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Abstract
We present several enhancements to model-reduced fluid
simulation that allow improved simulation bases and two-
way solid-fluid coupling. Specifically, we present a basis
enrichment scheme that allows us to combine data driven
or artistically derived bases with more general analytic
bases derived from Laplacian Eigenfunctions. We handle
two-way solid-fluid coupling in a time-splitting fashion—
we alternately timestep the fluid and rigid body simula-
tors, while taking into account the effects of the fluid on
the rigid bodies and vice versa. We employ the vortex
panel method to handle solid-fluid coupling and use dy-
namic pressure to compute the effect of the fluid on rigid
bodies.

Keywords: Fluid simulation, model reduction, solid-
fluid coupling

1 Introduction
One of the most significant drawbacks of physics-based
animation is “the curse of dimensionality”—the quest for
ever-higher fidelity leads to an explosion in the number
of degrees of freedom. This problem naturally leads to
the consideration of dimensionality reduction techniques.
By constructing a problem-specific model of our fluid, we
can reduce the number of degrees of freedom to only the
ones needed for our specific problem. While this is less
accurate than a full dynamics simulation, we can tailor
the simulation to our specific time and computational re-
quirements.

In this paper, we present several enhancements to the
basic reduced fluid simulation pipeline. Specifically, we
present a basis enrichment scheme for combining ana-
lytic, data-driven, and artistically authored bases as well
as a new approach to two-way solid-fluid coupling that
scales to a large number of rigid bodies.

The analytic bases act somewhat like regularization al-
lowing our approach to generalize outside the training
data and thus requiring significantly less training data
without the risk of over-fitting. We treat two-way solid-
fluid coupling in a time-splitting fashion—we first com-
pute the effect of the solid on the fluid and then com-
pute the effect of the fluid on the solid. We employ a
vortex panel method to compute obstacles’ effects on the
fluid and dynamic pressure to compute forces induced on
the obstacle by the surrounding fluid. In a precomputa-
tion step, we account for the geometric boundary of each
object, which involves assembling and inverting a dense

“panel matrix;” however, at runtime solid-fluid coupling
reduces to a matrix multiplication for each object. We
handle multiple obstacles by iteratively computing the
coupling in a way similar to Schwarz alternating meth-
ods.19 Fluid-solid coupling is achieved using dynamic
pressure to compute forces on solid objects from fluid ve-
locities; these forces are then treated as external forces in
a rigid body simulator. Our results demonstrate that our
enhancements are practical for two-way coupled reduced
fluid simulation with rigid bodies.

2 Related Work
Dimensionality reduction for computational fluid dy-
namics (CFD) has been well studied in engineering.
These methods are variously referred to in the literature
as proper orthogonal decomposition (POD), Karhunen-
Loéve decomposition, or subspace integration. The POD
method has been used in many applications involving di-
mensionality reduction of complex flows and to inves-
tigate coherent structures in turbulent flows.12, 13, 8 The
snapshot POD method introduced by Sirovich17 for the
study of coherent structures can be used to create a re-
duced model from a series of snapshots of a simulation.
Treuille and colleagues20 introduced this snapshot tech-
nique to graphics and described how each step of a fluid
simulation can be performed in the reduced space.

Since that work researchers have also developed mod-
ular techniques by connecting fluid tiles, which cap-
ture specific boundary conditions, at run time to cre-
ate large novel reduced fluid simulations.21 Addition-
ally, researchers have also experimented with different
bases for fluid simulation. Gupta and colleagues6 used
the Legendre polynomials for both simulation and ren-
dering of participating media. Long and colleagues10

improve upon Fourier-based solutions by shifting to the
discrete sine/cosine transform to handle boundary condi-
tions. However, this method is limited to simple domains.
More recently, DeWitt and colleagues4 used static analy-
sis of the domain to construct a basis from Eigenfuctions
of the Laplacian. In some simple domains, this basis even
has a closed form. In our work, we combine this basis
with the snapshot POD method. Other researchers have
extended reduced fluid methods by applying a cubature
approach for non-linear functions9 and including inverse
operators for solid-fluid coupling.18

Treuille and colleagues20 handled solid obstacles by
defining a local basis on a fixed size grid surrounding each
obstacle. This local basis was created by computing the



velocity field that cancels the flow into the obstacle in-
duced by each mode of the fluid simulation basis and then
applying the same snapshot POD technique to compute a
compressed basis. This process was repeated for a number
of translations and rotations of the obstacle. Additionally,
the rigid body motion of each object was also sampled to
incorporate object movement into the local basis. At run-
time, the local basis for canceling the normal flow is de-
termined based on the location, rotation, and movement
of the object. In contrast to this approach, our approach to
solid-fluid coupling, based on vortex panel methods, does
not limit interaction to a small region around the obstacle,
has a small runtime memory footprint, avoids expensive
precomputation, and allows for direct interaction between
obstacles.

Other approaches for handling moving boundary con-
ditions in reduced fluid simulations involve taking the
difference of the normal velocity and the desired nor-
mal velocity, and projecting it onto the velocity basis and
then subtracting the result from the reduced state.4 This
method approximates the forces up to the resolution rep-
resentable by the basis modes. In contrast, our method is
able to increase the resolution of our boundary conditions
independent of our fluid basis.

Our approach to solid-fluid coupling makes use of the
vortex panel method, which was developed to study flow
around airfoils7, 3 and was introduced to graphics by Park
and Kim14 to handle obstacles in a vortex particle method.
More recent variations have been used to simulate smoke
as a surface.15, 2

3 Methods
In this section, we will first briefly review the mechan-
ics of reduced fluid simulation, then introduce our basis
enrichment scheme, and finally present our approach for
two-way solid-fluid coupling.

3.1 Reduced Fluid Simulation
The basic mechanics for reduced fluid simulation were in-
troduced by Treuille and colleagues.20 We begin with the
incompressible Navier-Stokes equations which describe
the motion of a viscous fluid,

∂u

∂t
= −(u · ∇)u− ν∇2u +∇p+ fe (1)

∇ · u = 0 (2)

where u is the velocity, ν is the viscosity parameter, p
is the pressure, and fe are the external forces. The goal
of reduced simulation is to reduce the dimensionality of u
through Galerkin projection onto a low-dimensional basis,

r̃ = BTu (3)

where, r̃ ∈ Rr represents the reduced coefficients and B
is the basis represented as a matrix with r columns, each
representing a basis function.

A typical fluid simulation in computer graphics em-
ploys operator splitting breaking the simulation into sev-
eral individual steps: advection, applying external forces,

applying viscosity, and projection onto a divergence-free
field. To perform reduced fluid simulations, we must ad-
dress each of these steps.

Fortunately, because we only include divergence free
fields in our basis, we can only represent divergence free
fields removing the need for the expensive projection step.
External forces are easily handled by Galerkin projection
onto the basis. Specifically, given external forces, fe, we
compute reduced forces

f̃e = BT fe. (4)

These are simply scaled and added to the reduced velocity
coefficients,

r̃ := r̃ + sf̃e, (5)

for some scaling factor s that accounts for density, grid-
spacing, and timestep.

The diffusion term is also easily handled. Being a lin-
ear operator, the discretization of the diffusion operator
∇2u can be represented as a matrix D. Projecting into
the subspace we get the reduced diffusion matrix

D̃ = BTDB, (6)

which is precomputed for a given domain.
The non-linear advection operator,−(u · ∇)u, is more

complicated. The non-linearities preclude it from being
written as a single reduced matrix. Instead, a reduced ad-
vection matrix for each basis function can be precomputed
and then at runtime combined into the final reduced ad-
vection operator. The discretization of the advection op-
erator for a given velocity field, u, can be expressed as a
matrix, Au. This matrix, when applied to a field, v, (i.e
Auv) has the effect of advecting v through u.

Thus, we precompute, for each basis function or mode,
bi, in the basis B = [b1 . . .br] a matrix, Abi, that rep-
resents advection through the velocity field bi. Each of
these matrices can be reduced

Ãbi = BTAbiB, (7)

during precomputation. During simulation, the reduced
advection matrix is computed by summing all mode ad-
vection matrices weighted by their corresponding reduced
state coefficient

Ã =
∑
i

Ãbiri. (8)

Viscosity and advection can be combined into a single
update from time t to t+ ∆t and can be written as:

r̃t+∆t =
(
e∆t(νD̃+Ã)

)
r̃t. (9)

This matrix-vector product is computed efficiently using
an iterative Taylor approximation.21

We note that while the reduced simulation can proceed
without the notion of a grid, for collecting training data
and visualization purposes a grid is useful. In our system,
we explicitly use the grid for solid-fluid coupling.



3.2 Basis Enrichment
The divergence free bases used in reduced fluid simula-
tions have been constructed in either of two ways. The
first method involves running a training simulation and
then extracting a reduced basis using a Singular Value De-
composition (SVD). This process is accomplished by con-
catenating velocity-field snapshots of a high-resolution
fluid simulation into a matrix, computing the SVD, and
then selecting r singular vectors.20 A basis generated in
this way can capture motion similar to the training data
very well in the least squares sense, however, it suffers
from a number of problems. Arbitrary motion during run-
time can be problematic as the basis may not generalize
well to motion outside of the training simulation, e.g. us-
ing a training simulation where an obstacle generates flow
in one half of the domain for a runtime where the obstacle
moves to the other half. To minimize problems from over
fitting, a significant amount of simulation data has to be
precomputed. Additionally, it can be difficult for artists to
know what kinds of training simulations to run in order to
generate a suitable basis, not to mention the large amount
of precomputation space and time needed.

The second method involves creating a basis using an
analytic approach, for example choosing Eigenfunctions
of the Laplacian operator. For a few simple domains, these
bases can be computed in closed form. In more general
domains, the Eigenfunctions of the discrete Laplacian op-
erator are computed using an Eigendecomposition.4 In
simple domains like a box, the advection operators can
be computed analytically and because the modes are only
loosely coupled, the resulting matrices are sparse. The
Eigenfunction modes work well for gross flow and do not
suffer from over-fitting, but detailed flow can require an
impractically large number of modes.

To give artists control over generating a basis, we pro-
vide a velocity drawing tool. After the velocity has been
drawn, it is projected onto a divergence-free field and the
artist can timestep the simulation to generate the desired
velocity field. This process allows an artist to create dif-
ferent flow effects, such as vortices or laminar flow paths,
with minimal training data. Alternatively, artists can sim-
ply interact with the simulation to generate training data.
We will now describe how to combine different bases, a
similar approach has been used in the context of reduced
bases for direct to indirect radiance transfer.11

To exploit any sparsity that might exist in the Laplacian
Eigenfunctions, we would like to keep this basis intact
when including the data driven, artist generated modes.
Thus, given a Laplacian Eigenfunction basis, E, and ve-
locity fields generated by an artist, D = [d1 . . .dN ],
where each column is a user generated velocity field
scaled to unit length, we would like to construct a com-
bined basis that keeps the structure of E intact. First, the
SVD of D = USVT is computed and the left singu-
lar vectors, U, with corresponding singular values greater
than zero are retained. U is then deflated against the basis,

Ud = U−EETU, (10)

where the columns of Ud now contain the parts of the ve-
locity fields, U, that could not be represented by the basis,
E. The columns of matrix Ud are now orthogonal to the
columns of E but may no longer be orthogonal to each
other, i.e., UT

dUd may not be the identity. To generate a
basis that spans the same subspace we simply compute the
SVD of Ud and retain the singular vectors corresponding
to non-zero singular values1, resulting in an orthonormal
basis R. Concatenation of E and R forms an orthogonal
basis, perfectly valid for reduced fluid simulation. From
now on we therefore assume that B is the concatenated
matrix [E|R].

We would also like the ability to specifically activate
the artist generated modes during runtime. If one wishes
to directly excite an artist created mode during run time,
the projection of those modes into B can be precomputed.
At run time the resulting coefficients can be added to the
reduced state. No projection is necessary during run time.

3.3 Two-way Solid-fluid Coupling
We use the reduced fluid simulation engine described
in Section 3.1 and Box2D1 for rigid body simulation. To
couple them we use a time splitting technique and alter-
nately timestep each simulator while taking into account
the effects of the fluid on the rigid bodies and vice versa.

3.3.1 Solid to Fluid Coupling

To account for the effect of rigid bodies on the fluid flow,
we adopt a vortex panel method.3, 14 This approach has
two advantages over previous work. First, obstacles are
not limited to a finite range of spatial influence. In fact,
they have global influence, though the fall-off is quite fast.
Second, we avoid the substantial precomputation of sam-
pling the object’s effect at various positions and orienta-
tions in the domain. Our only precomputation involves
inverting matrices. Finally, we note that our approach
generalizes beyond reduced fluid simulation and could be
used in other contexts, such as smoothed particle hydro-
dynamics, Eulerian, or semi-Lagrangian methods.

In two dimensions, objects are discretized into M
piecewise linear segments called panels. In our system,
the panel lengths are chosen to be on the order of the fluid
simulation’s grid spacing. The panels are then used both
as quadrature points and as vorticity sources that cancel
flow normal to the obstacle.

The velocity, u = (u, v), generated by a panel at a
point x in the local coordinate system of the panel is given
by

u =
γβ

2π
, v =

γ

2π
ln
do + ε

de + ε
, (11)

where γ is the panel strength, β is the angle subtended by
the panel from the point x, do, and de are the distances
from x to the origin and end of the panel respectively, and
ε is a small constant to avoid division by zero (see Fig-
ure 1).

1While U is full rank, if there is a large overlap between U
and E, deflation will result in a rank deficient matrix Ud (with
zero singular values).
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Figure 1: Left: Panel coordinate system. Right: Velocity
field induced by the panel.

To cancel the flow normal to an object we must con-
sider the interactions between all the panels of the object.
To do so we compute a coupling matrix P ∈ RM×M

that encodes the influence of the strength of panel i on the
velocity at panel j. Specifically, let ūij be the velocity
induced at the mid-point of panel j by panel i when panel
i has unit strength (i.e. γi = 1). Then the Pji is given by

Pji = −ūij · nj , (12)

where nj is the normal vector of the j-th panel.
Given P and a velocity field, u, to cancel the flow nor-

mal to the obstacle we must solve the linear system,

Pγ = b (13)

where γ is the panel strength vector, and b is a vector
encoding the violation of the boundary condition. Specif-
ically,

bi = Ai (uf − uo) · ni (14)

where bi is the violation at panel i,Ai is the panel area, uf
is the fluid velocity evaluated at the midpoint of the panel,
and uo is the velocity of the object. This approach cor-
responds to a 1-point quadrature rule. Of course, higher
order methods could be used.

As described, the M × M panel coupling matrix P
is singular and an additional constraint must be added in
order to obtain a unique solution. We add the constraint
that there is zero circulation around the boundary, i.e.

M∑
i

Aiγi = 0. (15)

This constraint is encoded by adding a row to the panel
matrix containing the panel lengths and a zero to the end
of b. The panel matrix is computed in object space, al-
lowing for rigid body transformations without modifica-
tion. P can be inverted during precomputation; at runtime
panel strengths are computed with a single matrix-vector
product.

Some distributions of panels are problematic when ob-
jects contain symmetries. For example, a square with two
panels per side is unable to cancel the normal velocities
induced from rigid body rotation. In such cases it suffices
to use an odd number of panels per side.

Multiple Bodies Thus far we have described how to
handle a single object. To handle multiple objects we must
account for their interaction. Ideally, we would compute
a single coupling matrix encoding the interactions of all
panels in the system. However, this would require solv-
ing a new and much larger linear system every step, re-
moving the ability to precompute an inverse.2 Instead, we
employ a fixed point iteration approach that takes advan-
tage of the precomputed inverse panel matrices. First, the
panel strengths of each object are computed to satisfy the
boundary conditions of the reduced velocity field, i.e. for
all objects i we compute

γi = P−1
i bi. (16)

We then iteratively solve for panel strengths that addition-
ally satisfy object-object interactions.

Each iteration, for each object i in our simulation:

1. Compute bobji , which is the boundary violation in-
duced by all other objects.

2. Store the previously computed panel strengths.

3. Solve for the new panel strengths,

γi = P−1
i (borigi + bobji ). (17)

4. Compute the norm of the difference in panel
strengths.

Iterations are performed until the panel strengths con-
verge, or a user specified tolerance or iteration limit is
reached. This scheme, which falls into the class of
Schwarz alternating methods,19 is guaranteed to converge
to a unique solution for second order PDE’s. Golas et al.5

successfully demonstrate an alternating method to couple
Eulerian grids with vortex particle methods.

This alternating scheme may fail due to the singular-
ities that occur when evaluating the velocity very near a
panel. Velocities evaluated too close to a panel should
not be relied upon and instead another approach should
be taken, such as interpolating from reliable positions.7

Domain Boundaries When an object approaches the
domain boundary, the velocity field induced by its vor-
tex panels will not generally respect the solid wall bound-
ary conditions. For simple domains with closed form
Laplacian Eigenfunctions, we employ the method of
images—used in electrostatics to handle wall boundary
conditions—to accurately and efficiently enforce the wall
boundary conditions. To do so, objects that violate the
solid wall boundary conditions above an error threshold
are reflected across the solid wall. The resulting combined
velocity field will only have tangential components along
the solid wall. The velocities induced from the reflected
panels are evaluated only at positions that fall inside the
domain. This approach will correctly satisfy the domain
wall boundary conditions by canceling the normal compo-
nents of the velocity induced by the original object. This



Figure 2: Left: A visualization of the velocity field of an object near a domain boundary. Note that, along the black line,
the velocities point into and out of the domain. Right: After the addition of a mirrored object below the black line, there is
no flow across the domain boundary.

method is similar in spirit to Long and colleagues10 who
used the reflection properties of the discrete sine/cosine
transform to handle solid wall domain boundaries.

Feedback The resulting velocity field is a combina-
tion of the reduced fluid velocity, ur , and a panel velocity
field, up, where

up =
∑
i

ui (18)

and ui is the velocity field induced by panel i. up can be
evaluated at any specific point in space through evaluation
of Equation (11) and a straightforward summation. For
example, to advect a tracer particle we can combine the
reduced velocity, reconstructed in the neighborhood of the
particle, with the velocity evaluated from the panels.

However, the panel strengths have no memory and
must be recomputed from scratch each timestep. Thus,
we need to feed their contribution back into the reduced
fluid simulation to preserve momentum. This step can be
accomplished by iterating over the panels and summing
their contribution to the background grid. The resulting
velocity field, up, is then be projected into the reduced
space and added to the reduced coefficients. However,
naı̈vely evaluating Equation (11) at every background grid
velocity sample is computationally expensive and can be
especially wasteful if there are large errors when up is

projected into the reduced basis.
Instead, we approximate the contributions of panels to

distant background grid samples using a quadtree data
structure. Specifically, we build a quadtree over the back-
ground grid where the root corresponds to the entire do-
main and the leaf nodes correspond to disjoint sub-grids.
In our examples the maximum size of a leaf node sub-grid
is 4 × 4, corresponding to 4 u and 4 v velocity samples.
We use a precomputed error metric to determine how deep
to descend the quadtree when evaluating ui. To precom-
pute this error metric, we consider a unit strength vortex
panel and evaluate ui at the center of the quadtree node,
c, and additional sample points inside the quadtree node,
sj . Then the maximum error induced by using a constant
approximation of ui for the quadtree node is

max
j
‖ui(c)− uj(sj)‖. (19)

We compute these error samples for quadtree nodes at a
number of distances and directions from the panel and
store the maximum error incurred at a given level of the
quadtree for a given distance.

At runtime, when computing the contribution of ui to
up, which is stored on the background grid, we use these
precomputed values to determine the error induced by ap-
proximating the velocities using the center of a quadtree
node. If the error is below a threshold, the panel veloc-



ity is evaluated at the center of the quadtree node and this
value is added to all the background velocity values cov-
ered by the quadtree node, otherwise we descend the tree.

When using our quadtree acceleration, we still must
project up onto the reduced basis. Note that some details
of the velocity field will be lost in this projection and, in
particular, the reduced velocity field may not respect ob-
stacles boundaries. However, before this feedback the ve-
locity field ur + up does satisfy the boundary conditions
and can be evaluated exactly at any point in space in time
linear in the number of panels and the number of reduced
coefficients. This velocity should be used for, e.g., advect-
ing tracer particles.

3.3.2 Fluid to Solid Coupling
We incorporate fluid to solid coupling by computing the
dynamic pressure on the boundary of the rigid body. From
the dynamic pressure we compute the force, which is then
added to the rigid body simulation. The dynamic pressure,
sometimes called the velocity pressure, is

q =
1

2
ρuTu, (20)

where ρ is the density of the fluid, and u is the fluid ve-
locity. For each panel we have already computed the dif-
ference in relative velocity between the obstacle and fluid
when solving for the panel strengths. From that velocity,
we compute the dynamic pressure q at panel centers and
then multiply by the panel area to get forces,16 which are
normal to the panels. Specifically, the force on panel i is

f = Aiqni, (21)

which is then applied to the rigid body at the panel centers.
Buoyancy forces can optionally be included with

fi = −ρAihigni, (22)

where hi is the depth of the panel center and g is the scalar
gravitational constant. The minus sign is to signify that
the force is in the direction opposite the surface normal of
the panel.

Both forces integrate over surfaces and require that ob-
jects are closed.

4 Results
In our first example, we have a single data driven mode
with 63 Eigenmodes. The artist input and the input af-
ter it has been projected to be divergence-free is shown in
Figure 3. The Eigenmodes poorly capture this “jet,” but
represent gross flow well, while our enhanced basis cap-
tures both the gross flow and the jet well, see Figure 4.

Our second example uses a 128x128 grid with 67
Eigenmodes and contains two pairs of falling objects,
each pair has one object above the other. After being re-
leased, the objects above catch up to the objects below,
closing the gap between them. The objects that start out
above, draft off of the objects below allowing them to fall
faster through the fluid demonstrating the effects of solid-
fluid coupling and object-object interaction, see Figure 5.

Figure 3: Left: Line integral convolution (LIC) is used to
visualize the input from the artist. Right: The input from
the artist after it has been projected to be divergence free.

Figure 4: Left: Only Eigenmodes. Right: A data driven
mode with Eigenmodes. When exciting the jet with high
intensity, the induced flow is not well represented using
only the Eigenmodes.

Finally, we have combined both our basis enhancement
and two-way coupling into a simple 2D game, see Fig-
ure 6. The game uses 73 Eigenmodes and there are 15
objects with a total of 147 panels. Timing results in Ta-
ble 1 show that the naive approach of computing feed-
back from the panel velocities to the reduced simulation
dominates timing, taking 41ms in this example. By using
our quadtree feedback approach we can reduce the time
spent computing feedback by increasing the error thresh-
old of the approximation. In practice, this error threshold
can be quite large because this error is hidden by errors
made when projecting the resulting velocity field into the
reduced basis.

Description Time (ms)
Advect 0.744
Diffuse 0.00536
Panel Solves 5.626
Panel Feedback Naive 41.175
Panel Feedback Quadtree 5.825

Table 1: Timings in ms for game scene with 73 modes on
a 65x65 staggered grid.



Figure 5: Drafting example: Objects above draft off of and catch up to the objects below. This example demonstrates
solid-fluid coupling and object-object interactions.

Figure 6: An image from a game using our system, see
the video.

5 Conclusion and Future Work
We have presented several enhancements to dimension-
ally reduced fluid simulations: a basis enrichment scheme
to mix data-driven and analytic modes, and a new ap-
proach to two-way solid-fluid coupling. Our enrich-
ment scheme enables the combination of the generality
of Eigenmodes with the context awareness and art di-
rectability of data-driven modes. Our approach to solid-
fluid coupling combines vortex panel methods for solid-
to-fluid coupling, dynamic pressure for fluid-to-solid cou-
pling, the method of images to handle domain boundaries,
and a quadtree-based method to accelerate the solid-to-
fluid coupling. This approach enables robust coupling of
dynamic objects to the dimensionally reduced fluid simu-
lation and requires no training data.

In future work, we will extend the technique to 3D.
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