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Figure 1: A comparison of our approach with the current state-of-the-art: the original input drawing (a); the result of Entem
et al. [2015] (b) in contrast to the result of our technique (c) that produces a more natural transition between individual parts;
the result of Sýkora et al. [2014] suffers from visible seams between individual parts (d) whereas our approach delivers smooth
transition (e). (Images (a) and (b) come from [Entem et al. 2015].)

ABSTRACT
We present a new approach to reconstruction of high-relief surface
models from hand-made drawings. Our method is tailored to an
interactive modeling scenario where the input drawing can be
separated into a set of semantically meaningful parts of which
relative depth order is known beforehand. For this kind of input,
our technique allows inflating individual components to have a
semi-elliptical profile, positioning them to satisfy prescribed depth
order, and providing their seamless interconnection. Compared to
previous methods, our approach is the first that formulates this
reconstruction process as a single non-linear optimization problem.
Because its direct optimization is computationally challenging, we
propose an approximate solution which delivers comparable results
orders of magnitude faster enabling an interactive user workflow.
We evaluate our approach on various hand-made drawings and
demonstrate that it provides state-of-the-art quality in comparison
with previous methods which require comparable user intervention.
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1 INTRODUCTION
Recent advances in interactive 3Dmodeling from a single image [En-
tem et al. 2015; Feng et al. 2016; Li et al. 2017; Sýkora et al. 2014;
Xu et al. 2014; Yeh et al. 2017] make the creation of 3D models less
demanding for artists and also more accessible for novice users
who do not have sufficient experience with professional 3D model-
ing tools. Such tools need complex manipulation with geometric
primitives in 3D space which requires working with multiple 2D
projections. A key advantage of staying in the 2D domain is that
it allows the user to remain entirely focused on the creative pro-
cess and not be distracted by resolving consistency in depth. This
important aspect also explains why 2D sketches are often used as
concept art or in early stages of 3D model design.
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In this paper, we focus on a branch of single image modeling
methods that are suitable for organic structures composed of several
rounded parts that are positioned in depth and attached or smoothly
connected to each other [Entem et al. 2015; Feng et al. 2016; Sýkora
et al. 2014; Yeh et al. 2017]. In the original image, these parts are
usually delineated by outlines or have distinct boundaries that can
be easily extracted. Thanks to the 2.5D layered structure, this kind
of input usually requires only little user intervention while the
resulting meshes still have a certain level of complexity which
would be more difficult to achieve using standard 3D modeling
tools. The desired result is akin to a high-relief sculpture, defined
in classic sculpture as a relief where more than half of the shape
projects from the background at full depth (see, e.g., [Read 1961]).

With previous methods, however, the reconstruction process
is usually separated into a set of individual sub-problems which
are solved sequentially, e.g., the input regions are first inflated and
then shifted to preserve the relative depth. Finally, already inflated
and shifted components are stitched together or smoothly intercon-
nected. Due to this sequential process, the quality of the resulting
mesh often suffers from the lack of smoothness in the areas where
individual parts were stitched together. In this paper, we formulate a
single optimization problem that unifies all of the above-mentioned
sub-problems within a single energy minimization framework, de-
livering seamless organic shapes that seem like sculpted from a
single block of material.

The contributions of our work are as follows: (1) We formulate
the reconstruction of high-relief models from a single hand-drawn
image as a minimization of a unified non-linear energy functional.
Thanks to this joint formulation, our technique naturally produces
meshes where the individual parts are interconnected smoothly and
seamlessly. (2) We propose an efficient approximate method to our
non-linear solution which enables interactive modeling workflow.

2 RELATED WORK
Igarashi et al. [1999] introduced the concept of modeling by infla-
tion. They add volume to a 2D shape procedurally by triangulating
the shape and setting vertex heights proportional to chordal axis
distance. This concept was later extended by others using convo-
lutional surfaces [Tai et al. 2004], sweeping 2D template scalar
field [Schmidt et al. 2005], using mass-spring system [Karpenko
and Hughes 2006], non-linear optimization [Nealen et al. 2007],
generalized cylinders [Borosán et al. 2012; Zeng et al. 2015], sur-
faces of revolution [Bessmeltsev et al. 2015], level set method [Levi
and Gotsman 2013], and finally by an implicit surface which is
defined by a skeleton of the inflated region’s shape and its radius
function [Entem et al. 2015].

Other methods provide an extension that allows specification
of cross-sectional functions for individual components [Olsen and
Samavati 2010] or define a set of primitives that can be used to
approximate their shape [Chen et al. 2013; Gingold et al. 2009; Shtof
et al. 2013]. Sýkora et al. [2014] and Feng et al. [2016] obtain inflated
shapes with semi-elliptical profiles by solving Poisson equation of
the squared height (recovering the height by taking the square
root). Yeh et al. [2017] and Jayaraman et al. [2018] utilize user-
specified curvature annotations to infer gradient fields and obtain
inflated shapes with parabolic profiles by solving Poisson equation
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Figure 2: Comparison of inflation with a parabolic (a) and a
semi-elliptical (b) profile for a frontal (top) and a side (bot-
tom) view. Notice how the semi-elliptical inflation is steeper
at boundaries and more evenly rounded which gives the
frontal render (top right) a more natural appearance.

of the (unsquared) height (see Fig. 2). Li et al. [2017] use an iterative
process guided by several types of user-provided curves.

As the inflation process is usually applied only to a single 2D re-
gion, the resulting 3D object has only limited structural complexity.
To produce more complex 3D objects, individual components need
to be inflated separately and then joined together. In this “piece-
wise” workflow, correct absolute depth values need to be specified
in order to preserve the overall 3D structure and avoid potential pen-
etration of the individual parts. A typical approach how to resolve
this problem is to let the user to view the object from side-views
and specify absolute depths manually [Borosán et al. 2012; Feng
et al. 2016; Igarashi et al. 1999; Nealen et al. 2007]. Gingold et al.
[2009] use manually constructed intersection curves to guide the
positioning of parts in depth, and Bessmeltsev et al. [2015] delegate
depth specification to an underlying 3D skeleton positioned by the
user. Finally, Yeh et al. [2017] allows the user to specify a set of
sparse slope cues which locally define surface increase in depth.

Other approaches try to infer the missing depth information
using various cues and perform the positioning in an automatic
fashion. Sýkora et al. [2010] use a set of sparse depth (in)equalities
given by the user. Sýkora et al. [2014] utilize illusory surfaces to
predict depth (in)equalities. Liu et al. [2013] use relative depth
cues represented by T-junctions while Zeng et al. [2015] combines
them also with ground contact cues. In [Yeh et al. 2015], angles at
junctions and region overlaps are used as a layering metric while
Shtof et al. [2013], as well as Chen et al. [2013], utilize geosemantic
constraints as relative depth cues. Finally, Sýkora et al. [2014] use
quadratic programming to automatically find smooth surfaces that
translate and deform parts along axis perpendicular to the image
so that the relative depth ordering is satisfied.

After determining the relative depth positioning of the individual
components, the remaining task is to join the components together,
ideally in a smooth and seamless way. Igarashi et al. [1999] lets the
user specify a region for subsequent surface fairing by low-pass
filtering [Taubin 1995]. In a follow-up work [Igarashi and Hughes
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Figure 3: Original drawings (top) and the input to our method (bottom): pre-tesselated regions with completed occluded parts
have their relative depth ordering visualized in grayscale (the lighter is the closer). Equality and inequality constraints are
visualized using cyan and magenta, respectively, and interconnection lines using blue color. The Robin boundary constraints
(green-to-red gradient) may be automatically determined by our system. (Original drawings: wolf, bunny, farmer © Anifilm;
unicorn, elephant come from [Entem et al. 2015]; lamb © Marek Dvorožňák.)

2003], simple filtering is replaced by a non-linear method [Schnei-
der and Kobbelt 2001]. A similar approach is used by Nealen et al.
[2007], utilizing a fairing interpolation of surfaces defined by con-
trol curves. Borosán et al. [2012] use Laplacian smoothing around
intersection loops, and Levi and Gotsman [2013] utilize a heuris-
tic where a boolean union of spheres and reconstructed parts at
joints is followed by bi-Laplacian smoothing. Blending of implicit
primitives based on Ricci’s operator [Ricci 1973] is used in Schmidt
et al. [2005] as well as in Entem et al. [2015]. This approach al-
lows control over the smoothness of each joint. To produce smooth
joints, Sýkora et al. [2014] perform additional smoothing step by
performing biharmonic interpolation in regions corresponding to
connections of the individual components.

Despite the progress made in the above-mentioned work, the
modeling process remains decoupled into separate steps. In this
paper, we unify inflation, positioning, and seamless joining of indi-
vidual components. Due to this unified formulation, hand-drawn
images can be converted into high-quality meshes with minimal
user intervention.

In this section, we have described methods that deal with the re-
construction of 3D shapes from sketches. The results are either full
3D models or some of their approximations, like high-relief mod-
els. There are also different techniques [Arpa et al. 2015; Cignoni
et al. 1997; Schüller et al. 2014; Weyrich et al. 2007] that aim at bas-
or high- relief generation out of a full 3D model. However, those
deal with depth compression of the model as opposed to the model
reconstruction.

3 OUR APPROACH
The aim of our approach is to reconstruct a high-relief model from
a hand-drawn image. As an input to our method, we expect a set
of semantically meaningful regions with completed occluded parts

of which relative depth ordering is known. In addition to that, we
assume (in)equality constraints for region boundaries and boundary
vertices where two regions should merge (see Fig. 3). All this can
be obtained using a semi-automatic process described in [Sýkora
et al. 2014].

We would like the final high-relief model to satisfy the following
requirements:

• regions should be inflated in a way so that the resulting
shapes have semi-elliptical profiles,
• they should be shifted in depth to satisfy the prescribed
relative depth ordering,
• interconnection of regions should be seamless, and
• the resulting model should closely match contours of the
input 2D drawing when using orthographic projection.

Although the inflation with parabolic profile is solvable using
linear system [Sýkora et al. 2014], non-linear semi-elliptical infla-
tion is more desirable because it produces shapes that are steeper
at boundaries and more evenly rounded. This is especially impor-
tant for organic models such as cartoon characters (see Fig. 2 for
comparison).

To restrict the high-relief model to stay within the boundaries
given by the outlines of the original drawing, we restrict the infla-
tion and shifting of individual parts to take place only in a direction
that is perpendicular to the original image plane, i.e., we will op-
timize only z coordinates of the final 3D mesh as in [Sýkora et al.
2014].

In the rest of this section, we first show how to inflate a single
region to have a desired semi-elliptical profile by formulating a
non-linear inflation functional (Einflation). Then, we consider joint
inflation of multiple regions and satisfaction of their relative depth
order. For this, we combine Einflation with a shifting functional
(Eshift) which gives us the final non-linear energy E that expresses
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the whole reconstruction problem. Finally, we show how to lin-
earize E and get an approximate solution which can be solved
using a quadratic program. This enables substantial speedup while
retaining similar quality as the original non-linear solution.

3.1 Non-linear Formulation
Inflation of a single region. An initial planar region Ωi can be

inflated to a semi-elliptical profile by finding a function f (x) : Ωi →

R that minimizes the following energy functional

Esinflation =

∫
int(Ωi )

(
∆f 2 (x) − c

)2
dx (1)

subject to

f (x) = 0 ∀x ∈ ∂Ωi (2)

where int(Ωi ) and ∂Ωi is the interior and the boundary of Ωi ,
respectively, ∆ is the Laplacian operator and c is a scalar specifying
a user-controllable amount of inflation. The energy is non-linear
because the Laplacian is applied to the square of f and therefore, the
result is not invariant to translation of the boundary conditions. To
be able to move the parts in the z direction, which may be necessary
to meet the relative depth order, we introduce a separate shifting
function.

Simultaneous inflation and stitching of multiple regions. Given
n initially planar regions Ωi , we topologically interconnect those
individual overlapping components at areas where seamless con-
nection is desired (see Fig. 3). This enables us to achieve seamless
transitions among them. Now, the task is to find an inflation and
a shifting function f (x) : Ω → R and д(x) : Ω → R, respectively,
that minimize the following energy functional:

E = Einflation + λshiftEshift (3)

where

Einflation =

∫
int(Ω)

(
∆f 2 (x) − c

)2
dx + λbnd

∫
B
( f (x))2 dx, (4)

Eshift =

∫
Ω
∥∇д(x)∥2dx, (5)

Ω = Ω1 ∪ . . .∪Ωn is a unifying region that contains all the regions
Ωi and λshift is a regularization parameter controlling the balance
between the inflation and the shifting of parts in the optimization.

As compared to the inflation of a single region where the bound-
ary of the region is fixed at the plane z = 0 (Formula 1 and 2),
the inflation energy Einflation is extended by a term (controlled by
the parameter λbnd) that allows movement of the boundary of f
on a subset B ⊆ ∂Ω. This relaxation proves useful in alleviating
unwanted reconstruction artifacts visually resembling pits. The in-
fluence of λbnd is visualized in Fig. 4 and also in our supplementary
video. Fig. 9 (a) and (c) shows how the results with and without
these artifacts look like when rendered.

The aim of the shifting energy Eshift, where ∇ stands for the
gradient operator, is to find a function д that deforms the inflated
shape f in a way that the result h = f +д satisfies the relative depth
conditions while encouraging д to be as flat as possible. The energy

h

f

д

Figure 4: Converged results of the non-linear optimization
with visualization of the inflation (f ) and the shifting (д)
function for the final result h = f + д, and also of the in-
fluence of the inflation boundary relaxation term λbnd. The
result in the right column has its boundary more flexible
(λbnd = 0.01) than the result in the left column (λbnd = 100)
which mitigate formation of pits (depicted inside circles).
See accompanying video for an animation.

E is minimized subject to the following relative depth conditions:

fi (x) + дi (x) = fj (x) + дj (x) ∀x ∈ C=i, j ,

fi (x) + дi (x) ≤ fj (x) + дj (x) ∀x ∈ C≤i, j ,

fi (x) + дi (x) ≥ fj (x) + дj (x) ∀x ∈ C≥i, j ,

(6)

where C=i, j ,C
≤
i, j ,C

≥
i, j ⊆ Ωi ∩ ∂Ωj are sets of points that specify

relative depth order for two overlapping regions Ωi and Ωj . The
resulting function h is then simply h = f + д.

3.2 Efficient Reformulation of Non-linear
Energy

Although the non-linear solution that we have described fulfills our
reconstruction requirements, depending on the mesh resolution
and chosen numerical method, the convergence of the non-linear
optimization may be relatively slow. In our implementation, the
optimization often lasts hours for input with moderate complexity
(see more details in Section 4). Even though more sophisticated
numerical methods could offer higher performance, in this section
we propose a different approach based on the observation that
for a suitable λshift, when the optimization converges, the infla-
tion energy Einflation is minimized and f is therefore completely
inflated. To obtain a solution that is orders of magnitude faster
while producing results that are comparable in quality, we build on
this observation and separate the problem into the two subsequent
steps: inflation and shifting.

As shown by Sýkora et al. [2014], the inflation with a semi-
elliptical profile that corresponds to the Formula 1 can be obtained
efficiently by solving the Poisson equation

∆ f̃ (x) = c (7)
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which produces a shape f̃ with a parabolic profile, and then the
following cross-section function is used to change the shape of f
to a semi-elliptical profile:

f (x) = d
√
f̃ (x) (8)

where d is a scaling factor allowing to obtain flatter profile or
reverse inflation.

To allow for greater modeling flexibility, we extend this inflation
method to support transition between fixed and free boundaries
via Robin boundary conditions for Equation 7:

α (x) f (x) + (1 − α (x))
∂ f

∂n
(x) = 0 ∀x ∈ ∂Ωi (9)

where α (x) ∈ [0, 1] specifies the interpolation between Dirichlet
and Neumann boundary constraints. This extension allows us to
mimic the behavior of non-linear solution where the boundary can
be shifted (Formula 4).

To obtain the final surface h that satisfies the specified relative
depth order, we minimize:∫

Ω
∥∇h(x) − ∇f (x)∥2dx (10)

subject to (in)equality constraints representing the relative depth
conditions:

hi (x) = hj (x) ∀x ∈ C=i, j ,

hi (x) ≤ hj (x) ∀x ∈ C≤i, j ,

hi (x) ≥ hj (x) ∀x ∈ C≥i, j .

(11)

This formulation is mathematically equivalent to the one used in
[Sýkora et al. 2014]. However, it allows us to directly optimize for
the final mesh h as opposed to the two-step procedure in [Sýkora
et al. 2014].

3.3 Implementation Details
We discretize our continuous formulation using the finite element
method. We assume that each planar region Ωi is converted into
a triangular mesh with additional interior vertices for boundary
vertices of each region Ωj that overlaps with Ωi . This instantly
gives us pairs of corresponding vertices that are used to satisfy rel-
ative depth ordering, i.e., the sets C=i, j , C

≤
i, j and C

≥
i, j . Please refer to

[Sýkora et al. 2014] for more details about the procedure. Then, we
reconnect the meshed regions at vertices where seamless transition
is expected. These are visualized using blue lines in Fig. 3.

Non-linear formulation details. The inflation and shifting non-
linear energies (Formula 4 and 5) are discretized as follows

Einflation ≈
(
M−1in Linf

2
in − c

)T
Min
(
M−1in Linf

2
in − c

)
+ λbndf

T
bndMbndfbnd,

Eshift ≈ (Gg)T T (Gg) ,

where c is a column vector of scalars c (see Formula 1),T,M andM−1
are diagonal matrices representing areas of mesh triangles, the mass
matrix and its inverse, G and L are sparse matrices representing
discretization of the gradient operator and the usual cotangent
discretization of the Laplacian operator [Meyer et al. 2003]. The
square of a vector is understood as element-wise operation and

Figure 5: Example of boundary conditions used for mitiga-
tion of pits. Movable boundary utilized in our non-linear
solution is visualized using yellow color (left) and Robin
boundary conditions that we employ in our approximate so-
lution using green-to-red gradient (right). User input is visu-
alized using green and red points which specify the range of
the specified conditions.

the subscripts in and bnd denote a part of a matrix or a vector
corresponding to interior and boundary vertices, respectively.

Efficient reformulation details. The Poisson equation for obtain-
ing a parabolic inflation (Formula 7) is discretized as

Lf̃ = Mc

and the minimization of functional in Formula 10 with (in)equalities
(Formula 11) is discretized as a quadratic program, i.e., we minimize:

1
2
hTLh − hTLf (12)

subject to (in)equality constraints:
hi (p) = hj (p) ∀p ∈ C=i, j ,

hi (p) ≤ hj (p) ∀p ∈ C≤i, j ,

hi (p) ≥ hj (p) ∀p ∈ C≥i, j .

(13)

4 RESULTS
We implemented both the original non-linear method and the
linearized approximation in C++. Our implementation relies on
the Eigen library [Guennebaud et al. 2010] for linear algebra rou-
tines, libigl [Jacobson et al. 2013] for discrete differential operators,
solvers of quadratic problems and programs, and L-BFGS non-linear
solver [Liu and Nocedal 1989]. To compute the gradient of the en-
ergy used in the non-linear solver, we used reverse-mode automatic
differentiation from the Stan Math Library [Carpenter et al. 2015].

For all results included in this paper, we use the following pa-
rameters: c = 4 to obtain an inflation with hemispherical profile
for circular regions and a semi-elliptical profile for regions with
different shapes, λshift = 1 to equally balance inflation with shifting,
λbnd = 100 for results that contain pits, and λbnd = 0.01 for results
that mitigate pits.

According to our experiments, including the entire boundary
of the function f into the subset B in Formula 4 may result in
unwanted shifting of parts of the boundary that should stay fixed.
This is caused by the competition between the individual terms in
energy E (Formula 3). We resolve this by restricting B as follows:
For each two overlapping regions that are interconnected and one
is supposed to be above the other one, we include only boundary
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Figure 6: Comparison of results produced by Entem et al.
[2015] (top) with our approach (bottom); for the unicorn and
the elephant example. Our results more closely reproduce
outlines of the original input drawings and contain seam-
lessly merged body parts without bulges. (Images located at
the top come from [Entem et al. 2015].)

vertices of the top region that are overlapping with the bottom
region into B (an example of the resulting subset B is depicted
using yellow color in Fig. 5, left). For top regions that are entirely
surrounded by the bottom components (e.g., elephant’s ear), a user
intervention may be needed to obtain satisfactory result. For these
cases, we provide a simple two-click interface to specify the range
manually.

We use the same technique for specification of Robin boundary
conditions for the top region (Formula 9) in our approximate solu-
tion. We set α (x) ∈ [0, 0.2] for boundary points that are adjacent to
the interconnection line (blue line in Fig. 5), α (x) = 1 for points that
are at the borderline of the bottom region and linearly interpolate
α between the points. For all other boundary points, we assume
α (x) = 1. For obtaining a reverse inflation (e.g., rabbit’s ears or
farmer’s shovel in Fig. 7), the parameter d was set to −1, otherwise
we used d = 1.

We ran our implementation on a quad-core CPU (Core i7, 2.7 GHz,
16 GB RAM). Summarized running times for our approximate solu-
tion are presented in Table 1.

Our implementation of non-linear solution often required hours
to converge (see the supplementary material for a time-lapse video
which illustrates convergence of the non-linear optimization). In
contrast, the approximate version is significantly faster while the
results look nearly identical (see Fig. 9 for a comparison).

We also compared the results produced by our method with the
results produced by the two most closely related previous works:
Ink-and-Ray [Sýkora et al. 2014] and a method by Entem et al.
[2015].

The results of Ink-and-Ray with visible seams at connections of
regions are shown in Fig. 7 and are even more pronounced when
the lighting conditions changes, see Fig. 8 and the supplementary
material. Those seams are caused by bi-Laplacian smoothing in a
user-specified area around the connection that is performed in a
post-processing grafting phase. Since we reconnect the overlap-
ping regions before the reconstruction phase, our results naturally
reproduce seamless connections that respect the specified inflation
profile.

Table 1: Running times of our approximate solution.

model # vertices # faces time
wolf 32 k 52 k 10.1 s
bunny 19 k 33 k 2.7 s
farmer 33 k 55 k 1.5 s
unicorn 22 k 36 k 3.8 s
elephant 39 k 68 k 12.4 s
lamb 30 k 50 k 7.1 s

The method of Entem et al. [2015] represents each part of a
reconstructed 3D model by a skeleton-based convolution surface.
These parts are then positioned in depth based on thickness of their
3D reconstruction and then smoothly blended together by simple
summing operation. The quality of this blend strongly depends
on the shape of completed regions as well as on their positions in
depth. Due to this reason, unwanted bulges may appear in the final
solution (see Fig. 6) as opposed to our method which guarantees to
produce seamless connections between individual parts.

In addition to the rendered results presented in this paper, we
include the resulting meshes for all models present in Fig. 7 and 9
in our supplementary material.

5 LIMITATIONS AND FUTUREWORK
Our method enables reconstruction of smooth high-relief models
for a variety of different input drawings. However, we would like
to point out some limitations of our approach which can serve as
motivation for future work.

In some configurations where there are two regions smoothly
interconnected and one is assumed to be above the other one, our
solution may pull the top region down a bit and produce unwanted
deformation of the lower region (see Fig. 10 for an example). As a
future work, we plan to incorporate additional user-assisted com-
pensation for such kind of configurations.

Our method assumes that the resulting model consists of a set of
rounded shapes which have semi-elliptical profiles. Although this
assumption is realistic for most organic shapes, there can still be
situations which would require local modifications of the shape pro-
file. For those, one may incorporate, e.g., the concept of curvature
cues used in [Yeh et al. 2017] and modify the ∇f in Formula 10.

Although we provide a quick user-assisted mitigation of pits, an
interesting avenue for future work would be an automatic approach
such as determining suitable α (x ) without user intervention. As
future work, we plan to extend our technique from high-relief
models to full 3D models by taking into account shape mirroring
extension as used in [Feng et al. 2016].
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Figure 7: Comparison of results produced by Ink-and-Ray system [Sýkora et al. 2014] (top row) and the results of our method
(bottom row). The differences in smoothness are pointed out with arrows. The reverse inflation of rabbit’s ears and mouth,
and farmer’s shovel may be obtained by setting the parameter d to −1 for these parts.

Figure 8: Comparison between a sequence of light variation on results produced by Ink-and-Ray method [Sýkora et al. 2014]
(top) and our method (bottom). See accompanying video for an animation.

6 CONCLUSION
We presented a method to reconstruct high-relief part-based models
from a single hand-drawn image. In contrast to previous techniques
where the modeling process was subdivided into several indepen-
dent steps, we proposed a unified non-linear energy minimization
formulation which enables joint inflation and shifting of individ-
ual parts. In addition, we also proposed an efficient approximate
method which delivers comparable solution as the original non-
linear formulation but is notably faster. This enables us to create
an interactive 3D modeling framework that enables production
of high-quality meshes where individual parts are interconnected
seamlessly. We confirmed the improvement in quality by compar-
ing renderings of our resulting models and those obtained with the
current state-of-the-art techniques.
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(a)

(b)

(c)
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Figure 9: Comparison between the non-linear solution (a and c) and the approximate solution (b and d)—(a) results of the
non-linear solution with pits, (b) corresponding approximations, (c) results of the non-linear solution with mitigated pits,
(d) corresponding approximations (our final results).

Figure 10: Limitation of our method: A top region (nose)
which is interconnected with a bottom region (head) may
pull the bottom region down a bit which may produce
unwanted deformation. This deformation is more evident
when rendered from a side view (right).
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