the numerical dissipation. The
numerical dissipation increases fluid viscosity to make it
appear more viscous than intended. It degrades the visual
appearance by smearing out fine details and damping
down the motion quickly. The numerical dissipation has
been recognized to have substantial visual consequences
to the smoke simulation.

Many sources introduce numerical dissipation to the
course of the smoke simulation. Coarse spatiotemporal dis-
cretization produces numerical truncation errors, which is
proven to have a form of viscosity [1]. As fluid quantities
are only defined on discrete locations such as grid points
and particles, interpolation schemes are required to calcu-
late values at undefined positions, which is equivalent to
smoothing operations that produce the numerical dissipa-
tion. The semi-Lagrangian method [2] is widely used for
the smoke simulation attributed to its unconditional sta-
bility and ease of implementation, but it generates a large
amount of the numerical dissipation in backward tracing
and advection subroutines. Many advanced methods are
constructed based on the semi-Lagrangian method to guar-
antee the unconditional stability. However, they also
inherit the disadvantage of massive numerical dissipation.
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Massive effort has been devoted to combat the numer-
ical dissipation from different aspects. Some methods are
developed to eliminate sources of the numerical dissipa-
tion. For instance, it is straightforward to reduce the
numerical dissipation by increasing spatial resolution and
reducing time step. However, both approaches increase
computational overhead. Adaptive mesh [3], irregular
mesh [4,5], and dynamical mesh [6] are proposed to reduce
the numerical dissipation without significantly increasing
computation. Rather than directly reducing the numerical
dissipation, several methods generate artificial details to
compensate for visual loss using vorticity confinement
[7,8] and subscale turbulence models [9,10]. Grid-based
methods require resampling flow field, which is equivalent
to the low-pass filter to smear out high-frequency compo-
nents. Particle-based methods only carry quantity but do
not dissipate quantity, which does not suffer from the
numerical dissipation problem. However, particle methods
have problems such as particle redistribution. Hybrid par-
ticle and grid methods [11,12] are proposed to leverage
advantages of particle and grid to reduce numerical
dissipation.

In this paper, we investigate the numerical dissipation
in smoke simulation in terms of where it comes out, what
impact it has, and how to combat it. The rest of paper is
organized as follows: we give a brief introduction to the
basic smoke simulation in Section 2 and address the
sources of the numerical dissipation in Section 3; in
Section 4 we investigate and compare methods of combat-
ing numerical dissipation from different aspects, following
by a conclusion in Section 5.

2. Background

Smoke and other gaseous phenomena are normally
simplified to be incompressible and homogenous, which
does not decrease the applicability to model basic dynam-
ical mechanisms. The NSEs to model smoke are derived as:

@u
@t ¼ �ðu � rÞuþ mr2u� rp

q þ f ðaÞ
r � u ¼ 0 ðbÞ

(
ð1Þ

where u is velocity, p and q denote pressure and fluid den-
sity respectively. m is kinematic viscosity to measure how
viscous the fluid is and f represents the resultant external
force. The two equations indicate that the fluid should con-
serve both momentum and mass. The first equation is
derived from Newton’s second law with left-hand term
presenting acceleration and right-hand terms the net force
exerted on fluid.

NSEs are too complicated to solve for analytical solution
directly. The NSEs usually break down into simple terms
including advection, pressure, diffusion, and external force
[2]. The simple terms can then be easily solved individu-
ally. If we define the terms as operators denoted by
A; P; D, and F, the operator S to solve NSEs can be written
as [13]:

S ¼ P � F �D �A ð2Þ

where
A : @q
@t ¼ �ðu � rÞq ðaÞ

D : @u
@t ¼ mr2u ðbÞ

F : @u
@t ¼ f ðcÞ

P : @u
@t þ

rp
q ¼ 0; so that r � u ¼ 0 ðdÞ

8>>>>>>><
>>>>>>>:

ð3Þ

where q can be velocity, temperature, or any other fluid
quantity.

3. Numerical dissipation as artificial viscosity

Numerical solutions are different from exact solution
due to numerical truncation errors. The truncation errors
include additional high-order terms which influence fluid
motion and appearance. We start with the simple one-
dimensional advection to analyze the impact on fluid
motion:

@q
@t
þ u

@q
@x
¼ 0; u > 0 ð4Þ

If we discretize it using forward Euler for the time
derivative and first-order backward difference for the
space derivative we can get:

qnþ1
i � qn

i

Dt
þ u

qn
i � qn

i�1

Dx
¼ 0 ð5Þ

We can rearrange it to get

qnþ1
i ¼ qn

i � Dt
qn

i � qn
i�1

Dx
u ð6Þ

Recalling the Taylor series for qn
i�1 gives

qn
i�1 ¼ qn

i �
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Substituting it into above equation and doing the can-
celation gives

qnþ1
i ¼ qn

i � Dx
@q
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uþ OðDx2Þ ð8Þ

Deleting the second-order truncation error and rewrit-
ing it gets

qnþ1
i � qn

i
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þ u
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Which is the forward Euler in time applied to the mod-
ified PDE

@q
@t
þ u

@q
@x
¼ uDx

@2q
@x2 ð10Þ

The Laplacian of q in one dimension is r2q ¼ @2q=@x2.
Defining m0 ¼ uDx and substituting it into the equation
gives

@q
@t
þ u

@q
@x
¼ m0r2q ð11Þ
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The modified advection equation includes an additional
viscosity-like term. It is called artificial viscosity as it is
purely of numerical origin without any physical meanings.
Even though the fluid is inviscid, the artificial viscosity per-
forms like physical viscosity to make the fluid viscous.

4. Combating numerical dissipation

4.1. Grid variation

The aforementioned artificial viscosity indicates the
numerical dissipation is proportional to grid spacing Dx.
In theory, we could reduce the numerical dissipation by
refining the grid spacing. However, refining grid dramati-
cally increases computational cost. Taking the widely used
MAC grid for example, if the grid resolution increases by c
times in three dimensions, the number of grid cells
increases up to c3 times. As the grid spacing decreases by
c, time step has to reduce to 1=c to meet Courant–
Friedrichs–Lewy (CFL) condition (even for the uncondition-
ally stable semi-Lagrangian method, the time step is usu-
ally set to be several times of CFL number in practice).
The total computational cost rises up to c4 times, which
makes the grid refinement method scale poorly and ill-sui-
ted for practical use.

To alleviate the problem, Berger and Oliger [14,15]
introduced adaptive mesh refinement (AMR) into CFD to
discretize local regions with different grid resolutions. Los-
asso et al. [3] proposed an octree structure to adaptively
resolve irregular boundaries with high-resolution grid
while using low-resolution grid at empty space. The
method dramatically improves visual effects around irreg-
ular boundaries with a small increment of computational
cost. Fig. 1 shows visual comparison between the basic
method and the octree-based method with similar grid
resolutions. As the grid is adaptively refined around irreg-
ular boundary, the method captures more visual details
than traditional uniform grid method. However, it
increases the complexity of grid structure. The additional
computational cost pays off only when grid refinements
are limited to a few local regions. In addition, non-uniform
grid constructs a nonsymmetric linear system to solve for
pressure, which may cause potential numerical instability.

As hexahedral grid does not align to horizonal and ver-
tical boundaries, it cannot resolve irregular boundaries
Fig. 1. Visual comparison of smoke simulations using o
that do not align to coordinate axes. Tetrahedral grid is
proposed to represent irregular boundaries with much less
numerical errors. Elcott et al. [4] discretized and solved
NSEs on tetrahedral grid. The method can present compli-
cated boundaries but has problem of energy dissipation,
which can be modified using implicit time-reversible
velocity integration on the tetrahedral grid [16]. Tetrahe-
dral grid has intrinsic complicated structure to increase
the computational cost. A hybrid method is proposed to
combine the hexahedral and tetrahedral structures [5].
The tetrahedral grid is used to resolve irregular boundaries
while the hexahedral grid is used at empty regions without
obstacles. Fig. 2 gives visual comparison of smoke simula-
tions using different discretization schemes. As most inter-
esting features are generated around irregular boundaries,
the hybrid grid is able to obtain similar visual quality as
tetrahedral method near boundaries. As the hybrid grid
uses uniform grid mesh in most empty spaces, it reduces
the total computational cost comparable with the uniform
grid method.

Instead of the static grid structure, several works reduce
computational overhead by translating and reconstructing
grid mesh according to boundary conditions. Shah et al. [6]
tracked smoke movement with movable and scalable grid
mesh. Empty regions without smoke are not discretized
in order to decrease computational cost. To guarantee
visual consistence between simulation domain and empty
regions, Cohen et al. [17] used a simple particle system
outside of the simulation domain. Velocity at domain
boundary is assigned as initial conditions of the simple
particle system. Zhu et al. [18] extended the uniform grid
to create a large far-field grid. The uniform grid maintains
fine resolution to capture detailed features in interesting
regions while extended coarse grid is used to obtain large
field view of regions that does not require fine presenta-
tion. Fig. 3 compares three different grid configurations.
In left figure, the grid is translated along bulk motion of
smoke. Only regions filled with smoke are computed to
reduce computational overhead. The smoke region
expands as smoke moves around, which can be partitioned
into two subregions as illustrated in the middle figure. The
smoke subregion is calculated using physical methods to
capture major body of smoke while the less important sub-
region is modeled with simple non-physical methods to
reduce computation. In order to simulate smoke from a
ctree grid (left) [3] structure and MAC (right) [7].



Fig. 2. Smoke simulations using (a) tetrahedra mesh, (b) hybrid mesh, and (c) hexahedra mesh [5].

Fig. 3. Left: The fully bounded translating grid [6]; middle: partially bounded translating grid [17]; right: fully bounded translating grid with different
resolutions [18].
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far distance, the right figure extends coarse cells around
fine grid to obtain a large-field view while maintaining fine
resolution at local regions of interest. Other than translat-
ing and extending the grid mesh, Feldman et al. [19] and
Klingner et al. [20] dynamically deformed tetrahedral grid
mesh to adapt to variable boundaries and moving obsta-
cles. All adaptive grid methods have common drawbacks
of high complicated structure and high computational cost.

A full description of truncated error includes both Dx
and Dt terms. Reducing time step also reduces numerical
dissipation at the cost of increasing computational over-
head. In smoke simulation, we have to carefully choose
the time step that does not produce strange results and
breaks the numerical stability.
Fig. 4. 2D smoke simulations using the semi-Lagrangian advection
coupled with the forward Euler (left) and the second-order Runge–Kutta
(right) methods.
4.2. Advection improvement

The semi-Lagrangian advection is predominant attrib-
uted to its simplicity and unconditional stability. The
method is widely used as the basic blocks to construct
other advanced advection schemes. The basic semi-
Lagrangian advection is given as:

u0ðx; t þ DtÞ ¼ unðx� unðx; tÞDt; tÞ ð12Þ

which means that the velocity at location x at next time
step is the velocity at location ðx� unðx; tÞDtÞ at current
time step t. As current velocity is always bounded to previ-
ous velocities, it guarantees unconditional stability.
4.2.1. High-order backward tracing
To get the previous position where current quantity

ends up at inquired grid point at the next time step, the
basic advection employs the forward Euler scheme to trace
the trajectory in reverse to calculate previous position,
leading to certain numerical dissipation. Some high-order
schemes such as Runge–Kutta can be used to improve



14 Z. Huang et al. / Graphical Models 78 (2015) 10–25
the accuracy. Bridson [1] recommended a second-order
Runge–Kutta for backward position tracing. Fig. 4 shows
the visual results using the first-order forward Euler and
the second-order Runge–Kutta. The Runge–Kutta scheme
produces more curly details at local regions.

The backward tracing only introduces a fractional part
of numerical dissipation to the entire simulation. Boosting
accuracy of the backward tracing with high-order schemes
limits visual improvement to the final results. In addition,
the high-order schemes require more computational cost.
The second-order Runge–Kutta is regarded as a default
scheme to balance numerical accuracy and computational
cost.
4.2.2. High-order interpolation
Most likely the previous position is not on grid points

where quantities are defined and stored. We have to inter-
polate nearby grid points to obtain a good approximation.
The linear interpolation is predominant due to its simplic-
ity and stability, but it suffers from massive numerical dis-
sipation because the linear interpolation is similar to the
low-pass filter. Catmull–Rom interpolation has second-
order numerical accuracy, but it likely overshoots locally
and drops into an unstable feedback loop to make simula-
tion blow up finally. Simply preventing overshoot pro-
duces additional numerical dissipation in the vicinity of
local minima and maxima [1]. Fedkiw et al. [7] clamped
slopes to zero where slope signs are flipped. The modified
scheme is locally monotone to guarantee stability and sec-
ond-order accuracy. However, the method is excessive
since it flattens overshoots which may be just fine. Huang
et al. [21] proposed to adaptively flatten overshoots that
break global bounds in order to maintain diversity of fluid
features. As it does not require full-scale suppression, the
scheme also reduces computational overhead. A visual
comparison of smoke using linear, modified, and adaptive
Catmull–Rom interpolations is shown in Fig. 5.

There are numerous high-order interpolations in CFD
[22], but they are not widely used in smoke simulation
for several reasons. As all quantities on grid points require
interpolation, a small computational increment of interpo-
lation will significantly increase total computational over-
head. In [7], time cost of the monotonic scheme is about 18
times larger than the linear interpolation. Even though the
adaptive scheme reduces computational cost, it is about
3—4 times larger than the linear scheme [21]. In addition,
the high-order interpolations require more points to con-
struct stencil, which makes it difficult to handle inner
boundary conditions. Wide stencil is also complicated to
Fig. 5. Smoke ball collision simulations using linear scheme (left), mono Catmu
handle adaptive and non-uniform grids. High-order
interpolations require limiters to avoid oscillations, new
extrema, and possible instability [23]. Similar to backward
tracing, interpolation is not the major contribution to the
total numerical dissipation, but it likely increases total
computational overhead. We have to choose interpolation
scheme based on numerical accuracy versus runtime per-
formance trade-off curve.
4.2.3. High-order advection
The basic semi-Lagrangian advection is popular for

smoke simulation. However, excessive numerical dissipa-
tion makes it ill-suited for simulation that requires high
visual quality. Kim et al. [24,25] applied the Back and Forth
Error Compensation and Correction (BFECC) to the
semi-Lagrangian Courant–Isaacson–Rees (CIR) to obtain
second-order accuracy both in time and space. Forward
and backward semi-Lagrangian schemes are compared to
estimate numerical error of a single semi-Lagrangian
advection, which is then used to compensate a third for-
ward semi-Lagrangian advection. Fig. 6 shows visual com-
parisons using the semi-Lagrangian and the BFECC
advections. The BFECC generates much more detailed fea-
tures that the basic semi-Lagrangian scheme, especially
vortical features that are swept out by the numerical
dissipation.

The backward advection implies that the equation is
able to evolve backward, which is inappropriate for para-
bolic and non-reversible partial differential equations.
The BFECC requires great computational cost as it calcu-
lates the semi-Lagrangian advection three times. Selle
et al. [23] proposed a modified MacCormack scheme which
requires much less computational cost. In the BFECC
method, the error is treated as a current time quantity so
that it is advected forward to the next time step for com-
pensation. Since no strong proof shows that it is a quantity
related to the current step, the error can also be used to
correct the first forward semi-Lagrangian advection.
Fig. 7 illustrates the visual comparison of smoke using
the basic semi-Lagrangian and the modified MacCormack
methods. The MacCormack scheme generates more details
than the semi-Lagrangian method. Comparing visual
improvements using high-order interpolations and inte-
grators in Figs. 4 and 5, boosting numerical accuracy of
advection schemes is able to obtain greater improvement.
It also reduces computational overhead as it does not
require a third advection.

Since the BEFCC and the modified MacCormack are both
constructed based on the semi-Lagrangian scheme, the two
ll–Rom (middle), and adaptive Catmull–Rom interpolations (right) [21].



Fig. 6. Smoke simulations with the semi-Lagrangian (top) and the BFECC methods (bottom) [25].

Fig. 7. Smoke simulations with the semi-Lagrangian (left) and the modified MacCormack methods (right) [17].
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methods are unconditionally stable. However, the back
and forth round step makes them inappropriate to work
near interface of multiphase flows. It may not conserve
momentum if the first forward advection goes across to
the other side fluid with different density and then comes
back with then same velocity. The same problem happens
near boundaries of obstacles and computational domain. It
is suitable to replace them with the semi-Lagrangian
scheme near these regions. In the semi-Lagrangian method
time step is normally set to be less than 5 times of CFL con-
dition number, so it is safe to turn off the BEFCC and the
modified MacCormack at 5Dx off the interface and
boundaries.

Other than advecting velocity, Molemaker et al. [26]
proposed the QUICK scheme to advect velocity fluxes.
QUICK [27] is a third-order accurate explicit scheme. It
produces numerical dissipation only at finest spatial scale
that can be resolved by the grid. Fig. 8 illustrates the
visual results with different advections. The QUICK
scheme generates much more details than the basic
semi-Lagrangian method, especially on high-resolution
grid.
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The first-order forward Euler is unstable for the QUICK
[28]. It can be replaced with other temporal schemes with
large stability domains such as second-order Adams–
Bashforth (AB2) [29]. As the QUICK is conditionally stable
only when it meets CFL condition, it greatly increases com-
putational cost. Attributed to its regular memory access
pattern, it normally requires less computational cost than
other semi-Lagrangian based schemes with careful mem-
ory access.

Apart from advecting velocity flux, several methods use
constrained interpolation profile (CIP) [30,31] to advect
both the velocity and its derivatives, which can boost
numerical accuracy to third order. However, original CIP
requires a compact stencil and it is conditionally stable
with tight CFL condition. The method does not consider
derivatives at farthest cell corner, so it only guarantees
numerical accuracy when backward-traced point is not
far from the start corner. To improve the numerical stabil-
ity, Song et al. [32] proposed the monotonic CIP (MCIP) by
suppressing potential overshoots along all dimensions. The
excessive suppression obtains unconditional stability but
introduces some numerical dissipation. The dimension-
splitting strategy also dramatically increases computa-
tional cost [33]. As splitting computation is related to axis
directions, it normally produces some numerical dissipa-
tion. The problem is even serious in shear motions [34].
Kim et al. [35] proposed an unsplit semi-Lagrangian CIP
(USCIP) to guarantee unconditional stability. Two addi-
tional symmetrical terms are added to consider off-axis
movements such as shear and rotation to avoid unneces-
sary wiggles. It is able to reduce the numerical dissipation
with relative low computational overhead. Fig. 9 compares
visual results by using various advection schemes. The
BFECC and the MCIP obtain more compelling visual results
than the basic semi-lagrangian schemes, while the USCIP
method produces higher visual quality than other meth-
ods. CIP-based schemes advect both velocity and deriva-
tives. Their computational cost is comparable with the
BFECC method, but much higher than the basic semi-
Lagrangian method. As USCIP does not require dimension
splitting, it requires less computation than the BFECC and
the USCIP methods.

To illustrate how the numerical dissipation disperses
and smears out details, we compared several unconditional
stable advections using the standard Zalesak disk test [36].
The benchmark is a 100� 100 grid with a slotted disk cen-
tered at ð50;75Þ of 15 cells in radius, 5 cells in width, 25
cells in length of slot and 5 cells of an upper bridge. A con-
stant vorticity velocity field is given as [37]:
Fig. 8. Simulations using the semi-Lagrangian advection (left) and the QUIC
u ¼ ðp=314Þð50� yÞ ðaÞ
v ¼ ðp=314Þðx� 50Þ ðbÞ

�
ð13Þ

so that the slotted disk finishes one revolution every 628
time steps.

Fig. 10 shows results of one revolution with different
advection schemes. An accurate advection scheme is able
to translate and rotate interface without distortion and
deterioration, especially at interface with high curvature.
The basic semi-Lagrangian method has too much numeri-
cal dissipation to maintain basic shape of the disk. The
BFECC and MacCormack schemes keep generally shape
but smooth slots and corners. The MCIP scheme conserves
the disk shape with certain erosion at inner and outer cor-
ners, while USCIP almost suffers no distortion and area
loss.

Table 1 lists area loss of the disk with different schemes
and grid configurations. The ‘‘loss’’ column represents per-
centage of the area loss. Negative value means the final
disk is smaller than the original disk while positive value
indicates the disk grows. With the same grid configuration,
high-order schemes such as the USCIP suffer from much
less area loss than low-order schemes such as the semi-
Lagrangian. With the same advection, the area loss also
decreases as grid resolution increases. As high-order
schemes are able to suppress numerical dissipation even
at relative low-resolution grids, the improvement gain is
not significant by increasing grid resolutions when using
high-order schemes. While first-order semi-Lagrangian
method has too much numerical dissipation on coarse grid,
using fine grid significantly reduces total numerical dissi-
pation. We can also find that the amount of loss with the
semi-Lagrangian method drops relatively much faster than
that of high-order schemes, which indicates that low-order
schemes are much more sensitive to the grid resolution
than high-order schemes. Table 2 compares discussed
advections in terms of numerical stability, numerical accu-
racy, and computational cost.

Since the backward tracing and interpolation schemes
are orthogonal, aforementioned high accurate tracking
schemes in Section 4.2.1, high-order interpolations in Sec-
tion 4.2.2 and high-order advections in Section 4.2.3 can be
integrated together to further improve the numerical accu-
racy. In addition, other smoke quantities including density,
temperature, and concentration can also be advected with
above methods to reduce total numerical dissipation.
However, if high-order schemes are excessively used for
all quantities, high-frequency components of quantities
will accumulate simultaneously to produce highly sharp
K advections with low- and high-resolution grid configurations [26].



Fig. 9. Smoke simulations with various advection schemes [35].

Fig. 10. Zalesak disk after one revolution advected by different schemes [38].

Table 1
Area loss of disk with different advection and grid configurations (initial area = 5.82e�2).

Size Semi-Lag. MacCormack BFECC QUICK USCIP

Area Loss (%) Area Loss (%) Area Loss (%) Area Loss (%) Area Loss (%)

1002 4.20e�3 �92.8 5.75e�2 �1.37 5.99e�2 2.92 5.68e�2 �2.37 5.71e�2 �1.87

2002 3.97e�2 �31.5 5.78e�2 �0.712 5.76e�2 �1.03 5.84e�2 0.345 5.80e�2 �0.376

4002 5.34e�2 �8.25 5.79e�2 �0.408 5.83e�2 0.247 5.83e�2 0.171 5.826e�2 0.118

8002 5.43e�2 �6.70 5.81e�2 �0.201 5.818e�2 �0.04 5.819e�2 �0.017 5.822e�2 0.03

Table 2
A list of several advections for smoke simulation.

Advection Numerical stability Numerical accuracy Computational cost Representative reference

Semi-Lagrangian Unconditional stable First-order Low [2]
BFECC Unconditional stable Second-order High [24]
MacCormack Unconditional stable Second-order Medium [23]
QUICK Conditional stable Third-order High [26]
MCIP Unconditional stable Third-order High [32]
USCIP Unconditional stable Third-order Medium [35]
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interface. For instance, Fig. 11 shows two 2D smoke simu-
lations using different advection configurations. Left image
shows result using a combination of the modified MacCor-
mack scheme for velocity and the semi-Lagrangian for den-
sity; right image uses the modified MacCormack scheme
for both velocity and density. Although the right one has
much less numerical dissipation for velocity and density,
they accumulate to produce clear sharp interface, which
makes it artificial against the real smoke.
4.3. Sub-grid compensation

The numerical dissipation increases the viscosity to
make smoke inadequate of highly energetic and turbulent
appearance. Rather than directly reducing the numerical
dissipation by changing discretization schemes and simu-
lation algorithms, many works focus on how to add
small-scale features back with heuristic models.
4.3.1. Vorticity confinement
Fedkiw et al. [7] introduced the vorticity confinement

method [39] into smoke simulation. The method injects
back a certain amount of energy to recover turbulent fea-
tures by adding a tuneable body force. The force is perpen-
dicular to the direction of vorticity maximum magnitude
to enhance local rotation. It is designed to be linear propor-
tional to the grid spacing so that the modified NSEs degen-
erate to the original NSEs as the additional term vanishes
in the limit. Selle et al. [11] coupled the vorticity confine-
ment with vorticity equation. The vorticity confinement
force can be synthesized directly from current vorticity
field. The left two images of Fig. 12 compare visual results
using the basic and the vorticity confinement methods.
Injecting some vortical force back into flow significantly
improves visual effects, but it also introduces some ran-
dom artificial turbulence at local regions.

The vorticity confinement is an inexpensive approach
to recover small features eliminated by the numerical



Fig. 11. Using high-order schemes to advect all quantities produces sharp interface. Left simulation advects velocity with the MacCormack and density with
the semi-Lagrangian scheme; right one advects both velocity and density with the MacCormack scheme.
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dissipation. However, the method cannot determine how
much energy should be injected back without causing
instability. Fig. 12 gives comparisons by injecting different
amount of vorticity confinement forces. The simulation
becomes quasi-unstable and degenerates to a random tur-
bulent chaos when too much force is added. The problem
lies in the fact that the coefficient is constant over the
entire simulation domain. To solve the problem, He et al.
[8] presented an adaptive vorticity confinement coefficient
according to helicity other than user-defined constant
value. Fig. 13 illustrates the visual comparison between
the constant and variable vorticity confinement methods.
They further developed a robust second vorticity confine-
ment method [40] to guarantee the numerical stability
even with large confinement coefficients.

Vorticity confinement methods add kinetic energy to
dilute energy diffusion caused by the numerical dissipa-
tion, but they cannot fully compensate for excessive
numerical dissipation [26]. It is inappropriate for low vis-
cous fluid that inertia is so well conserved that fluid
motion can propagate for a significant distance without
being damped and broken down.

4.3.2. Subscale turbulence model
Many other methods use high-level turbulence models

to compensate for sub-grid details loss due to the numer-
ical dissipation. The basic mean flow is simulated on coarse
Fig. 12. Smoke simulations with different amount of vorticity confinement forc
0.25, 0.5 and 2.0 respectively [11].
grid while turbulent details are synthesized using proce-
dural synthesis methods. The methods can be described
as [41]:

u( NSðUÞ � STðu0Þ ð14Þ

where NS is a basic fluid simulator to calculate mean veloc-
ity U on the coarse grid, ST is a synthesizer to generate tur-
bulent field u0 and � is the integration operation to couple
the two fields together.

Early methods [42–45] used Kolmogorov spectrum to
generate pseudo-random turbulence in frequency space.
These methods have a common drawback of generating
turbulence at incorrect regions. Recently curl operation
[46] is applied on Perlin [9,47] and wavelet vector noises
[48] to generate turbulent components at various frequen-
cies and scales. Energy cascade is modeled to include spa-
tial distribution and turbulence dynamics using local
assembled wavelets [48], linear k—e equation [47], one-
equation [9], and complete tow-equation of k—e [49,10].
Instead of directly layering turbulence components on
the basic flow, Zhao et al. [41] modeled fluctuations as con-
trollable turbulence force to agitate the basic flow. The
method guarantees temporal consistence with the basic
NSEs simulators. Rather than calculating the basic flow,
Gregson et al. [50] employed a multi-scale tracking
method to reconstruct temporally coherent velocity field
from prior low-resolution density images. However, the
es. From left to right the coefficient is 0 (without vorticity confinement),



Fig. 13. Simulations using the vorticity confinement methods with constant (right) [8] and variable coefficients (left) [7].
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method requires fine tuning to obtain good balance
between reconstructed details and noise levels. Fig. 14
gives visual comparisons between different turbulence
enhancement methods. It shows that more turbulent
details are generated when more turbulence components
are added to the basic flow. However, smoke appears cha-
otic if too much turbulence components are added. In
order to obtain realistic detailed features, trial and error
effort are required to determine the amount of turbulence
components.

Procedural turbulence methods decouple high-
frequency components from the basic flow and use synthe-
sized small-scale turbulence to compensate for fine feature
loss caused by the numerical dissipation. The methods
enable animation artists to generate a fast basic simulation
and then add details without changing gross motion,
which helps the artists to shorten the turnaround. How-
ever, as the finest scale is determined by local velocity
and temporal averaging rather than the grid resolution,
Fig. 14. Visual effects of different turbulent enhancement methods. (a) Origina
intermittent turbulence method; (d) Add vorticity confinement to (a); (e) wav
method with q = 0.8, 0.2 and 0.1 respectively, where q is control parameter to c
Using a much high-resolution grid is able to produce more
realistic visual results than the non-physical synthesis
methods. Additionally, the temporal averaging operations
may smooth out visual appearance to some extent.

4.4. Invariants conservation

Another baseline of reducing the numerical dissipation
is to conserve basic fluid invariants. In rigid and deform-
able body simulations, great improvements can be
achieved by following the linear and angular momenta
conservation principles. Similar strategy can be applied in
fluid simulation by conserving invariants including vortic-
ity, circulation, and energy. Elcott et al. [4,51] proposed to
conserve circulation along arbitrary simplicial mesh. As
vortex is an important visual cue of smoke, the method
uses the back-tracking integrals to solve the vorticity for-
mulation of NSEs. The method preserves discrete circula-
tion on grid mesh to achieve no vorticity numerical
l coarse simulation; (b) wavelet subgrid turbulence; (c) controllable and
elet turbulence to (d); (f)–(h) controllable and intermittent turbulence

alculate resultant velocity field with qUþ ð1� qÞu0 [41].
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dissipation. As shown in Fig. 15, the conservation method
is able to produce similar visual results as real smoke while
the basic semi-Lagrangian method loses most fine features
due to the excessive numerical dissipation.

Since the method is constructed based on the semi-
Lagrangian advection, it is also unconditional stability. In
addition, the vorticity-based simulation requires no pres-
sure calculation. Intrinsic storage without reference to glo-
bal and local coordinate system constructs a very sparse
linear system, which greatly decreases computational cost
comparable with the semi-Lagrangian method. However,
the method preserves the circulation but does not conserve
energy. Although a L2 projection [51] can be employed to
preserve the total vorticity energy, the global operation
propagates influence to the entire domain. In addition,
the projection induces artificial visual effects around
boundaries.

In fluid simulation, the energy loss relates to time step,
grid spacing, and total frame numbers. The factors are cou-
pled in the simulation course, making it difficult to elimi-
nate energy dissipation by tuning each single term.
Besides, the computational cost is sensitive to the spatial
resolution and the time step. In order to preserve energy
without significantly increasing computational cost,
Mullen et al. [16] proposed a fully Eulerian integration
Fig. 15. 2D vortices merging comparisons between the real experimental result
(c) [4].
scheme independent of spatiotemporal resolutions. The
energy conservation scheme [52,53] and the non-dissipa-
tive advection ensure no energy loss on arbitrary simplicial
grids. In addition, it guarantees unconditional numerical
stability. Fig. 16 shows energy dissipation of different
schemes over time. The energy is tightly related with the
smoke motion. High energetic smoke generally obtains
rich and long-time active details. As shows in the figure,
the basic semi-Lagrangian method dissipates most energy
over time, while the energy conservation method almost
diffuses no energy, which indicates it does not have the
numerical dissipation problem.

The Eulerian integration preserves energy exactly over
time. However, it inevitably suffers from certain numerical
diffusion due to the low-pass filtering operations of resam-
pling on the discrete grid, which is a common drawback of
grid-based methods.

4.5. Particle based methods

Pure Eulerian methods start with a field sampled on
grid points and end with advected field resampled on the
grid at each step. The Eulerian methods may reduce
numerical dissipation to some extent, but suffer from
the fundamental problem of field resampling: the scale of
(a), the conservation method (b), and the basic semi-Lagrangian method



Fig. 16. Most schemes dissipate a significant amount of energy over time while the fully Eulerian scheme preserves energy exactly [16].
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finest features is limited by the Nyquist frequency of the
grid. Even for a pure translation velocity field, the highest
spatial frequency that can be reliably advected has period
of 4Dx [1]. A good Eulerian scheme may filter out high-
frequency components as a smoothing operation while a
bad Eulerian scheme may further generate visual artifacts.

In contrast to the Eulerian methods, the Lagrangian
methods employ discrete particles to carry variables along
without dissipation. There is no filtering and dissipation
loss in advection. From this point of view, Lagrangian
particle methods are perfect for advection to elimi-
nate numerical dissipation. In fact, there are already
some pure particle methods for fluid simulation, such as
smoothed particle hydrodynamics (SPH) [54] and some
pure vortex particle methods [55]. Several vortex particle
methods employ geometry structures to describe vortex
structure including filament [56,57], ring [58,59] and sheet
[60] to capture various subtle features such as leapfrogging
vortex rings and vortex shedding, which are difficult to
simulate using the grid-based methods. However, apart
from their specified problems such as particle redistribu-
tion, pure particle methods cannot enforce incompressible
condition as efficient and accurate as the grid methods.
Besides, the particle-based methods require sophisticated
particle distribution to obtain good performance and
quality.

A preferable remedy is to add Lagrangian machinery to
the Eulerian scheme in a hybrid way. Selle et al. [11] com-
bined Lagrangian vortex particle and Eulerian grid together
to overcome the weakness of both methods. The vortex
particles are used to carry and preserve vorticity without
dissipation loss while the Eulerian grid is employed to cal-
culate velocity and vorticity confinement force [7] to
recover swirling details. As the vortex particles are only
used to increase visual details, no particle distribution is
required. Yoon et al. [61] proposed a similar scheme with
combination of the vortex particles and Eulerian grid. Basic
flow is calculated on relative coarse grid to reduce the
computational cost. Particle vorticity is transferred to a
high-resolution vorticity field to obtain fine details. The
method uses a kernel function to calculate vorticity field
on high-resolution grid points, which cannot guarantee
the vorticity field free of divergence. In addition, as all vor-
tex particles make their contributions to vorticity forces, it
likely synthesizes strong vorticity forces to produce visual
artifacts. The vortex particles are suitable to preserve
swirling features but require additional computations to
induce velocity from vorticity. A straightforward modifica-
tion is to directly store velocity on particles. However, it is
far from enough as pressure projection requires velocity
information of the whole domain, which means we cannot
just consider individual particles but account for particle–
particle interactions on top of advections. Particle-in-cell
(PIC) [62] is a good strategy to couple particle and grid
while solving the pressure projection problem. Velocity
and other quantities are defined and advected on particles
to eliminate the numerical dissipation, but they are calcu-
lated and adjusted by pressure gradients on the grid points.
The method reduces the numerical dissipation of advection
but introduces even more to the total numerical dissipa-
tion of the simulation because quantities are averaged to
the grid points from the particles and then interpolated
back to the particles from the grid points. Zhu and Bridson
[12] proposed the fluid implicit particle (FLIP) method to
reduce the total numerical dissipation. The FLIP interpo-
lates the changes rather than the quantity values on the



Fig. 17. Smoke simulations with semi-Lagrangian (left), PIC (middle), and FLIP (right) schemes [63].

Fig. 18. The applicability of different types of methods in several typical fluid simulation scenarios. The applicability is classified into four levels with weak,
moderate, suitable, and strong from inside to outside.
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grid points. It adds the changes to the quantity value other
than replacing it. The changes are smoothed but not accu-
mulated to achieve almost no numerical dissipation.
Fig. 17 shows the visual comparison of smoke using differ-
ent methods. The FLIP method obtains much more visual
details than both the basic semi-Lagrangian method and
the PIC method.

As only changes are transferred in the FLIP method, the
velocity fluctuations on particles may average down to
zero on the grid points and then show up as unexpected
perturbations at other time steps, leading to certain noise.
Since PIC has no such problem, a better solution is to com-
bine them together with a tunable regularization parame-
ter to decay the noise and suppress the numerical
dissipation.

5. Conclusion

In this paper, we discussed the numerical dissipation
problem for smoke simulation in computer graphics com-
munity. The numerical dissipation is widely regarded to
have visual consequences of visual results. Many methods
have been developed to solve the problem. The methods
reduce numerical dissipation or compensate for visual loss
from various aspects. Most methods fall into three catego-
ries: ‘‘Decreasing’’, ‘‘Conserving’’, and ‘‘Increasing’’. Table 3
compares methods in the categories in terms of computa-
tional cost, visual quality, implementation, adaptability,
and scalability. The adaptability indicates whether the
method is adaptive to different application scenarios. The
scalability measures how it is easy to integrate the method
with existing applications. The following list gives the
common characteristics of methods in each category,
which has its advantages and disadvantages to make them
suitable for different application scenarios including high-
quality visual effect, real-time performance, animation
control, dynamic domain, obstacle-coupled interaction,
and large-scale simulation, as illustrated in Fig. 18.

� ‘‘Decreasing’’: Solving the problem by reducing the
amount of numerical dissipation. The grid variation
methods in Section 4.1 and the advection improvement
methods in Section 4.2 fall into this category. The
‘‘decreasing’’ methods normally use fine-resolution dis-
cretization and high-order numerical schemes to reduce
the total amount of the numerical dissipation. As grid



Table 3
Method comparison in terms of computational cost, visual quality, implementation, adaptability, and scalability.

Category Method Computational cost Visual quality Ease to implement Adaptability Scalability

Decreasing [3] Low Moderate Moderate Moderate Moderate
[4] High High Moderate High Low
[5] Moderate High Moderate High Low
[6] Low Low Easy Low Low
[17] Low Moderate Easy Moderate Low
[18] Moderate High Moderate High Moderate
[19] High High Hard High Low
[20] High High Hard High Low
[1] Low Low Easy High High
[7] (mono. interp.) Moderate Moderate Easy High High
[21] Low Moderate Easy High High
[24,25] High Moderate Easy High High
[23] Moderate Moderate Easy High High
[26] Moderate High Easy High High
[32,33] High Moderate Moderate Moderate Moderate
[35] Moderate High Moderate High High

Conserving [4,51] High High Hard Moderate Low
[16] High High Hard High Low
[12] Moderate High Easy High High
[11] (vort. part.) Moderate Moderate Moderate Moderate High
[61] High Moderate Moderate Moderate High

Increasing [7,11] (vort. confin.) Moderate Moderate Moderate High High
[8,40] Moderate Moderate Moderate High High
[46] Moderate Moderate Easy High High
[47] Moderate Moderate Moderate Moderate Moderate
[48] High Moderate Moderate Moderate Moderate
[9] High Moderate Hard Moderate High
[10,49] High High Hard Moderate High
[41] High High Moderate High High
[50] High High Hard Low Low
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resolution is directly related to the final visual effect,
grid variation methods have strong applicability in
applications with high-quality effect requirement. The
grid-based methods are flexible to handle boundary
and obstacle problems, making grid variation methods
suitable for applications with dynamic domain and
obstacle-coupled interaction. However, great efforts
are required to implement spatial discretization and
guarantee the numerical stability on irregular grid
structures. The heavy computational cost also degrades
the runtime performance, making them ill-suited for
realtime applications. As computation is exponentially
proportional to the domain dimensions, tremendous
computations and memory storage are required for
large-scale simulations. Besides, most calculations and
storage strategy tightly depend on the grid structures.
Changing grid structures requires great changes in the
simulation, while the advection improvement methods
are generally orthogonal to other subroutines in the
pipeline, the modifications will not impact other sub-
routines, so the advection improvement methods are
much easier to integrate with existing applications than
grid variation methods. In addition, the advection
improvement methods are compatible with the grid-
based methods. They are feasible to handle the dynam-
ical domain and obstacle boundary problems with the
help of grid-based methods. Comparing with the grid
variation methods, advection improvement methods
improve the visual quality with relative less computa-
tional overhead. They are preferable for real-time appli-
cations that do not require very high-quality results.
� ‘‘Conserving’’: Solving the problem by conserving indi-
rect fluid quantities. The invariants conservation meth-
ods in Section 4.4 and the particle methods in
Section 4.5 are two typical ‘‘conserving’’ methods, while
they preserve quantities in different ways. The invari-
ants conservation methods integrate indirect fluid
quantities (e.g. circulation and energy) on specific struc-
tures (e.g. simplicial mesh) to avoid simulating direct
quantities that greatly impact fluid motions. As direct
quantities such as velocity are not directly involved in
calculations that produce the numerical dissipation,
the numerical dissipation is significantly reduced, mak-
ing them especially suitable for applications with high-
quality requirement. Especially, as no energy is dissi-
pated for the energy conservation methods, smoke
remains energetic to guarantee long-time perfor-
mances. The invariants conservation methods are usu-
ally constructed on the grid structures, so they may
inherit the advantages of the grid variation methods.
However, they need sophisticated strategies to guaran-
tee conservation, which impeding their adaption and
stability to other application scenarios. The particle
methods preserve quantity by leveraging the conserva-
tion characteristic of the particle. The particle-based
methods have totally different simulation pipelines
from grid-based methods, leading to different applica-
bilities. The particle-based methods are difficult to han-
dle boundary problems such as obstacle interaction and
dynamic domain. Hybrid particle and grid methods alle-
viate the problems. The particle based methods do not
require some computational intensive subroutines,
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which reduces the computational cost to make them
suitable for realtime applications. Comparing to the grid
point number of grid-based methods, particle number is
more relaxant to the domain dimensions, making parti-
cle methods applicable to large-scale simulations with
less computational cost.
� ‘‘Increasing’’: Solving the problem by increasing

additional components. The compensation methods in
Section 4.3 are typical ‘‘increasing’’ methods as they
add components back into flow to synthesize detailed
features. The vorticity confinement methods are usually
directly integrated into the grid methods as an addi-
tional term. They need no modification to original grid
structure and do not impact original simulation. As
computational cost is inexpensive, the vorticity confine-
ment methods are able to increase diversity of flow
motion with much few efforts. They have the same
applicability as the grid-based methods. Most sub-grid
compensation methods employ the grid-based methods
for the basic flow simulations, so they have similar abil-
ities to the grid-based methods. However, the require-
ment to guarantee consistence between the basic flow
and the sub-grid synthesis flow degrades their abilities.
Especially, computational cost increases significantly
when complicated turbulence models are used on
sub-grid structure to generate turbulent details. A great
advantage of the ‘‘increasing’’ methods is that the syn-
thesis procedure is decoupled from the basic simula-
tion. The synthesis procedure can be treated as a
postprocessing without influencing the gross motion,
which makes the ‘‘increasing’’ methods suitable for ani-
mation control. However, As turbulent details are gen-
erally generated using synthesis methods, the details
may appear artificial and less comparable with the
grid-based methods.

In most time, we struggle to eliminate the numerical
dissipation, while occasionally we leverage it to guarantee
the numerical stability. As smoke is typically simplified as
inviscid fluid, there is no viscous friction at the dissipative
range of energy cascading. If there was no numerical dissi-
pation acting as artificial viscosity, energy would pile up
unbounded at the finest scales (with highest wavenumber
as k ¼ 2p=Dx) and cause numerical instability [49]. Addi-
tional dissipations are required to maintain numerical sta-
bility. The popular semi-Lagrangian scheme is so much
dissipative over a wide range of energy spectrum that it
degrades the visual quality. As we have observed in the full
Eulerian integration method [16], visual results may look
unnatural if there is no numerical dissipation. Adding a
certain amount of numerical dissipation will make it a lit-
tle viscous and appear plausible as real smoke.
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