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testováńı aplikace a mým rodič̊um za podporu při studiu.
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Autor: Ladislav Kavan
Katedra: Katedra software a výuky informatiky
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Chapter 1

Introduction

One of the contributions of this thesis is to put together (compile) different
technologies used in contemporary computer graphics, as well as in other
areas. Therefore, we divide the thesis into several sections, each describing
a particular set of problems. In the beginning of each section we would like
to briefly summarize the related work and highlight our contribution in the
area (if any). This section addresses some technical issues and explains why
have we chosen the topic of virtual fencing.

1.1 Background and Motivation

This work has been inspired by the recent activity of VRlab from EPFL
[29] and CGG at FEL ČVUT [32] concerning virtual reality simulation of
tennis. VRlab has realized a project of virtual tennis using very advanced
(and expensive) motion tracking system: magnetic motion capture. Such
hardware converts the human motion into a computer understandable data
in real-time. With combination of head mounted display to view the virtual
environment, it enables quite high level of immersion.

Unfortunately, these advanced resources were not accessible in neither of
our schools of computer science. We have therefore come to a decision to
use only a low-level hardware for our simulation of fencing. It has also a
great advantage: the resulting application can be run by a lot of users –
its hardware demands are not higher that those of an average 3D computer
game. Some aspects of virtual reality teaching of tennis using a low-level
hardware were studied in the diploma thesis by Ing. Vladimı́r Štěpán [33],
but the complete framework of tennis simulation has not been designed there.

Why have we chosen fencing instead of tennis? One reason is that the
author is familiar with it more than with any other sport. Another is that

1



2 CHAPTER 1. INTRODUCTION

the virtual reality offers absolute safety even in situations that would be
dangerous in real world fencing. The risk of injury is certainly higher than
in tennis, and this adds a reason for virtual reality simulation of fencing.
Another fact is, that we believe that the simulation of fencing is more difficult
than the simulation of tennis in certain aspects. Of course, both fencing and
tennis have many features in common. Novertheless in fencing, the players
contact is much closer. The weapon interacts instantly and continuously with
the opponent’s weapon, instead of indirect ”communication” via a ball. This
is a big difference indeed, because it means that the fencer does not control
his weapon exclusively, as does a tennis player – the fencer’s weapon can be
deflected or pushed away by the opponent’s weapon. So another purpose
of this work is to examine the possibilities of contemporary technologies for
simulation of non-trivial virtual user interaction. Exaggerating a little, we
can say that fencing simulation is another step in virtual reality simulation
of sports.

1.2 Concerning Fencing

There are many styles of fencing in the modern age, and even much more of
them existed in history. We faced the question which one should be chosen
for our simulation. Since this is neither a history nor a physical education
oriented work, we mention only the most popular fencing schools in a brief,
just in order to select one of them, that is the most amenable for virtual
reality simulation. If you are interested in the history of European fencing,
consult a book [30].

The history of European fencing dates from the ancient Rome. It is be-
lieved the fencing skills were highly developed in this era, considering the
quality of the weapons and the armor. However there are no preserved docu-
ments concerning the antique fencing itself. Probably the oldest manuscript
about fencing was written in Germany by Hans Talhoffer in 1442. This is the
bible of one branch of the contemporary historical fencing, called a German
school. In this school a raw force, as well as a heavy sword are empha-
sized. However there is also a collection of more sophisticated techniques in
Talhoffer, somewhat similar to judo.

Up to approximately the 15th century, the king of the weapons was a
sword, usually for one hand. With the fall of chivalry (tied to the boom
in gunpowder), new weapons were developed to satisfy current needs. The
swords transformed reluctantly into lighter or longer weapons: rapiers, two
handed swords or swords for one and half hand (sometimes held in one hand,
sometimes in both). The Italians mastered such weapons first and their
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schools were appreciated soon in the whole Europe. Books about Italian
fencing from famous masters, such as Achilles Marozzo, Camillo Agrippa and
Giacomo Grassi are available today. They form another branch of modern
historical fencing known as the Italian school.

The evolution of the fencing led to lighter weapons with focus on the
point, instead of the blade: an epee was created. Besides Italy, it became
very popular also in French, where the training version of epee was discovered:
a foil. We are getting to the modern fencing, which has rules ensuring a safety
sport.

The modern fencing differs three weapons: an epee, a foil and a sabre.
They are very similar to one another – very fast and easily bendable. The
techniques often involve only a small movement with the tip of the weapon,
the strength of the fencers plays a little part. Modern fencing emphasizes
good reactions and perception. Often a duel is so fast that an untrained eye
can not see which fencer was hit.

Besides Europe, the fencing evolved independently in other parts of the
world. Famous is the Japanese fencing, known as Kendo (ken is the Japanese
word for sword). In Kendo, a big attention is paid to the discipline and
mental training. In Japanese mentality is more important to keep honor
than to survive. To be successful in Kendo, it is not sufficient to be able to
hit the opponent, as in the European fencing; the attacker must also exhibit
an unfailing, robust will – a fighting spirit.

So, let us return to the question asked in the beginning of this section:
which style should be chosen for virtual reality simulation of fencing? We
must account for the limited possibilites of input devices (keyboard, mouse
and perhaps joystick) and for the latency of the simulation engine. The
Kendo is, in our opinion, impossible to simulate without simulation of the
human thinking1. The modern fencing weapons – epee, foil and sabre are
also not very suitable, because of their speed and necessity of precise control.

Due to these reasons, we have chosen to simulate fencing with a one-
hand sword, similar to an Italian fencing school. This school defines the
eight basic parry positions (and several advanced, which are not supported
by the application) according to Fig. 1.1. The cuts are derived from the
corresponding blocks. In fact there are only seven cuts, since the head cut
can be parried by either quinte or sixte. An important features of a correct
cut are

• large swing, that enables the weapon to gain speed

1When a Japanese sensei was asked about a virtual reality simulation of Kendo, he
laughed. . .
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• movement of the weapon in one plane – the fluctuations waste the
energy

• the hit performed by the last third of the blade. Closer to the guard is
smaller actual velocity, which means a weak strike. Close to the point
is higher actual velocity, but the cut is shallow, resulting only in flesh
wound. The last third of the blade is the best trade-off.

These conditions are enforced by the application to some extent.

prime

quinte

tierce

second

sixte

quarte

high tierce high quarte

Figure 1.1: Two series of parry positions (from [30])

In former versions of the application, a hit by the point was also sup-
ported, but it was canceled, because it was too strong2.

Concerning the footwork, the nowadays interpretation of the Italian fenc-
ing system is quite similar to the modern fencing. The fight is carried on a
straight line, which is the most effective possibility to control the distance
from the opponent. The application supports four basic leg routines: enter-
ing the guard position (which must be taken before any other action), step
forward, step backward and lunge. The guard position with sabre, which is
quite similar to that one with sword is in Fig. 1.2.

A lot of fencing styles define only a small area on the opponent’s body,
where the hit is legal. This is partially due to the safety reasons and partially

2One of the reasons why it is so hard to parry fast attacks (such as the hit by the point)
in virtual reality is, that the virtual characters do not radiate any lateral information, such
as some face-play and gestures.
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Figure 1.2: Basic guard with a sabre (from [40])

to emphasize the severe hits over non-serious ones. In virtual reality simula-
tion we take advantage of the fact, that we can safely hit anywhere on the
opponent’s body. Thus the hit area is the whole surface of the body except
the hand holding the sword, and its forearm. This exception was introduced
to make the duel more interesting – it is quite easy to hit the hand, which
degrades the fencing style.

1.3 Application Design

One of the goals of this work is to develop an application that enables the
users to fight each other in a virtual environment. We do not consider a
fencing with more than one opponent (this could be hardly called ”fencing”,
perhaps fight is more appropriate). The system can be used for example by
the instructor of fencing to demonstrate the typical mistakes of a real fencer.
Another usage is for organization of a virtual match.

Being limited only to a low-end computer peripherals, we decided to
divide the control of a virtual player (avatar) to two independent parts:
the avatar legs and the avatar’s armed hand (holding a sword). The legs
movement is commanded by the keyboard, which runs the recorded sequences
of basic steps. The hand, as well as the weapon, is controlled by some type
of 2D input device: a mouse or joystick. The conversion from the 2DOFs
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(Degrees of Freedom) space of the input device to the 6DOFs of the position
and orientation of the hand is non-trivial. It is discussed in section 4.2.1.

To the 2D input devices is connected also another problem: typical com-
puter has only one mouse and no joystick at all, i.e. only one 2D input device,
while the players are two. In order to do not require a joystick in a compul-
sory way, we have implemented a network support. In this mode the players
use more than one computer. However, the joystick is still recommended due
to the following reasons

• the input area of a joystick is limited, which corresponds to a limited
space of a hand reach (the mouse movement is limited only by the
length of the cable)

• the joystick supports auto-centering, which corresponds to a basic po-
sition of the weapon (pointing to opponent)

• some better joysticks support force-feedback, which is exploited by
the application to simulate the strikes of the weapon

• in network game the users must account for network latency, which can
be disturbing during fast fencing

Nevertheless, the network connection has also some advantages, for exam-
ple the possibility of spectators. They can view the match on their computer,
although they can not interfere with it.

The hits are evaluated straight-forwardly using a collision detection mech-
anism, with the exception of the arm holding the weapon, as described in
section 1.2.

A left-handed fencer is supported by a simple trick: reflexion defined by
an appropriate plane projects right-handed fencer to the left-handed one.
However, this option was never necessary in practice.

The application runs on a Win32 platform with OpenGL drivers for the
visualization. Due to the force-feedback joystick support, it is also necessary
to have a DirectX library installed, version 7 or later. The hardware requests
(processor, graphics accelerator) are similar as for an average 3D computer
game, for example Pentium III processor and GeForce2 graphics accelerator
is a sufficient configuration.

1.4 Used Software and Libraries

The application was developed using Microsoft Visual C++ 6.0 with OpenGL
interface for 3D graphics. For the virtual humanoid animation were used
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two shareware programs, MilkShape3D 1.5.6 (Chumbalum Soft) and Char-
acterFX 1.2 (Insane Software). Each one offers only a limited set of func-
tions, but they complement each other. From the CharacterFX was also
taken a virtual humanoid, a kung-fu style fighter called Yopago. Originally,
we intended to comply a H-Anim standard for humanoid animation, but this
idea has been abandoned because of problems with virtual humanoid and
animation software acquisition. To find a virtual humanoid model and an
appropriate animation software for free is not an easy task. . . .

To include the support of MilkShape3D file format in our application, we
used some routines from the library PortaLib3D [31]. For inverse kinematics
we integrated the IKAN system, developed at the University of Pennsylvania
[34]. The Microsoft DirectX 7.0 libraries provide an interface for joystick,
together with support of force-feedback.

1.5 Notation and Conventions

The number sets are denoted by Z for integer numbers, R for real num-
bers and C for complex numbers. We will work with vectors from gener-
ally n-dimensional Euclidean space, which will be denoted as Rn. Unless
said otherwise, we will work in R3. The standard basis vectors of R3 are
e0 = (1, 0, 0)T , e1 = (0, 1, 0)T , e2 = (0, 0, 1)T , sometimes we use shortly x, y, z
instead of e0, e1, e2.

The vectors are by default considered column, and they are multiplied
with the matrices from the right, for example in R3 the formula Mx = y
should be interpreted as

 m00 m01 m02

m10 m11 m12

m20 m21 m22




 x0

x1

x2


 =


 y0

y1

y2




The coordinate system in R3 is assumed to be right-handed, i.e. when
looking from the positive direction of the z-axis, the rotation from the x-axis
to the y-axis runs counter-clockwise, see Fig. 1.3. This corresponds with the
3D rotation convention: a rotation given by an axis a ∈ R3 and an angle α
means a counter-clockwise rotation of angle α when looking from the positive
direction of axis a.

Any vector from R3 can be expressed in homogeneous coordinates as R4

vector. These vectors are related by

(x, y, z)T ≡ (xh, yh, zh, h)T
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x

y

z

Figure 1.3: Right-handed coordinate system

The transformation in homogeneous coordinates can be expressed by ho-
mogenous matrix, which has by convention following structure


m00 m01 m02 t0
m10 m11 m12 t1
m20 m21 m22 t2
0 0 0 1


 =

(
M t
0 1

)

where the matrix M is the original R3 affine transformation and the vector
t is a translation.

If the matrix has to be stored in an array, the column-major convention
is used, i.e. the elements are stored in order m00, m10, m20, 0, m01, . . .. This
is the same convention as used by OpenGL.

The identity matrix will be denoted by I, and the transpose of a matrix
by superscript T . The dot product of two vectors a, b will be written just as
ab, and the cross product as a × b. The numbering starts by default from
zero, also when referring to elements of a matrix, as in the case of matrix M
above.



Chapter 2

Rotation Representation

Intuitively, the 3D rotations are important for the virtual humanoid anima-
tion, because a joint movement can be nicely approximated by a rotation.
However, the rotations are not a trivial algebraic object, mainly because they
are not commutative. There are used several different representations of ro-
tations in computer graphics, because each of them has its advantages and
disadvantages – no one is the best in general. Good comparison of rotation
representations together with performance issues is given in [9]. Somewhat
more programming-oriented outfit presents [25]. There is only a few original
ideas in this section, such as some clarifications (equivalence of two different
formulas for SLERP) and the analogy between 2D/3D rotations and complex
numbers/quaterions.

One can find this section somewhat tedious, but the results presented
here are very important for the virtual fencing application. For example, the
SLERP algorithm is used in a lot of parts of the program, thus we believe it
is really worth a rather detailed description.

2.1 Rotation in 2D

We start with rotations in R2, because they have more simple structure than
3D rotations, and there is a strong analogy with the 3D case. A rotation in
2D is given by a point p ∈ R2 and an angle α. We can identify the point of
rotation p with the origin 0, since a general rotation can be decomposed to
a translation by −p, rotation of α about the origin and translation by +p.
In the following, we consider only the rotation about origin. The convention
(according to the 3D rotations convention established in section 1.5) is that
the rotation runs in a counter-clockwise way.

9
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The formula for computing a rotation of vector (x, y)T is(
x′

y′

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
x
y

)
(2.1)

This can be neatly expressed in a complex plane. If we define the complex
number c = x + iy, then we can write the transformation as

c′ = eiαc

where c′ = x′ + iy′. This is equivalent to the formula (2.1), because of the
Euler’s identity

eiα = cos(α) + i sin(α) (2.2)

Note that 2D rotations exactly correspond to unit complex numbers: each
2D rotation can be expressed as eiα for some α, and any unit complex number
describes a 2D rotation.

2.2 Matrix Representation

A 3D rotation can be represented by a matrix in an analogous way as the 2D
rotation, see formula (2.1). A rotation x′ of a vector x ∈ R3 is expressed as

x′ = Mx

The interpretation of the 3 × 3 matrix

M = (m0, m1, m2)

is quite intuitive: the vectors m0, m1, and m2 are the transformed standard
basis vectors. We must pose some restrictions on the matrix M , otherwise
we get a general affine transformation instead of rotation. A rotation does
not change a magnitude of the transformed vectors and keeps the angles
between two vectors intact. This means the vectors m0, m1, m2 should have
unit length and their dot product should be zero,

m0m1 = m0m2 = m1m2 = 0

since this is true for the standard basis. This is a condition of orthonormality
of matrix M , which can be shortly written as

MMT = MT M = I
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This also means that M is regular and M−1 = MT . Using the basic properties
of determinant

det(M)det(M) = det(M)det(MT ) = det(MMT ) = det(I) = 1

thus det(M) = ±1. The orthonormal matrix describes either rotation or
reflexion. Their difference is that the reflexion changes the orientation of the
space, while rotation does not. The orientation of a coordinate system is
described by the sign of the determinant. Thus the orientation of the space
is not changed by orthonormal transformation M if and only if det(M) = 1.
To conclude: the rotation can be expressed as an orthonormal matrix M with
det(M) = 1, and any orthonormal matrix M with det(M) = 1 describes a
rotation.

2.3 Euler Angles

The Euler’s rotation theorem [33] says that any rotation matrix M can be
decomposed to product

M = Re2,αRe0,βRe2,γ (2.3)

where Rei,x is a rotation matrix denoting rotation about axis ei with angle
x. For example Re2,α looks like this

Re2,α =


 cos α − sin α 0

sin α cos α 0
0 0 1




The angles α, β, γ are known as Euler angles. The interpretation of Euler
angles is quite intuitive: it represents the rotation formed by concatenation
of rotations about the principal axes. The decomposition presented in (2.3) is
called the x-convention; there are also other conventions (e.g. pitch-roll-yaw,
which works with e0, e1 and e2).

Note that the axes ei are the original (unrotated) axes of the world coor-
dinate system. However, it is possible to express Euler angles in form

M = Re′′2 ,γRe′0,βRe2,α

where the e′0 is the vector e0 rotated by Re2,α, and analogically e′′2 is the
vector e2 rotated by Re′0,βRe2,α. It can be easily verified that this is really
equivalent to (2.3), because

Re′0,β = Re2,αRe0,βRT
e2,α Re′′2 ,γ = Re′0,βRe2,αRe2,γR

T
e2,αRT

e′0,β
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The conversion from Euler angles to rotation matrix is described by equa-
tion (2.3). The matrix product can be evaluated, which results in efficient
algorithm, as described in [25]. The conversion from matrix to Euler angles
is based also on (2.3), and can be found in [25] or [9] as well. As a by product,
it proves the Euler’s rotation theorem.

The only advantage of Euler angles is that they are not redundant. A
3D rotation has exactly 3 degrees of freedom, and Euler angles use only 3
real numbers (matrix representation uses 9 reals, but there are 6 constraints
due to orthonormality). However for majority of operations, other represen-
tations are are more advantageous. In fact, Euler angles are seldom used in
the application.

2.4 Axis-Angle Representation

A 3D rotation can be also represented by an axis of rotation and an angle
α. We can assume the axis of rotation contains the origin (because of the
translation argument as for the 2D rotations), so it is sufficient to define the
axis by its unit direction vector a. Note that a rotation given by −a and −α
is equivalent to that one given by a and α.

The axis-angle representation of a rotation can be converted to a matrix
representation as follows. We define a coordinate system with basis vectors
a, a × e1, a × (a × e1), which is a local frame associated with the axis of
rotation. We transform this frame to the standard basis e0, e1, e2, so that the
axis of rotation aligns with e0. Because of ‖a‖ = 1, this transformation is a
again a rotation, that can be described by a matrix

Ra→e0 =


 aT

(a × e1)
T

(a × (a × e1))
T




The inverse transformation is the transposed matrix

Re0→a = (a, a × e1, a × (a × e1))

The rotation about the x-axis (vector e0) preserves the e0 subspace and
in e1, e2 acts like a 2D rotation, in a matrix form

Re0,α =


 1 0 0

0 cos α − sin α
0 sin α cos α




Thus we can express the rotation given by the axis direction a and angle α
as

Ra,α = Re0→aRe0,αRa→e0
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By some rather lengthy derivations it can be shown, that this is equivalent
to the form presented in [9],

Ra,α = I + (sin α)A + (1 − cos θ)A2 (2.4)

where A is the matrix computed from the vector a = (a0, a1, a2) as

A =


 0 −a2 a1

a2 0 −a0

−a1 a0 0




This matrix is skew-symmetric, and has a nice property: its multiplication
by a vector acts like a cross-product with a, i.e. for any vector x holds that
Ax = a × x.

The opposite conversion, from matrix to axis-angle representation, can
be based on formula (2.4), as derived in [9]. We need to compute the axis
direction a and angle α from Ra,α. The trace of a matrix is a sum of its
diagonal elements. Especially for matrix Ra,α, we have

Trace(Ra,α) = 3 − 2(1 − cos α)(a2
0 + a2

1 + a2
2) = 1 + 2 cosα

cos α =
Trace(Ra,α) − 1

2

We can confine only to a solution with α ∈ 〈0, π〉 and compute it as α =
cos−1((Trace(Ra,α) − 1)/2). Since A is skew-symmetric, it holds that

Ra,α − RT
a,α = (2 sinα)A (2.5)

If α = 0, then any direction a is valid, because the rotation is just identity.
If α ∈ (0, π), then we can extract a = (a0, a1, a2) from (2.5), where it is only
scaled by 2 sin α. In particular,

a0 = A21 =
1

2 sin α
(Ra,α − RT

a,α)21

and a1 = A02, and a2 = A10 can be extracted analogically. There is no need to
compute the 2 sin α, since the constant can be canceled out by normalization
to unit length. If α = π, then equation (2.5) does not help, because sin α = 0.
However note that in this case

Ra,α = I + 2A2 =


 1 − 2(a2

1 + a2
2) 2a0a1 2a0a2

2a0a1 1 − 2(a2
0 + a2

2) 2a1a2

2a0a2 2a1a2 1 − 2(a2
0 + a2

1)






14 CHAPTER 2. ROTATION REPRESENTATION

Consider the case, that the first diagonal element 1 − 2(a2
1 + a2

2) has
the maximal magnitude from all the diagonal elements. Then also a2

0 =
max(a2

0, a
2
1, a

2
2), and it can be extracted from the matrix as

4a2
0 = (1 − 2(a2

1 + a2
2)) − (1 − 2(a2

0 + a2
2)) − (1 − 2(a2

0 + a2
1)) + 1

The sign of a0, which could not be recovered, is fortunately not important
because the rotation angle α = π. When we have already computed a0, the
other components a1, a2 are then computed directly from the first column of
Ra,α. The cases with a2

1 = max(a2
0, a

2
1, a

2
2) or a2

2 = max(a2
0, a

2
1, a

2
2) are handled

in an analogous way.

2.5 Quaternion Representation

The axis-angle representation of 3D rotations has certain disadvantage be-
cause it is ambiguous. Even if we insist on unit axis of rotation, the rotations
with angles α + 2kπ, k ∈ Z, are identical. To overcome this shortcoming, re-
call that 2D rotations are uniquely represented by unit complex number. The
uniqueness is achieved by storing the sine and cosine of the angle, instead of
the angle itself. The same trick can be applied to 3D rotations, which leads
to quaternions – a generalization of complex numbers, introduced by Mark
Hamilton.

There is also another, rather algebraic approach leading to quaternions.
We can project a unit sphere (in 3D) to the complex plane by stereographic
projection. Then any transformation of the unit sphere corresponds to some
transformation of the complex plane. Especially, to the rotation of the unit
sphere corresponds the transformation of the complex plane in the form

f(w) =
aw + b

−b̄w + ā
, w ∈ C

The coefficients a, b ∈ C are closely connected to the coefficients of the
quaternion. This procedure is described in detail in [35].

A quaternion q is given as q = w+xi+yj+zk, where w, x, y, and z are real
numbers and i, j, k are quaternion elements. The addition and subtraction of
quaternions is done by components, as with R4 vectors. The multiplication of
quaternions is given by the multiplication of quaternion elements: i2, j2, k2 =
−1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j. Namely the product of
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two quaternions q0 = w0 + x0i + y0j + z0k and q1 = w1 + x1i + y1j + z1k is

q0q1 = (w0w1 − x0x1 − y0y1 − z0z1) +

(x0w1 + w0x1 + y0z1 − z0y1)i +

(y0w1 + w0y1 + z0x1 − x0z1)j +

(z0w1 + w0z1 + x0y1 − y0x1)k

Note that the multiplication of quaternions is not commutative. The conju-
gate of quaternion q is q∗ = w− xi− yj − zk. The norm of a quaternion q is
‖q‖ =

√
w2 + x2 + y2 + z2, unit quaternion is a quaternion with norm 1. A

complex number is a special case of quaternion with y = z = 0.
The 3D rotation given by unit axis a and angle α can be represented by

a unit quaternion q such that

q = cos(α/2) + a0 sin(α/2)i + a1 sin(α/2)j + a2 sin(α/2)k

Because the axis of rotation has unit length, it can be easily shown that ‖q‖
is really 1. On the other hand, from any unit quaternion can be extracted
the angle and axis of some 3D rotation1. For unit quaternion q holds that
q∗q = qq∗ = 1, where 1 = 1 + 0i + 0j + 0k. The 1 can be interpreted as
identity (zero angle rotation) and the conjugate quaternion q∗ as an inverse
rotation.

The analogy between complex numbers and quaternions goes even fur-
ther: the Euler’s identity for complex numbers (2.2) generalizes to quater-
nions. If we identify the unit axis of rotation a with quaternion a =
a0i + a1j + a2k, we can express the rotation about axis a with angle 2α
by quaternion

eaα = cos α + a sin α (2.6)

This is in fact the Euler’s identity with complex element i replaced by quater-
nion a. The equation can be proven by taking the Taylor series for expo-
nential function ex, substituting aα for x and realizing that the quaternion
product aa = −1 (due to the unit length of axis a).

To convert an axis-angle representation to quaternion is straightforward,
as well as quaternion to axis-angle. Because we have already described how
the rotation matrix can be converted to axis-angle representation and vice-
versa, we have also a procedure that converts matrix to quaternion and

1The reason for taking cosine and sine of α/2 instead of α is in the rotation expression
by two reflexions. Any 3D rotation can be given as a composition of two reflexion planes,
whose intersection defines the axis of rotation. If these two planes incline an angle θ, then
the angle of rotation is 2θ.
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quaternion to matrix. However, the conversion via the axis-angle represen-
tation is not the most effective one. Direct (and faster) conversions between
matrix and quaternion are described in [9].

2.6 Spherical Linear Interpolation

A 3D rotation interpolation is far more complicated than the interpolation of
position. The attempt to linearly interpolate the rotation matrix element by
element is naive: this method can violate the orthonormality of the matrix,
and even worse one of the interpolated matrices may have a lower rank. It
means that if some object is transformed by the interpolated matrix it can
be arbitrarily zoomed, skewed and even projected to a plane. The orthonor-
malization of the matrix solves some of the problems, but not all of them, as
we clarify in the following.

Similarly, the element by element interpolation of quaternions will not
perform well. As discussed before, the 3D rotations can be represented by
unit quaternions. The set of all unit quaternions can be viewed as 4D sphere
with unit radius. Because it is somewhat difficult to visualize 4D sphere, we
demonstrate the problem for the case of 2D rotations, which correspond to
a unit circle in the complex plane. Consider two 2D rotations given by unit
complex numbers r0, r1. The naive way of interpolation would look like

rt = (1 − t)r0 + tr1, t ∈ 〈0, 1〉

The ‖rt‖ needs not be 1, but we can normalize it to rt/‖rt‖. The problem
is, that it is the line segment r0, r1 which is interpolated with constant step.
The normalization of the interpolated values is not uniform in the arc length,
as illustrated in the picture 2.1. If we treat the parameter t as time, then it
means that the angle of rotation does not change with constant velocity, i.e.
not linearly.

Let us summarize the requirements on the linear interpolation st of rota-
tions2 p, q with parameter t ∈ 〈0, 1〉

• s0 = p, s1 = q

• st is indeed a rotation for each t ∈ 〈0, 1〉

• the interpolation is uniform: an object transformed by st rotates with
constant angular velocity

2in arbitrary dimension (2D/3D) and representation
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linearly interpolated points

normalized points

unit circle

Figure 2.1: Non-uniform sampling of the circle

It is easy to meet these conditions for the 2D rotations r0, r1 from the
example above, because they can be written as

r0 = eiτ , r1 = eiν

and interpolated as
st = ei(1−t)τ+itν (2.7)

It is obvious that s0 = r0, s1 = r1, st is a 2D rotation (unit complex number),
and that the interpolation is uniform, since it is the angle of rotation which
is interpolated here.

The situation is somewhat more complicated for the 3D rotations, because
there is no common axis of rotation as in the 2D case. But since we have
the generalization of the Euler’s identity (2.6), we can generalize the just
described interpolation procedure to 3D rotations as well. Consider two 3D
rotations given by quaternions p, q. According to formula (2.6), they can be
written as

p = euθ, q = evφ

where u, v are unit quaternions with zero real part, describing the axis of
rotation. Now it is possible to generalize the formula (2.7) for them, leading
to

st = eu(1−t)θ+vtφ

This can be equivalently expressed using only p, q

st = p(p∗q)t (2.8)
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It is clear that s0 = p, and s1 = q. The conjugate of a unit quaternion is a unit
quaternion, the product of unit quaternions is again a unit quaternion and the
power of unit quaternion is also a unit quaternion – algebraically speaking,
the set of quaternions forms a group. Therefore, st is a unit quaternion, i.e.
a 3D rotation. If we define r = p∗q and expand it as r = ehσ, we can rewrite
equation (2.8) to

st = prt = pehσt

which says that st is the composition of constant rotation p and rotation
about axis h with angle 2σt. It follows that the interpolation is uniform in
the angle, and the interpolation formula (2.8) satisfies all the requirements
made above.

The interpolation of rotations according to formula (2.8) is known as
Spherical Linear Interpolation, which is usually abbreviated to SLERP. The
reason for this name is following: imagine the space of unit quaternions as
unit sphere in R4. Any two rotations p, q define points on this sphere. What
does the SLERP compute is the linear interpolation between p and q along
an arc that connects p and q on the unit sphere. This can be seen easily in
the 2D case from the formula (2.7). The parametrization of an arc on the
unit sphere in R4 is not so trivial, and can be found in [9].

There is yet one more subtlety that remains to be clarified. The rt = ehσt

term expresses interpolation of rotation about a fixed axis h with angle 2σt.
However, there are two ways how such interpolation can be done: either
along the shorter or the longer arc (if 2σ = π, then both arcs have equal
length), as illustrated in Fig. 2.2.

axis of rotation

angle of rotation

Figure 2.2: Two ways of rotation interpolation
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Which way the interpolation travels is determined by the real part of
quaternion r. Because the quaternion r is unit, it follows that it can be
written as

r = cos σ + h sin σ

and h has zero real part.

On the other hand, quaternions p, q can be expressed as

p∗ = wp − xpi − ypj − zpk, q = wq + xqi + yqj + zqk

thus the quaternion product

r = p∗q = wpwq + xpxq + ypyq + zpzq + · i + · j + · k

The coefficients marked by · are not interesting. The real part of quaternion
r is nothing else than the standard R4 dot product pq. By comparing these
two equal expressions of r we can conclude that cos σ = pq. This is sufficient
to determine σ uniquely, because σ ∈ 〈0, π) is sufficient to express any angle
of rotation in 〈0, 2π).

If the dot product pq > 0, then the angle σ is acute and the angle of
rotation 2σ is within (−π, π), thus the interpolation travels the shorter path.
If pq = 0, then both paths have equal length, and either of them can be
chosen. If pq < 0, then it corresponds to the larger path. This can be avoided
by considering that the quaternions q and −q denote the same rotation,
because both the axis and the angle are negated. Nevertheless, employing
−q instead of q in the SLERP formula results in −r instead of r. Although
r and −r denote of course also the same rotations, the interpolation of −r
uses the other path, because it rotates about a negated axis with negated
angle. To conclude, to ensure the shortest path interpolation, it is sufficient
to check the sign of the dot product pq and if negative, then use −q instead
of q. In certain situations it can be advantageous to know that there are two
possible ways that can be chosen from, see section 6.5.1.

The parametrization of the shortest arc according to [9] results to the
formula

st
′ =

sin((1 − t)σ)p + sin(tσ)q

sin σ
(2.9)

with the same notation as above. Using this equation the SLERP can be
computed quite efficiently, but it is not obvious if the result is really equiv-
alent to formula (2.8). To show this, recall that quaternion r was defined as
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r = p∗q = ehσ = cos σ + h sin σ. Using this we can prove that

st
′ = p

sin((1 − t)σ) + sin(tσ)r

sin σ

= p
sin((1 − t)σ) + sin(tσ) cos σ + h sin(tσ) sin σ

sin σ

=
p

sin σ
(sin σ cos(tσ) − cos σ sin(tσ) + sin(tσ) cos σ + h sin(tσ) sin σ)

= p (cos(tσ) + h sin(tσ))

= prt = st

2.6.1 SLERP on matrices

It may look like that the SLERP is tightly connected to quaternions. This
is not true – an algorithm equivalent to SLERP can be performed on the
rotation matrices as well. It is a little bit less effective than the SLERP on
quaternions, but it demonstrates more clearly what the SLERP is actually
doing (without confusing with quaternions and the 4D sphere).

The idea is that the equation (2.8) can be rewritten for rotation matrices
P, Q in a straightforward way

St = P (P TQ)t, t ∈ 〈0, 1〉
One can immediately see that S0 = P and S1 = Q. The transpose of
a rotation matrix (orthonormal with a positive determinant) is a rotation
matrix and a product of rotation matrices is a rotation matrix.

The only problem is how the power of a matrix R = P TQ should be
defined. The matrix R can be converted to the axis-angle representation,
using the algorithm described in section 2.4. Assume the angle β ∈ 〈0, π〉
and unit axis b were extracted. The interpolated rotation can be defined as
the rotation with angle tβ about the axis b. This can be then converted back
from the axis-angle representation to the matrix.

The conversion, as described in section 2.4 ensures that the result will be
a rotation matrix, therefore St is also a rotation matrix. The interpolation is
uniform – the physical analogy of constant angular velocity is quite obvious
here.

Since we bounded the angle of rotation to β ∈ 〈0, π〉 in the conversion
to axis-angle representatin (to ensure a uniqueness), the interpolation corre-
sponds to the shortest path, according to the Fig. 2.2. The longer one can
be obtained by taking the axis −b (instead of b) and angle 2π−β (instead of
β). Similarly as for quaternions, this does not change the resulting position
S1, but changes the direction of interpolation.
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This algorithm can be advantageous if we have already the routines for
conversion between axis-angle and matrix representations, and if the speed
of the interpolation is not the primary objective. This is how the SLERP
was implemented in our application. In fact the function performing SLERP
is a part of IKAN libraries, which are discussed in section 4.2. The function
names linterpikMatrix and is located in the module myvec.cxx.



Chapter 3

Virtual Humanoid
Visualization

One of the basic requirements on the application is to simulate virtual hu-
manoid actions and reactions. Therefore, it is essential to design an effective
method for virtual humanoid visualization, with a stress on a virtual fencer.
This is important since the fencer model has some specific demands – the
most important is the very large range of motion in the joints of the armed
hand.

A natural approach would be to simulate the anatomy of the human body:
bones, muscles, fat tissues and the skin. However such methods are used
especially in the non-interactive rendering, because of the high computing
complexity. For our application is necessary virtual character animation in
real-time, which requires faster algorithms.

The common approaches used for the real-time virtual humanoid anima-
tion are the basic skeletal animation and vertex blending, described in the
next two sections. Articles dedicated to game developers that describe basic
skeletal animation as well as vertex blending are [21], [23]. The source code
for the basic skeletal animation algorithm has been adopted from [31]. The
basic skeletal animation algorithm is also used by the program MilkShape3D
1.5.6. The animation software CharacterFX 1.2 uses the vertex blending
algorithm.

The bones blending algorithm [15] is our new contribution. It was de-
veloped in order to overcome some artifacts of the previous methods. An
improvement of vertex-blending with similar goals was presented in [38], but
we believe that our solution has certain advantages over this one. As we
have discovered recently, yet another approach has been published [6]. We
suppose it could give better results than the bones blending algorithm, but
with a cost of complicated auxiliary structures (the medial). An interest-

22
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ing generalization of vertex blending is [37]. It uses more than one blending
parameter per bone, which allows more freedom in skin deformation. The
cost is that the tunning of these numerous parameters is more difficult; it is
done via the least-squares regression, using a set of corresponding skin and
skeleton postures.

3.1 Basic Skeletal Animation

In this section we explain the basic algorithm, which is used in PortaLib3D
[31] as well as in MilkShape3D to animate a virtual character, and compare
its advantages and disadvantages.

The virtual humanoid body is modeled by two incidental objects: a digital
skin and a skeleton. The digital skin is a representation of the surface of the
body. It consists of

• set of vertices, which are points from R3.

• set of triangles, which are ordered1 triplets of points.

• texture, a 2D bitmap of colors. Each vertex has assigned a point from
this bitmap.

• normal vectors, which are unit vectors from R3. They are defined in
each vertex for the purposes of lighting.

The vertices and triangles of our humanoid model are drawn in Fig. 3.1, with
culled back faces.

The direct animation of the skin would be complicated. To simplify this
task we introduce the skeleton, which has a nice physiological justification.
Mathematically speaking, the skeleton is a tree. The nodes of this tree rep-
resent joints and the edges correspond to bones. We denote the joints by
positive integer numbers. The root of the tree is assumed to have index 0
and the parent of joint j is denoted as p(j). In each node j of the skeleton
is given a transformation represented by a 4 × 4 homogenous matrix R(j).
Naturally, we do not allow general affine transformation, such as zooming or
skewing: besides translation, only a pure rotation is allowed. More formally
it means, that the homogenous matrix R(j) has the form(

M(j) t(j)
0 1

)
1The order of the vertices follows common counter-clockwise convention.
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Figure 3.1: Triangular mesh of virtual humanoid Yopago.
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Bone

y

x

x

y

Joint p(j)

Joint j

R(j)

Figure 3.2: Reference skeleton joint transformation

where M(j) is an orthonormal 3 × 3 matrix and t(j) ∈ R3. The transfor-
mations R(j) for all the joints j define the initial posture of the skeleton,
usually called a reference position.

Each joint can be assigned a local coordinate system. R(0) is the trans-
formation of the whole model, relative to the world space coordinate system.
R(j) expresses the transformation from the coordinate system in joint p(j)
to that one in joint j, as depicted for the 2D case in Fig. 3.2. The total trans-
formation A(j) from the world coordinate system to the joint’s j coordinate
system then can be written as

A(j) = R(0) · · ·R(p(j))R(j)

A picture of our model’s skeleton is in Fig. 3.3. In the picture, the joint
j (blue sphere) is drawn in the position given by the translation part of A(j)
(the hands have joints for every finger, thus the crowd of blue spheres). The
bones (yellow links) are simply connecting the joints. Of course it would
be possible to describe the reference skeleton posture with rotational com-
ponents of all R(j)s set to identity, but the possibility of general rotation
simplifies the skeleton design – the designer can rotate the whole sub-trees
of the skeleton.

To animate the skeleton we define a transformation matrix T (j) for every
joint j to describe the actual transformation of this joint. Note that only
pure rotation (no translation) is acceptable for j �= 0. The reason is that
translating a non-root joint does not lead to natural skeleton movement (the
joints in a real body can be translated only within a negligible distance). The
root joint is an exception – its translation means translation of the whole
model. The final transformation F (j) from the world coordinate system
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joint

bone

root joint

Figure 3.3: Smooth shaded Yopago model with skeleton.
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to joint j’s coordinate system, in the animated skeleton can be expressed
recursively as

F (0) = R(0)T (0)

F (j) = F (p(j))R(j)T (j)

Matrix F (j) is the analogy of matrix A(j) in the manipulated skeleton. The
joints are stored in an array indexed with joint numbers. If any joint j meets
the condition p(j) < j, then F (j) (resp. A(j)) can be computed exactly
from the definition by a single pass of the array. The numbering satisfying
p(j) < j can be obtained for example by the depth first search algorithm,
starting in the root.

In the application, the joint is represented by structure Model::Joint. In
this structure, Joint::m relative corresponds to R(j), Joint::m absolute

means A(j), Joint::m final is F (j) and Joint::m transform stands
for T (j). The computation of final matrices is done in function
Model::setFinalMatrices.

The skeleton helps us significantly with the virtual humanoid animation
– instead of animating vertex by vertex, it is sufficient to manipulate only
the skeleton. We have already described the skeleton positioning, and it
remains to discuss how the posture of the skeleton should be propagated to
the skin (i.e. vertices forming a triangular mesh). In fact, this is the main
problem of the skeletal animation, since it is necessary to achieve a smooth
skin deformation using only a non-smooth (segmented) skeleton.

To arrange the automatic propagation of the movement from the skeleton
to the skin, we must define the skeleton-skin relationship in some way. The
first approach, we call the basic skeletal animation proceeds in a straight-
forward way. It assumes each vertex is attached to one and only one joint,
and the vertices are transformed as if they were firmly connected to the bone.
Put in a more formal way, if a vertex in position v ∈ R3 is attached to a joint
j, then its transformed position v′ is computed as

v′ = F (j)A(j)−1v

The interpretation of the formula is obvious: the A(j)−1 transforms the
vertex from a joint j’s local coordinate system to the world coordinate system
(with 0 being the origin). This is because we need the rotation T (j) to run
upon the joint j. The multiplication by F (j) can be understood as follows:
first apply the joint rotation T (j) and then return the rotated vertex from
the world coordinate system to the joint j’s actual local coordinate system.
Note that if all T (j)’s are identities (the actual skeleton position is exactly
the reference position), then v′ = v as expected.
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The skin deformation resulting from the basic skeletal animation is il-
lustrated in Fig. 3.4. In the picture, the color indicates the vertex to bone
assignment. We see that for the vertices in the middle, it is hard to decide
to which bone they should be attached – both bones are equally suitable.
From the picture is also apparent the main drawback of the basic skeletal
animation: the triangles on the boundaries of two bones bear all the defor-
mation. The other triangles (with all vertices belonging to the same joint)
are not deformed at all, which is definitely not a plausible skin deformation.
Put in another words, the resulting shape of the skin is not smooth. A better
algorithm should distribute the deformation over more triangles nearby the
joint to achieve smoothness.

vertex

skin

a)

b)

Figure 3.4: Basic Skeletal Animation: a) reference position, b) after rotation

3.2 Vertex Blending

Vertex blending is an attempt to correct the disadvantage of the basic skele-
tal animation. It is a generalization of the basic skeletal animation with a
more sophisticated skeleton to skin relation. Its idea is that a vertex can be
attached to a set of bones, instead of only one bone, as in the basic skeletal
animation. This set has usually a small cardinality (about 2 to 4). The
resulting position of the transformed vertex is computed as a convex com-
bination of the individual transformations. More precisely, if the vertex in
position v is attached to joints j0, . . . , jn then its transformed position v′ is
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computed as

v′ =

n∑
i=0

wiF (ji)A(ji)
−1v

where the wi’s are the coefficients of a convex combination, i.e. satisfying

n∑
i=0

wi = 1, wi ≥ 0 ∀i ∈ {0, . . . , n}

The wi can be interpreted as the influence of joint ji on the transformation
of vertex v. The weights wi can be edited by hand, or they can be computed
by a heuristic algorithm [38]. In a brief, the bones with the smallest distance
to the vertex are found, and the weights are proportional to that distance.
However, we did not need to implement such algorithm because the weights
were already provided with our virtual humanoid model.

Recall the vertices in Fig. 3.4 marked by the rectangle: it was hard to
decide to which one bone such vertices should be attached to, but it is easy
when a set of bones is allowed. A natural good choice is to assign these
vertices to both bones with weights w0 = 0.5 and w1 = 0.5. The other
vertices are connected to only one bone as before. The deformation of the
skin using vertex blending is drawn in Fig. 3.5. In the picture is demonstrated
the averaging (blending) of the vertices transformed by both bones.

first bone transformation second bone transformation

resulting vertex position

Figure 3.5: Vertex Blending

Although the vertex blending algorithm with properly weighted vertices
produces smooth skin deformation, they may not look naturally for all joint
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rotations. It was already described in [38] that vertex blending does not
perform well, when the joint rotations become large. A classic example of
this behavior is known as elbow twist, or a candy-wrapper artifact. It is a
position with the elbow twisted 180 degrees around its axis. The situation
is illustrated in Fig. 3.6, if we imagine the two bones represent an arm and
that the yellow bone is a forearm.

Figure 3.6: Twisting Elbow Problem

The same situation in the 3D case presents Fig. 3.11a. The weights
are assigned as above – namely the vertices marked by the rectangles are
connected to both bones with equal coefficients. In Fig. 3.6, the elbow joint is
twisted 180◦. After averaging, both vertices end up in the same position, the
joint itself. This is of course not acceptable skin deformation. One may object
that 180◦ is a not natural position – and it is true – but even for common,
comfortable postures, similar artifacts were observed, see Fig. 3.12a.

In spite of these problems, the vertex blending algorithm is commonly
used for real-time virtual humanoid animation, especially in computer games.
In some applications the vertex blending is indeed sufficient, but when large
joint rotations are necessary, as in fencing, different solutions must be applied.
[38] proposed a method to overcome problems similar to twisting elbow. This
method is called bone links and it works with auxiliary bones. The auxiliary
bones replace the original ones, and they spread a large rotation to more
smaller ones. Then the vertex blending leads to better skin deformation.
Unfortunately, [38] says nothing about how the auxiliary bones should be
positioned.

3.3 Bones Blending

We developed an alternative algorithm producing smooth skin deformation
without twisting elbow-like problems [15]. This approach builds only on
the basic skeletal animation algorithm, therefore it can be considered as an
alternative to vertex blending. It is one of the advantages over the bone
links solution [38], because the designer needs not to bother with the vertex
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weights. The set of parameters for bones-blending is much smaller and thus
easier to interpret and tune.

The problems of vertex blending arise from the fact that averaging is done
on vertices. If we could arrange the blending on a lower level, such as bones,
it would give better results. As mentioned earlier the joints are essentially
rotations. The main idea of bones blending technique is not to apply the
whole rotation at once, as in the basic skeletal animation, but to perform a
blend of previous rotation and the current one. Blending of two rotations
is easily accomplished by SLERP, described in section 2.6. Then the only
problem is where to take the interpolation parameter t.

Intuitively, it should be connected to the distance along the bone in the
reference posture. To specify the distance along the bone we use the matrix
A(j)−1 that transforms the vertices from the reference position to the nor-
malized position, with joint j centered at the origin. If the following joint
is k, p(k) = j, then the bone segment is determined by R(k), namely by the
translation component of R(k) – we unitize this vector and denote the result
as n. Then the distance of the normalized vertex along the bone can be
defined as distance from the plane with normal n containing origin. It can
be computed by the dot product

t′ = v0n, v0 = A(j)−1v

where v0 is the normalized version of the given vertex v. To prove that t′ is
really vertex to plane distance consider that nn = 1, thus

(v0 − t′n)n = v0n − t′ = v0n − v0n = 0

The t′ is positive for points in the n direction, zero for points incident to the
plane and negative for points behind the plane (in the −n direction). Let us
assume we have two values:

• tmin - the value of t′ where only the parent joint’s rotation is applied

• tmax - the value of t′ where only the child joint’s rotation is applied

Now it is straightforward to derive the interpolation parameter

t =
t′ − tmin

tmax − tmin

clamping values to 〈0, 1〉. Note that t′ and therefore t depend only on the ref-
erence skin and skeleton posture, so they can be pre-computed. This method
assumes that the limbs for bones blending are outspread in the reference pos-
ture, which is often the case. Nevertheless, it would not be too complicated
to generalize the algorithm for bended limbs as well.
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SLERP

tmin

tmax

t' < 0 t' = 0 t' = 0

a)

b)

Figure 3.7: Bones Blending: a) vertex assignment and parameters, b) after
rotation

3.3.1 Parameter tuning

The parameters tmin and tmax are object of editing and tuning, as well as
the vertex-bones assignment, which needs already the basic skeletal anima-
tion. The vertices are usually attached to bones manually - using an editor,
although some heuristic algorithms also exist [38]. We need not have to
solve this problem, because the data were already provided with the Yopago
model. The general rule for the basic skeletal animation is to assign vertices
to the nearest bones.

For bones blending the situation is somewhat different. The vertex assign-
ment in this case is connected with tmin and tmax parameters. The general
rule can be now: assign all the vertices that should be modified when joint j
rotates to the joint j. It means that all the vertices around the joint j should
be connected to the bone beginning in j instead of the bone that ends in j.
Those newly assigned vertices will be those that give negative t′. The vertices
with non-negative t′ are still assigned to joint j, unless they are subject of
blending with the following bone - it depends on parameter tmax. Compare
the vertex to bone assignment for the basic skeletal animation in Fig. 3.4a
and for bones blending in Fig. 3.7a.

If tmax - tmin is large, then the bend is broad, spread over all attached
vertices. On the other hand when it is too small, the result is similar to
basic skeletal animation. The extreme case with tmax - tmin = 0 would lead
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to the same skin deformation as produced by the basic skeletal animation,
thus bones blending is indeed a generalization. The optimal values should be
tuned in an editor, along with the vertex to bone assignment. An example
of good parameter settings for the right arm of our virtual humanoid is in
Fig. 3.8.

tmin

tmax

Figure 3.8: Our choice of tmin and tmax parameters

3.3.2 Triangle Subdivision

Bones blending brings little improvement if the model mesh is too coarse –
the triangles are large and the effect of smooth bone deformation vanishes
(the smooth curves drawn in Fig. 3.7b can be thought as a limit case for an
infinite number of vertices). On the other hand the smoother the original
mesh, the smoother the deformed skin, and no other parameters (such as
vertex weights) must be defined. It is another advantage of bones blending
over other methods such as the vertex blending and its generalizations (bone
links).

The subdivision is no problem, if there are the original surfaces (Bezier,
B-spline) the model was built of. However, we often know only the trian-
gular mesh location (and even worse optimized/decimated to the reference
position). In this case it is necessary to subdivide large triangles, especially
in the most strained regions – around the joints with wide range of motion.
The triangle connected to joint j is defined as a triangle with all vertices at-
tached to j. The triangles for subdivision due to joint j are all the triangles
connected to joint j. There are two basic methods for triangle subdivision,
1 to 3 and 1 to 4 triangles, see Fig. 3.9.
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b)a)

Figure 3.9: Two types of triangle subidivision: a) 1 to 3 triangles, b) 1 to 4
triangles

Each of them has its pros and cons: 1:4 produces T-vertex discontinuities,
which results in holes in the deformed skin. This must be corrected by
induced division of neighboring triangles. On the other hand 1:3 subdivision
tends to produce oblong triangles (i. e. with high ratio of circumscribed
and inscribed circle radius). To conclude: 1:4 offers higher quality and 1:3
gives faster animation. Another question is which joints should be selected
for bones blending and then possibly for subdivision. Apparently not all the
joints deserve the special treatment by bones blending: [38] states that for
rotations with angle less than 60 degrees, the vertex blending produces good
results. This problem, as well as the problem of tmin and tmax parameters
tunning is of rather artistic nature, and should be solved during the virtual
humanoid design in an interactive editor.

When developing the application, no editor supporting bones blending
existed2. Therefore, we tuned the tmin and tmax parameters by hand. The
vertex to bone assignment had to be altered too, but this is of course sup-
ported by the animation software.

3.4 Implementation and Comparison

The bones blending algorithm proved to be powerful enough to be used for
the skin deformation of a virtual fencer. For the purposes of comparison we
have also implemented the basic skeletal animation and vertex blending. Re-
gardless of the actual method, the skin deformation is computed in method
Model::compActVers. The bones blending is supported only for the right
arm. The function compActVers takes the vertex positions in the reference
skin Model::m pVertices and transforms them to their positions in the de-

2However future versions of CharacterFX may support the bones blending algorithm,
as promised by its programmers.
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formed skin, Model::m pActVers. These actual vertex positions are not used
only for drawing to the display (by method Model::draw), but also for the
the collision detection with the fencer’s body, which is described in chapter 5.

The triangle subdivision is also implemented in class Model. The 1:3
subdivision is done by function Model::subdivMesh1k3, which simply scans
all the triangles, and evaluates the subdivision condition for every triangle.
As mentioned before, it means checking that all the triangle vertices are
assigned to the same joint j. If this is true, the triangle is divided into three,
according to Fig. 3.9a.

The 1:4 subdivision, implemented in function Model::subdivMesh1k4, is
somewhat more complicated due to the induced division. In the first step,
the triangles are scanned, tested and subdivided as in the 1:3 case, but of
course 1:4. In the second step, the T-vertices are corrected by another pass
of the array of triangles. For every triangle T is computed the number of
neighboring triangles subdivided in the previous step. According to this
number is subdivided the triangle T , see Fig. 3.10.

0 1 2 3

Figure 3.10: Subdivision induced by 1:4 subdivision of 0, 1, 2, and 3 neigh-
boring triangles.

The nice feature is that the second step adds no new vertices, because
they are already created in the first step. For the final user is accessible only
one predefined type of 1:4 subdivision of the right hand. It subdivides the
triangles around the shoulder, elbow and wrist joint in order to achieve nice
appearance.

A virtual fencer is by definition a virtual humanoid equipped with a
weapon – sword in particular. Although the basic skeletal animation is not
suitable for skin deformation, it is appropriate for rigid objects, such as the
sword (the elasticity of a sword is only marginal and can be neglected). The
weapon is connected to the virtual character using an auxiliary joint named
sword-holder. The sword-holder is linked to the wrist and it determines the
position and orientation of the weapon. The weapon model itself is stored
aside from the humanoid model, in a separate file. The purpose of the sword-
holder is to enable a normalized position of the weapon model, independent
of the actual virtual humanoid that will be holding it.
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The visual quality of the skin deformation methods is compared in
Fig. 3.11 for the extreme case of twisted elbow.

a) b)

c)

Figure 3.11: Elbow twisted 180 degrees rendered with a) vertex blending, b)
bones blending, c) bones bleding with 1:4 subdivision

The vertex blending on the subdivided skin was not rendered, because it
would not be worth the effort of vertex weights tunning. From Fig. 3.6 it is
apparent that increasing the number of vertices would not improve the shape
of the collapsed skin anyway.

As mentioned earlier, the elbow twist is not a natural posture. However,
vertex blending produces artifacts even for natural postures, especially in
the shoulder joint. This is no surprise, since the skin deformation around
the shoulder is a challenge for animation algorithms, as stated in [6]. The
comparison of vertex and bones blending for an everyday fencing posture is
in Fig. 3.12.

a) b)

Figure 3.12: Natural posture rendered with a) vertex blending, b) bones
blending with 1:4 subdivision

The rendering time was measured on an original triangle mesh and on a
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model with right arm subdivided 1:4. Both models were rendered with vertex
blending and with bones blending applied on the right arm. The resulting
time is in Tab. 3.1, and the input data size in Tab. 3.2.

original mesh 1:4 subdivided
vertex blending 16.57 23.31
bones blending 19.04 32.7

Table 3.1: One frame rendering time in milliseconds

original mesh 1:4 subdivided
vertices 1507 2065
triangles 1372 1930

Table 3.2: Size of input data

In our implementation, the parameters tmin and tmax do not influence the
rendering time. However, it would be possible to cancel the SLERP, when
the interpolation parameter t is either 0 or 1. Then the number of vertices
between tmin and tmax would affected the rendering time. The rendering
time increment for the original model is acceptable when compared to the
improvement seen in Fig. 3.11a, b. The comparison is slightly worse for the
subdivided models, but it still retains nice real-time properties. It follows the
subdivision is useful only if visual quality is a priority. Therefore, it is possible
to switch between the original and subdivided mesh in the application.

The theoretical justification of the subdivision step can be found in [15].
It compares the curvature of the deformed skin with and without subdivision,
and shows that subdivision really improves smoothness of the resulting shape.
Intuitively, it is quite obvious from Fig. 3.11b, c.



Chapter 4

Virtual Humanoid Animation

In chapter 3, we have shown how the problem of virtual humanoid anima-
tion can be reduced to the problem of skeleton animation. In this chapter,
we address the problem of skeleton animation, i.e. determination of joint
transformations T (j) for every joint j, using the notation from section 3.1.

We divide this problem to two subproblems, exploiting the fact that in
fencing, the movement of the arm holding weapon and the movement of
the legs can be treated separately1. Then the only problem is a proper
synchronization of both parts, which is fully under the user’s control, and
therefore can be effectively trained in virtual reality.

For the legs animation is appropriate the interpolation of key frames,
because the steps are nothing more than standard routines. The key frame
interpolation was implemented pursuant the library [31], although this library
offered only a very basic functionality. Some new features had to be appended
to enable realistic simulation of fencing steps: support of multiple animations
for single model, reverse play and root translation.

The hand animation is far more complicated, because there is a higher
degree of freedom in the hand movement. The natural way is to let the user
to control the weapon directly (i.e. the sword-holder joint) and propagate
the motion automatically to the rest of the arm by inverse kinematics. Both
these problems are not trivial. The weapon, being considered a rigid body,
has 6 degrees of freedom (DOFs). However, common input devices such as
mouse and joystick provide only 2 DOFs. Therefore a mapping from the 2D
input device space to the 6D hand motion space must be defined.

The inverse kinematics is a well studied area covering both computer
animation and robotics. A nice introduction presents [39], more recent results
are compiled in [1]. A practical point of view is studied in [20], [19]. The

1Also in real modern fencing the legs and the hand are sometimes trained separately.

38
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reduction of inverse kinematics to optimization problem is presented in [42].
However all these approaches are general and require a numeric solution,
with its specific problems. For the purposes of virtual fencing is important
the special case of human limb, which was solved analytically [34]. The
”analytical” is in the context of inverse kinematics a synonym for ”fast and
reliable”. The authors of [34] have implemented their solution in a library
named IKAN. They kindly allowed us to use this library in our virtual fencing
project2.

Although a lot of foreign code and ideas has been used to implement these
topic, some original approaches were also applied. It is especially the case
of the goal determination (sections 4.2.1 and 4.2.3), and to some extent also
the joint limits consideration 4.2.2.

4.1 Key Frame Interpolation

The first problem concerning the key frame animation is to create the key
frames. We designed them in the MilkShape3D animation software, because
the code for importing its file format is included in [31]. The file format is
quite simple: besides the model data, as referred to in chapter 3, it stores
exactly one animation sequence.

The basic building block of the animation is the key frame
for an individual joint. It is described by the structure
KeyframeInterpolator::KeyFrame. This structure stores the time
when the joint transformation shall take place, the index of the joint and
the actual data: a triplet of parameters. These triplet is interpreted either
as a translation vector in R3, or as Euler angles of a 3D rotation (see 2.3).
Note that the translation is interesting only for the root joint movement.
The joints are animated independently. Each joint has two arrays of key
frames: one for translation key frames, second for rotation ones.

The key frame data, together with some additional informa-
tion such as the total time of sequence, are loaded by class
MilkshapeKeyframeInterpolator, which is the file-format specific descen-
dant of class KeyframeInterpolator.

The actual key frame interpolation is performed by function
KeyframeInterpolator::setTransform. Its parameter is the current time
tc, for which shall be determined the transformation matrices T (j) (repre-
sented by Joint::m transform, according to section 3.1). This function

2Unfortunately, the source code of IKAN library is not free for commercial applications.
Please consider that IKAN source files are merged with others – see the header of the file
if necessary.
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assumes that the animation runs considerably faster than the key frames,
which is a reasonable presumption. For each joint is stored the index of the
rotation key frame i, that was used in the previous call of setTransform.
The array of rotation key frames is then scanned from index in i, searching for
the key frame j such that the time t(j) ≤ tc ≤ t(j + 1). The rotations given
by key frames j and j + 1 are converted from Euler angles to quaternions
and interpolated by SLERP, as described in section 2.6. The interpolation
parameter for SLERP is

t =
tc − t(j)

t(j + 1) − t(j)

This yields the resulting transformation of the given joint. The procedure
is repeated for all joints. The same stuff is executed for the translation
key frames, with the only exception that a simple linear interpolation is
performed instead of SLERP.

After computing the T (j) matrices, the movement is propagated to the
final transformation matrices (taking into account the relative bone transfor-
mations) by function Model::setFinalMatrices. This function also handles
the explicit root translation, which is necessary because the fencer moves it-
self by performing the steps.

We observed that the fencing step forward played backwards is exactly
the step back. This means that it is not necessary to design new key
frames for the step back, if we already have the key frames for the for-
ward step – it is sufficient to reverse the keyframes. This is done by function
KeyframeInterpolator::reverseKeyframeData.

It would be possible to improve the key frame interpolation from piece-
wise linear to smooth curves. Splines are usually used for key frame interpo-
lation, and even for quaternions is possible the spherical spline interpolation
[9]. However, for the purpose of the fencing steps animation, we found the
linear interpolation quite satisfactory.

4.2 Inverse Kinematics of the Human Arm

In this section we briefly describe how does the IKAN system work, and how
it is included in our application.

The model of the human arm, according to [34], consists of three joints:
the shoulder, elbow and wrist, as illustrated in Fig. 4.1. The shoulder and
the wrist are considered to be spherical joints, with full 3 degrees of freedom,
which allows them to rotate in an arbitrary way. The elbow is restricted
to rotate about its y-axis, which produces one additional degree of freedom.
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Figure 4.1: The model of the human arm

Together it sums up to 7 DOFs. The goal is to find the rotation in the
shoulder, elbow and wrist joints, such that the resulting wrist position and
orientation matches the given homogeneous matrix G. Using the inverse
kinematics terminology, the wrist is the end-effector and G is the goal. The
end-effector has only 6 degrees of freedom (3 for translation, 3 for rotation),
thus the problem is under-constrained and there can be either zero, or infinite
solutions.

However, as discovered in [34], it is possible to parametrize the space
of all solutions in an intuitive way. First, we notice that the angle in the
elbow (inclined by the forearm and brachial bone) does not depend on the
orientation of the end-effector, and it is determined by the end-effector’s
position uniquely. If the goal is within reach, then all the solutions can be
generated by rotating the arm about the axis connecting shoulder and wrist
joints. This axis is called a swivel axis, see Fig. 4.2.

The redundant degree of freedom, parametrized by the swivel angle, can
be exploited in several ways. First, it is possible to define a position, that the
elbow should match as close as possible, and derive the appropriate swivel
angle from this condition. Second, we can optimize the ”comfortability” of
the arm posture by varying the swivel angle, taking the joint limits into
account. Both these approaches are implemented in the application.

When the swivel angle and the goal G are given, the IKAN system can
very efficiently compute the rotations in the shoulder, elbow and wrist joints.
The procedure is described in detail in [34]. Unfortunately, employing the
IKAN library is not as straight-forward as it looks like, since it uses com-
pletely different conventions than the modeling software used for the virtual
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swivel axis

Figure 4.2: The elbow can freely move on a circle

humanoid design and animation. The row-major convention is used for ma-
trix elements storage instead of column-major. Moreover, the local coordi-
nate system in the arm joints in IKAN is different to that one in the Yopago
model, see Fig. 4.3.

x

y

z
z

y
xa) b)

Figure 4.3: Local coordinate system in the right arm for a) Yopago model,
b) IKAN convention

The conversion from the Yopago’s to the IKAN coordinate system per-
forms matrix T (my2ikan), which can be deduced from Fig. 4.3.

T =




0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1




The matrix T is orthonormal, therefore the opposite conversion, from IKAN
coordinates to Yopago’s is given by T−1 = T T . Using these matrices we can
convert any matrix A expressed in IKAN coordinates to equivalent matrix
expressed in Yopago’s convention: T T AT . The opposite direction (from
Yopago’s to IKAN matrix) is analogically TAT T . Besides the coordinate
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system transformation it is also necessary to convert from the column-major
order to the row-major. This performs the function Matrix2ikMatrix. The
opposite conversion from the row-major convention to the column-major is
done by ikMatrix2Matrix.

The interface of the IKAN library to our application is the class IKAN.
The main function is IKAN::setGoal which instructs the inverse kinematics
to find a solution for the given goal (position and orientation). In fact,
the end-effector used in the virtual fencing is not the wrist joint, but the
auxiliary sword-holder joint, introduced in section 3.4. This is due to the
fact that the user controls the weapon, not the wrist. Fortunately, this
another joint does not participate actively in the inverse kinematics chain,
since it is rigidly linked with the wrist3. Thus it suffices to transform the goal
G from the sword-holder placement to the wrist placement, which is done
by multiplication GR(s)−1, if s is the index of the sword-holder joint, and
R(s) is the relative matrix from section 3.1. This is implemented in function
IKAN::SHGoal2HandGoal.

4.2.1 Goal Determination

As mentioned above, the problem of determination the end-effector’s goal
(i.e. the position and orientation) is not trivial, if only standard, 2D input
peripherals are assumed4. We solved this problem by key frame interpolation
again. However here, the interpolation is not done on all the joints, as in sec-
tion 4.1, but only on the end-effector. It is the task of the inverse kinematics
to compute the rotations in the arm joints.

The problem is to find a mapping from a bounded subspace of R2, which
corresponds to the input device’s range, to a bounded subspace of R6, which
corresponds to the reachable goals. Without loss of generality we assume
the space of the input device is I = 〈−1, 1〉 × 〈−1, 1〉. The idea is to define
several points in I and associate them with the goal key frames. Then any
other goal can be computed by interpolation from the key frames.

We defined three sets of key frames: one corresponding to the swing
movements (the preparation for an attack). Second stands for the attack
postures and the third is for parry. The switching between these sets is a
task of user control, which is explained in section 4.3. There are 9 key frames
for the swing and attack sets, and 15 for the parries, summing to 33 end-
effector positions and orientations. Almost each of them corresponds to some

3It corresponds to ideal, firm holding of the weapon. Loosely held weapon could be
simulated by movement of the sword-holder, but this was not implemented.

4However, the problem is trivial using high-level hardware, such as a tracker, which
provides 6 or even more DOFs.
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well-defined fencing posture. These sword-holder positions and orientations
for every key frame were designed in CharacterFX. The reason for defining
more parry positions is to distinguish the sixte and quinte parry, as illustrated
in Fig. 1.1. The distribution of the key frame points in I forms square or
rectangular tiles, as depicted in Fig. 4.4.

-1, -1

1,1

-1, -1

1,1
a) b)

keyframe point

Figure 4.4: Key frames distribution: a) swing and attack key frames, b)
parry

If we are given any position (x, y) ∈ I, we can find the tile containing
(x, y), according to Fig. 4.4. The final end-effector position and orientation
can then be computed by bilinear interpolation of four key frame values in
the corners, see Fig. 4.5.

The interpolation of homogeneous matrices means the SLERP (see sec-
tion 2.6) for the rotation part and simple linear interpolation for the transla-
tion vector. We can denote the interpolation of homogeneous matrices P, Q
with parameter t ∈ 〈0, 1〉 as i(t, P, Q). Assuming the box from Fig. 4.5 has
lengths xs, ys, we can write the resulting matrix as

i

(
∆x

xs
, i(

∆y

ys
, A, B), i(

∆y

ys
, C, D)

)

This computation is performed by class KeyframeMID5. One key
frame stored in a MilkShape3D file can be loaded by function
KeyframeMID::loadKeyframe. However, individual loading of all key frames

5The MID is due to the historical reasons a shorthand for Mouse Input Device.
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Figure 4.5: Bilinear interpolation of key frame homogenous matrices
A, B, C, D

in this way would be inefficient, thus there is a possibility to load all
key frames at once using KeyframeMID::loadAllKeyframes. The in-
terpolated end-effector position and orientation is computed by function
KeyframeMID::getGoal.

4.2.2 Joint Limits

For producing plausible solutions of the inverse kinematics problem, it is
necessary to consider the joints range of motion. IKAN itself offers only
a basic support of joint limits, based on the Euler angles limitation. This
has not been found to be satisfactory, according to our experiments, as well
as [1]. However, the IKAN’s parametrization of the space of solutions by
the swivel angle lends itself to an optimization procedure, since the space of
solutions has only one dimension. The joint ranges handling, that is used
in the virtual fencing application, is based on the ideas from [1]. In spite of
this, the algorithm for the swing and twist extraction is original, as well as
the optimization of comfortability.

The rotation in the elbow joint (with only one degree of freedom, i.e.
about a fixed axis) is given only by the end-effector’s position, as stated
above. Thus it is meaningless to impose a limit on the elbow joint, since
changing the swivel angle does not change the angle in the elbow. The
spherical joints (shoulder and wrist) control an arbitrary 3D rotation, whose
limitation is somewhat more complicated. For the description of the spherical
joints range is useful the swing and twist decomposition of the orientation.
It is quite intuitive: the swing describes the direction, which can be given by
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a unit 3D vector, thus removing two DOFs. What remains is the twist – the
rotation about the direction vector.

When given a rotation matrix R, we can extract the swing and twist
component of the rotated z vector (according to the IKAN convention of the
limb coordinate system). The swing given by angles α and β is extracted
first, according to Fig. 4.6. In the picture the rotated z vector is denoted by
r = Rz. Consulting Fig. 4.6, the swing angles can be computed as

Figure 4.6: Determination of swing components α, β from vector r.

α = atan2(rx, rz), β = asin(ry/‖r‖)
where α ∈ 〈−π, π〉, β ∈ 〈−π/2, π/2〉.

Having the swing computed, we can proceed to the twist determination.
Define the rotation S that aligns z with r without any twist, as the rotation
with angle β about the rotated x axis

S = Rx′,β, x′ = Ry,αx

The S can be regarded as a reference zero twist rotation, and we can deduce
the twist from respective rotation of S and R, since the swing is the same.
Taking for instance vector y, we can say that the twist is the angle inclined
by vectors Sy and Ry, and can be computed as

τ = acos((Sy)(Ry))
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yielding τ ∈ 〈0, π〉, which is sufficient for symmetric twist limit. This proce-
dure is implemented by function getSwingTwist.

Using the swing and twist decomposition, the joint range can be given
by bounding the swing, i.e. defining a valid surface on a unit 3D sphere.
Then for each point within the swing boundary the twist limit can be im-
posed. However, it is often sufficient to assume a constant twist limit for
all directions, as remarked by [1]. The twist can be bounded easily, since
it has only one dimension. Somewhat more interesting is the swing bound-
ary, which corresponds to certain subset of a unit 3D sphere. First realize
that the sphere can be parametrized by the swing angles α ∈ 〈−π, π〉 and
β ∈ 〈−π/2, π/2〉. A straightforward boundary could be restriction of α, β to
some subintervals, which would lead to a spherical rectangle. However, such
border does not approximate the joint range well: it is not smooth and the
α and β limits are independent.

A better idea is to use a spherical ellipse. Here we also restrict α and β
to certain subinterval, say α ∈ 〈α0, α1〉, β ∈ 〈β0, β1〉, but the valid swing is
only the α, β pair satisfying f(α, β) < 0, where

f(α, β) =

(
α − (α1 + α0)/2

α1 − α0

)2

+

(
β − (β1 + β0)/2

β1 − β0

)2

− 1

The equation f(α, β) = 0 describes the spherical ellipse, see Fig. 4.7. Even

Figure 4.7: a) The spherical ellipse, b) with twist limits (from [1])

more sophisticated swing boundaries are described in [1], for example the
spherical polygon boundary.
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The parameters α0, α1, β0, β1, and the twist limit were tuned for both
the shoulder and wrist joints by hand (they can be found in the construc-
tor IKAN::IKAN). The above ideas represent a tool for determining whether
a given rotation matches the joint limits. Nevertheless, we can exploit the
concept of spherical ellipse even more, if we realize that the function f(α, β)
in fact measures the deflection from the zero rotation. This measure is influ-
enced by the swing ranges α0, α1, β0, β1, and can be interpreted as a measure
of comfortability of the rotation, using the assumption that α = β = 0 is the
most comfortable position. The comfortability function (IKAN::comfort)
that is used by the application is

c(α, β, θ) = f(α, β) + θ

assuming the angle θ is given in radians. Of course it would be possible to
tune this function to produce better results (for example using a coefficient
to scale θ, it is indeed a fortune that simple expression in radians works).

The comfortability is higher when the value of function c is lower, there-
fore optimization of the joint rotation is equivalent to minimization of c.
Although c is a function of three variables6, there is only one independent
parameter due to the end-effector constraint: the swivel angle.

The procedure that optimizes the comfortability, involved in func-
tion IKAN::pomSetGoal, is very simple. For each swivel angle equal to
1, 2, . . . , 360 degrees, it calls the inverse kinematics, converts the resulting
shoulder rotation to the swing and twist representation and stores the swivel
angle corresponding to the minimal c. We can afford this due to two things:
firstly, the IKAN code is very efficient, and the one degree precision is suffi-
cient. Secondly, the optimization method is not appropriate for interactive
posturing anyway. In majority of situations it is replaced by another method,
described in section 4.2.3.

For given goals, the comfortability optimization produces plausible results
indeed. The problem is that the resulting values of swivel angle are not
continuous: a small change in the end-effector may result in a big difference
in the swivel angle. This results in a sudden flounce of the elbow, which
is somewhat annoying. Thus the optimization approach for swivel angle
determination is used only in special situations, where the discontinuity does
not matter, see section 6.5.1.

6Similar function can be defined also for the wrist joint, but the wrist joint range is
neglected by the application. Experiments have shown that it is the shoulder joint, which
has the major influence on the plausibility of a posture.
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4.2.3 Elbow Positioning

As mentioned above, we would like to have a continuous function computing
the swivel angle from given end-effector position and orientation. To achieve
this, we can exploit the goal key frame interpolation scheme, that is described
in section 4.2.1. The idea is to append the desired position of elbow to the
already defined key frame values. We use the fact that the swivel angle is
determined uniquely by the desired elbow position. Put in another words,
requiring the elbow to meet some desired position as close as possible leads
to unique swivel angle. The swivel angle matching this condition can be com-
puted efficiently using an IKAN function. This function uses an analytical
expression (no optimization), which is explained in [34].

We interpolate the elbow position in the same way as the end-effector
position, as described in section 4.2.1. Fortunately, the interpolated elbow
positions represent suitable values, leading to plausible swivel angles. The
bilinear interpolation produces a continuous function (although not smooth),
and it is obvious that a small change in the elbow position results only in a
small difference in the swivel angle7. This algorithm is also very fast, thus
it is used in the application for the swivel angle determination. The only
drawback is that for every key frame must be defined the elbow position in
addition to the end-effector’s position and orientation. The optimal elbow
positions (in terms of visual plausibility) were tuned in especially modified
version of the application.

We have also experimented with direct interpolation of the swivel angle,
but the results of arm posturing were worse. It would be possible to improve
the elbow position interpolation scheme (as well as the end-effector posi-
tion and orientation interpolation) to higher-order interpolation to achieve
smooth functions.

4.3 User Interface

As mentioned above, a 2D input device such as a mouse or joystick is used
to control the hand. The switching between the parry, swing and cut key
frame sets is done by the mouse or joystick8 buttons. When no mouse button
is pressed, the swing key positions are used. When the user clicks the left
mouse button, then a successive interpolation to the corresponding sword-
holder position and orientation in the cut set of keyframes is performed.

7A formal proof would be possible using the formulas for projection of the elbow position
to the swivel angle, which are derived in [34].

8We use the terms left and right button even for joystick buttons. It can be dynamically
configured which joystick button is left and right.
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To enforce more realistic fencing, a condition of big swing must be met
before the avatar switches to cut. Recall that the 2D input device range is
〈−1, 1〉×〈−1, 1〉. However, in 〈−0.8, 0.8〉×〈−0.8, 0.8〉, the cut movement can
not be entered. It can be entered only outside this interval, although the cut
can then proceed inside 〈−0.8, 0.8〉 × 〈−0.8, 0.8〉 later. It is also not possible
to hold the cut position for an infinite amount of time – after certain time
the swing position is entered back automatically. We must also handle some
marginal situations, like that the users releases the mouse button before the
interpolation to another set has finished etc.

The keyboard is used to control the leg movement. In fact, the problems
are quite similar to the case of the hand. The steps must be executed com-
pletely (it is not possible to change the intended movement in the middle of
a motion), but in a lunge the fencer can stay as long as he wants.

Actually, we can consider the keyboard and mouse (or joystick) events
together. Let us define the user events as the mouse movement, mouse
clicks, and key strokes (both press and release). The input to the key frame
interpolator are the interpolated key frames and the interpolation parameter.
Then the relationship between the user events and the input to the key frame
interpolator can be described by a state diagram. Its nodes correspond to
states, such as a stand, guard, step forward etc. The edges represent a
possibility of switching to another state, if some condition is met. This
condition can be either a user or timer event. An example of the state
diagram controlling the legs movement is presented in Fig. 4.8. The keys
N,H,J,K are the defaults, and can be re-assigned dynamically.

A similar diagram can be drawn also for the hand states, but it would
be somewhat more complicated – there is more in-between states (such as
cut-parry etc.). It is wired in the implementation class ActionMID. The
functions ActionMID::feedButton and ActionMID::feedNewPos inform the
object about the mouse user events. The function ActionMID::getGoal is
used to retrieve the actual interpolated position and orientation of the sword-
holder. The keyboard processing is done in class KeyboardInputDevice with
similar functionality as ActionMID.
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Figure 4.8: The legs movements diagram



Chapter 5

Collision Detection

As one would expect, the object collisions are very important in fencing. By
objects we mean either the virtual humanoid body, or the weapon. Both these
objects have its specific properties. The weapon is rather thin and moving
fast, thus a collision can be missed easily. The advantage of the weapon is
that it can be considered as a rigid body, because it is not deformed during
the simulation1.

The virtual fencer’s body, on the other hand, can not be considered rigid.
Its skin undergoes a lot of deformations resulting from motion, which was
discussed in chapter 3. However, the virtual humanoid body is relatively
large, and slowly moving, when compared to the weapon.

Any two of these objects can collide each other, which leads to following
possibilities

• weapon-weapon collision – a very common situation in fencing. A so-
phisticated collision response is necessary.

• weapon-body collision – the fencer is hit. It is necessary to determine
which part of the body was hit (for example in order to consider the
legal hit area, as explained in section 1.2).

• body-body collision – a rare situation, which is usually not legal in the
real fencing, since fencing is not a wrestling. Nevertheless, it must be
considered, since the penetration of fencers bodies can not be allowed.

The collision detection (CD) itself can be divided into two large areas: the
static CD and the dynamic CD. The static CD gets two triangular meshes
M0, M1 on the input, and its task is to produce all pairs of triangles (u0, u1) ∈

1Another advantage of historical weapons, such as sword: little flexibility.

52
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M0 × M1 such that u0 intersects u1. Sometimes it is required only to check
whether any such pair exists.

The dynamic CD solves the same task, but considering that the triangular
meshes are moving in time. It answers whether any two triangles u0 ∈ M0,
u1 ∈ M1 intersect during some time interval 〈t0, t1〉. The difficulty of the
dynamic CD strongly depends on the allowed type of movement: linear (pure
translation), rotation about a fixed axis, or both together.

There is an abundant number of articles concerning the static CD. We
have focused on the algorithms based on a bounding volumes hierarchy. They
have generally the same core, but the difference is in the used bounding vol-
umes, which determine the effectiveness. The simplest and oldest are the
sphere trees, but they have not said their final word yet [7]. Somewhat more
interesting are the Axis-Aligned Bounding Boxes (AABB) trees, which may
seem also obsolete, but it was found recently that they have nice proper-
ties for deformable models [36], which is exactly what we need for the hu-
manoid body. Contemporary favorites are Oriented Bounding Boxes (OBB),
presented in [11], competing with Discrete Oriented Polytopes (k-DOP) ex-
amined by [17], [18]. A method for dynamical alignment of DOP-trees for
rotated objects is presented in [41].

Concerning a dynamic CD, only a few resources have been found. A linear
movement is considered in [9]. The general motion problem can be reduced to
a root-finding problem, as described in [10], and solved by numeric methods
(namely regula falsi). Recently, a survey about both static and dynamic CD
was found [13].

We implement the static CD pursuant the ideas of [36], and generalizing
the approach to k-DOPs (from original AABBs). The dynamic collision
detector we built from scratch, using some simplifications resulting from the
special shape of the weapon. The method we use is described in [14].

5.1 Static Collision Detection

The input are two meshes of triangles M0, M1 (sometimes called triangular
soups, to indicate that there is present no topological structure). We need
to check if there is u0 ∈ M0 and u1 ∈ M1 such that u0 ∩ u1 �= 0. A naive
static CD algorithm could test each pair from M0×M1. Such algorithm would
have time complexity O(|M0||M1|), which is unbearable even for models with
small number of triangles (thousands), because the collision detection must
be performed in real-time.

It is possible to speed up the CD using an additional structure – the
hierarchy of bounding volumes. The bounding volume for a set of triangles T
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is denoted by B(T ) and it is defined as a convex subset of R3 such that ∀t ∈
T : t ⊆ B(T ). Obviously, the smallest bounding volume would be the convex
hull. In practice, only approximations of convex hull are used: sphere, AABB,
OBB, k-DOP. The AABB is a box with edges parallel to the coordinate
axes of some fixed coordinate system (usually the world coordinate system).
The OBB is an arbitrarily oriented box. The k-DOP, k even, is a convex
polytope, whose facet’s normals come from a fixed set of k/2 orientations.
Note that if the first three orientations correspond to the coordinate axes,
then the 6-DOP is equivalent to AABB. The comparison of these three types
of bounding boxes in 2D is in Fig. 5.1.

AABB OBB 8-DOP

Figure 5.1: Comparison of bounding boxes (from [17])

The pre-processing step of a CD algorithm is to construct a tree of chosen
type of bounding volumes for a given triangular mesh M . Each node of the
tree corresponds to a set of triangles, for example the root r corresponds to
the whole M . We can extend the definition of operator B even for a node u
of a tree: B(u) shall be interpreted as a bounding volume corresponding to
the set of triangles given by node u. We assume only binary trees. Let us
denote the left child of node u as l(u) and the right child by r(u).

The construction of the tree can proceed in a top-down manner, ac-
cording to the algorithm 1. This algorithm is implemented in function
CDModel::build.

Some points of the algorithm 1 depend on the actual type of the applied
bounding volumes. For the case of AABBs, the determination of the smallest
AABB containing M (step (2)) is a straightforward maximization of the
triangle coordinates in the e0, e1, and e2 component. For k-DOPs, realize
that the projection of a vertex v into arbitrary direction vector d can be
computed by the dot product dv (in fact selecting the i-th component for
AABBs can be also treated as a dot product with vector ei). Thus for each
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Algorithm 1: Building bounding volume tree
Input: The triangular mesh M
Output: The root p of the created tree
buildTree(M)
(1) create node p
(2) B(p) = B(M)
(3) split M according to some splitting rule into Ml and Mr

(4) if Ml �= 0 then l(p) = buildTree(Ml)
(5) else l(p) = nil
(6) if Mr �= 0 then r(p) = buildTree(Mr)
(7) else r(p) = nil
(8) return p

of the k/2 directions, the maximum and minimum of vertex projections to
the given axis is computed, analogically to the AABB case.

The splitting rule, mentioned in step (3) of algorithm 1, also depends on
the type of bounding volumes. For AABBs, it is recommended in [36] to
divide the longest axis of B(M) to produce two AABBs with equal volume.
Other splittings, for example selecting the dividing plane which produces
AABBs with almost equal number of triangles (thus leading to a balanced
tree), are reported to have worse performance. When the splitting of the
longest axis would produce a leaf node with more than one triangle, other
axes are tested.

In algorithm 1, we did not address the implementation of the splitting
of M into two sets of triangles. The triangular mesh M is represented by
an array of triangle indices. The function CDModel::prohazej implements
the splitting: its output is a number k and an array with swapped elements,
in such way that the indices 0, . . . , k − 1 correspond to triangles in Ml, and
k, . . . , |M | correspond to triangles in Mr. The splitting is quite similar to the
swapping step of the well-known Quicksort algorithm. The nice property is
that the following recursive splitting of Ml works only on elements 0, . . . , k−1.

The general collision detection algorithm, exploiting a bounding volumes
tree, is independent of the actual bounding volumes type. This is the algo-
rithm 2, implemented in function CDModel::collide.

The function leaf used by the algorithm simply checks if its parameter
is a leaf node. The function disjoint tests whether two bounding volumes
are disjoint. However, the only condition we pose on the function disjoint is,
that if it returns yes, then the bounding volumes are really disjoint. On the
other hand it is acceptable that the function returns no, even for bounding
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Algorithm 2: Collision detection using bounding volume trees
Input: The roots r0, r1 of bounding volumes trees of two objects
Output: Yes/no answer if the meshes represented by r0, r1 collide
colTest(r0, r1)
(1) if disjoint(B(r0), B(r1))
(2) return NO
(3) else
(4) if (leaf(r0) and leaf(r1))
(5) check all triangles from r0 against all triangles from r1

(6) return YES iff any pair intersected
(7) else if (leaf(r0) and not leaf(r1))
(8) return colTest(r0, l(r1)) or colTest(r0, r(r1))
(9) else if (not leaf(r0) and leaf(r1))
(10) return colTest(l(r0), r1) or colTest(r(r0), r1)
(11) else
(12) ri = the node with larger volume of B(ri)
(13) return colTest(l(ri), r1−i) or colTest(r(ri), r1−i)

volumes that are disjoint. This leads only to some redundant tests.

Recall that an AABB (6-DOP) is given by three intervals, corresponding
to ranges in the e0, e1, and e2 coordinate. If the intervals for at least one axis
are disjoint, it implies that the AABBs are disjoint. Conversely, if the inter-
vals are overlapping for all three axes, then the AABBs are also overlapping.
Thus for the case of AABBs we have a perfect disjointness test.

The overlap test for k-DOPs works in the same way, but with k/2 axes
(instead of 3). It still holds that if the intervals for at least one axis are
disjoint, then the whole k-DOPs are disjoint. However, the opposite direction
is no more valid: if all the k/2 intervals of two k-DOPs are overlapping, the k-
DOPs may be disjoint. The reason for this is connected to the separating axis
theorem; it is somewhat beyond the scope of this work, please consult [18]
or [11] for further discussion. The important fact is that the test of only k/2
directions, called a conservative test, can still be used as a disjoint function.
The conservative test is even believed to have better overall performance
than the perfect disjointness test.

The function for robust and optimized triangle-triangle intersection test
has been borrowed from the RAPID library [11] (the file TriTriTest.cpp).
The algorithm 2 can be easily extended to output all pairs of colliding trian-
gles. It suffices to return the set of colliding triangles in step (6) and replace
the boolean or operators with set union operators. This is implemented in
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function CDModel::colTri, where the set is represented by an array.

5.1.1 Deformable Objects

As mentioned above, the main problem of the collision detection with a
virtual humanoid body is that the shape of the body is not constant. A
movement such as translation and rotation can be propagated to bounding
volumes relatively easily, but the deformations of the virtual humanoid skin
are not so trivial (even in the basic skeletal animation). A re-build of the
bounding volumes hierarchy, according to algorithm 1, would be awfully
inefficient, since the skin’s shape changes almost each frame of the simulation.

Fortunately, there has been published an article [36], describing how it
is possible to quickly refit the AABB trees for a model that undergoes de-
formations. The deformation of a model in this context means an arbitrary
shift of the vertices (possibly producing even a completely different shape).
The main property, that allows a fast refit of the AABBs is following: let
T0, T1 be two sets of triangles, and let BAA(X) denote the smallest AABB
bounding X. Then

BAA(T0 ∪ T1) = BAA(BAA(T0) ∪ BAA(T1)) (5.1)

In fact, this property generalizes to k-DOPs, but not to OBBs. The counter-
example for OBBs presents Fig. 5.2, where the smallest OBB bounding X
is denoted by BO(X). For k-DOPs, equation (5.1) justifies the bottom-up
refitting algorithm 3.

Algorithm 3: k-DOP tree refit
Input: The root p of a k-DOP tree
Output: Corrected k-DOP sizes
refit(p)
(1) if (l(p) = nil and r(p) = nil)
(2) compute B(p) directly from the triangles
(3) else if (l(p) �= nil and r(p) = nil)
(4) B(p) = B(l(p))
(5) else if (l(p) = nil and r(p) �= nil)
(6) B(p) = B(r(p))
(7) else
(8) B(p) = B(B(l(p)) ∪ B(r(p))

In particular, the property (5.1) is exploited in step 8 of the refitting
algorithm. It simplifies the algorithm considerably, because it is much faster
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BO(T )1
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Figure 5.2: BO(T0 ∪ T1) �= BO(BO(T0) ∪ BO(T1))

to compute a k-DOP that bounds two other k-DOPs than a general set of
triangles. This reduces the time complexity in the worst case from O(n2) for
the tree build (algorithm 1) to O(n) of algorithm 3, where n is the number
of triangles. This algorithm is implemented by function CDModel::refit.

5.1.2 Performance and Comparison

The used splitting rule (algorithm 1) does not guarantee that the leaves will
have a bounded number of triangles. However, in practice it works well
for reasonable triangular meshes: the Yopago model has 1372 triangles. The
resulting AABB tree (for a given orientation) has 1195 leaf nodes, which gives
an average number of 1.15 triangles per leaf node. The maximum number of
triangles in one leaf is 4. Thus the test of all triangles from one leaf against
all triangles from the other leaf (step (5) of algorithm 2) is expected to test
1.32 triangle pairs in average, and 16 in maximum.

The resulting axis-aligned bounding boxes of the leave nodes are illus-
trated in Fig. 5.3 (general k-DOPs visualization has not been implemented).
Note that the weapon is not included in the AABB hierarchy, since its colli-
sions are handled in a different way.

When comparing the performance of static collision detection algorithms
based on bounding volumes hierarchy, there is always a trade-off between the
tightly bounding objects (good approximation of convex hull) and the time
for the overlap test of two bounding volumes. Because we are considering
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a) b)

Figure 5.3: a) Yopago in a guard position, b) AABB of the leaves

deformable models, we can not just adopt the results from [18], since we
must account also for the refitting time. The refitting procedure, as well as
the collision detection itself must be executed each frame of the simulation.
We are especially interested in the question which k should be chosen as the
order of the used k-DOPs.

For the experiment, we measured the collision detection of two virtual
humanoid models in an adjusted version of the application. It is obvious,
that if the objects are far apart, then the time of the actual collision detection
is negligible – the algorithm 2 often ends already in the first iteration. Thus
the majority of time is spent in the refitting algorithm 3.

Somewhat more interesting is the case when the objects are in close prox-
imity. We have executed two tests: the first assumes the virtual humanoids
in close proximity, but not colliding, see table 5.1. The second one pushes
the models in even closer proximity, allowing collisions, the results are in
table 5.2. Note that the full collision test, i.e. producing all colliding trian-
gles, was measured (not only the boolean collision query). This is because
we want to highlight the colliding triangles in the application, in order to
provide feed-back for the user.

We did not implement the 8-DOP (as well as [18]), since we exploited
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6-DOP 14-DOP 18-DOP 26-DOP
collision test 1.17 0.87 0.96 0.97

refit (2 models) 8.29 12.76 14.63 17.66
total 9.46 13.63 15.59 18.63

Table 5.1: Average time for close proximity without collisions (in ms)

6-DOP 14-DOP 18-DOP 26-DOP
collision test 11.63 9.59 9.88 9.81

refit (2 models) 8.32 12.23 14.05 17.19
total 19.95 21.82 23.93 27

Table 5.2: Average time for close proximity with collisions (in ms)

the fact that the 6-DOP’s directions (world coordinate axes) are contained
in each of the 14, 18 and 26-DOPs. From the tables we see, that the best in
the collision time is the 14-DOP. Nevertheless, it does not perform notably
better than any other k-DOP. In fact, the order of the k-DOPs does not
influence the collision query time considerably. On the ohter hand, the order
of the k-DOP has relatively big impact on the refitting time. Recall that
the refit time is quite important, because the refitting algorithm has to be
executed each frame of simulation.

Let us return to the original question – which k-DOP should be chosen as
our bounding volume. Consulting the tables 5.1 and 5.2, we see no reason
for high k. The 6-DOP performs almost as well as higher order DOPs in
collision time, and it is much faster in the refit time. This justifies that in
[36], only AABBs are considered (although the comparison with higher order
DOPs is not discussed there).

Due to these reasons, we concluded to employ the 6-DOP as the default.
However, it is possible to select any k ∈ {6, 14, 18, 26} by passing it to the
constructor CDModel::CDModel. In this function can be also found the axes
directions for each supported k.

5.2 Dynamic Collision Detection

The problem of the static CD, executed each frame of the simulation is, that
it does not consider the motion between the previous and the current frame.
Due to this, a quickly moving bullet can skip a wall, without any collision
being detected. This is demonstrated in Fig. 5.4.
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Figure 5.4: No collision is reported, although the bullet has penetrated the
wall.

The static CD algorithms presented in section 5.1 are so far appropriate
only for body to body test, since the virtual humanoid bodies are moving
relatively slowly with respect to the simulation speed (FPS). However, when
considering the weapon, the dynamization of the collision detection must be
taken into account: it would be disappointing if the weapon could pass the
opponent’s body without collision. In spite of the importance of the dynamic
CD, all the algorithms presented below are not perfect: they provide only an
approximation – such that is sufficient in given situation.

The case of weapon to body collisions is somewhat easier than the case
weapon to weapon, so let us examine it first. In fact, we apply a simple trick
to approximate the dynamic CD for the weapon-body problem, inspired by
the idiom ”it is not the bullet what kills, it is the hole”. Define the fade
of the weapon as a structure consisting of two triangles, that connects the
blade of the weapon in the previous frame with the blade of the weapon in
the actual frame, see Fig. 5.5.

The fade of the weapon is then used for static CD instead of the weapon
model itself. Of course, it is only a rough approximation of the actual swept
volume of the blade. However this approximation is quite appropriate for
the weapon-body collision detection2. An advantage is that the CD based
on the weapon’s fade is very fast, since the fading structure consists of only
two triangles.

2The hits missed due to the approximation were not worth scoring anyway. Only a
correct cut, as defined in section 1.2, is discovered using the weapon’s fade.
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previous weapon
position

current weapon
position

fade structure

Figure 5.5: Two fading triangles connect the previous position of the weapon
with the current one.

5.2.1 Weapon to Weapon Collisions

Unfortunately, the weapon’s fade approximation is not applicable to weapon-
weapon collisions due to the fact that both the objects have to be ”dy-
namized”, i.e two fades should be considered. However, if two fades intersect,
we can not conclude that the objects have really collided3. This is because
the intersection of swept volumes does not imply a collision [13].

To overcome this problem, we have implemented more precise method of
dynamic CD for weapon-weapon collisions. It exploits the special shape of
the weapon, that can be approximated by a simple object. The weapon is, for
the purposes of dynamic collision detection with another weapon (and also
for collision response, that is described later), approximated by a capsule. A
capsule is a point set given by a line segment AB and a radius r{

x : dist(AB, x) ≤ r
}

where dist denotes the point to segment distance. For an example of a capsule
see Fig. 5.6a. The shape of the weapon is approximated by two capsules, one
for the blade, the other for the guard, see Fig. 5.6b.

A capsule is similar to cylinder, but has certain advantages. A test if a
capsule given by (A0B0, r0) intersects another capsule given by (A1B1, r1) is
simply

dist(A0B0, A1B1) ≤ r0 + r1

and the segment to segment distance can be computed efficiently. This allows
very fast collision test of two capsules. We refer to an object composed of two

3We can only say that if they do not intersect, then the objects do not collide.
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A B
r

a) b)a)

Figure 5.6: a) Capsule given by a line segment AB and radius r, b) approx-
imation of the weapon by two capsules

capsules as a capsuloid, and the two line segments defining it as its skeleton.
The distance of capsuloid given by line segments A0B0, C0D0 to capsuloid
given by segments A1B1, C1D1 is defined as

min{dist(A0B0, A1B1), dist(A0B0, C1C1), dist(C0D0, A1B1), dist(C0C0, C1D1)}
The AiBi determines the blade of the weapon, and CiDi the guard, as demon-
strated in Fig. 5.6b. In practice, it is possible to omit the dist(C0C0, C1D1)
from the minimum, since the guard to guard collisions are not important in
fencing.

The surface of a capsule is smooth, thus there are no problems with the
definition of a normal direction in any point p of the capsule’s boundary –
the normal is simply the unitized vector, that connects p with the nearest
point on the line segment. A capsuloid can have discontinuity in a point,
which has equal distance from two lines of the skeleton. However, the same
definition of the normal can be applied also in this case (even though the
normal in the mathematical sense does not exist).

The task of the dynamic CD is to answer whether two objects with given
linear and angular velocities have intersected during the time interval 〈t0, t1〉
and if yes, then return the exact time tc ∈ 〈t0, t1〉 of contact. The time t0 is
the time of displaying the previous frame, and t1 is the current time. Put in
a more formal way, we require the time interval 〈t0, tc〉 to be collision-free,
but the objects collide in time tc+εt, where εt is a given precision. Obviously,
the rest of the simulation in (tc, t1〉 must be discarded, because the weapons
have penetrated.

We divide the dynamic collision detection algorithm into two parts:

1. test if the objects collided and if yes then return any time te during the
first collision. (There could have been more collisions during ∆t, but
the others are of no concern to us.)

2. t0 and te are given such that there is no collision in t0 but there is a
collision in te. Find the exact time of contact tc ∈ 〈t0, te〉.
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The first point is complex in general. We present its approximate solution in
section 5.2.3. The second point is much easier; it can be quickly solved with
arbitrary precision as described in section 5.2.4.

5.2.2 Upper Bound of Velocity

The idea used in the next sections, is to avoid large inter-penetration. The
inter-penetration magnitude is connected to the velocity of the colliding ob-
jects. Therefore we need an upper bound for the maximal velocity of the
line segments, which define the capsuloid. In fact, it is straightforward to
generalize the result for a triangle and thus also for a surface of a triangular
mesh4.
Lemma: Assume that triangle T rotates around a fixed axis with angular
velocity ω and translates with linear velocity v. Let 0, 1, 2 be vertices of the
triangle T and r0

c , r
1
c , r

2
c their coordinates relative to some fixed point on the

axis of rotation. If rp
c is any point of the triangle with velocity vp then

‖vp‖ ≤ ‖v‖ + max
i=0,1,2

‖ω × ri
c‖

Proof: It is well-known that the actual velocity of point rp
c can be expressed

as
vp = v + ω × rp

c

Taking the magnitude and using the triangle inequality yields

‖vp‖ = ‖v + ω × rp
c‖ ≤ ‖v‖ + ‖ω × rp

c‖
It remains to show that

‖ω × rp
c‖ ≤ max

i=0,1,2
‖ω × ri

c‖
Since rp

c is a point of the triangle we can write it as a convex combination of
vertices

rp
c = r0

cs + r1
c t + r2

cu

where s, t, u ≥ 0 and s + t + u = 1. Then by the cross product distributivity
and triangle inequality

‖ω × rp
c‖ = ‖(ω × r0

c )s + (ω × r1
c )t + (ω × r2

c )u‖
≤ ‖ω × r0

c‖s + ‖ω × r1
c‖t + ‖ω × r2

c‖u
≤ max

i=0,1,2
‖ω × ri

c‖(s + t + u)

= max
i=0,1,2

‖ω × ri
c‖

4Which is actually not necessary for the application itself, but may be useful in other
contexts.
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�

Corollary: When looking for an upper bound of a maximal velocity of any
point in the triangle mesh it is sufficient to maximize velocities in the vertices.
Especially for our case of capsule’s skeleton, defined by two line segments, it
is sufficient to maximize the velocity only in the endpoints of these segments.

We did not make any assumptions about the actual object orientation
and therefore the upper bound is correct for arbitrary simulation time. Note
that for minimal velocity of a point on a triangle this lemma does not hold
– minimum may not be in a vertex.

5.2.3 Collision Search Algorithm

The input data are two capsuloids5 A and B, defined by their skeletons.
The linear and angular velocities vA, ωA, vB, ωB of both objects are assumed
to be constant during the simulation period 〈t0, t1〉. Using the results of
section 5.2.2 we determine the upper bound of maximal velocities vA

max, v
B
max

in any point of the skeleton of A, resp. B.
As mentioned earlier we confine ourselves to only an approximate solution.

The idea of our algorithm is very simple: we perform the simulation during
〈t0, t1〉 with small enough steps ∆t and check for collisions statically. We
stop as soon as we encounter a collision and return this time as te. It means
that we really may miss some instant of collision, but we can ensure it will
not be a big one – just a touch. Since no point on the skeleton of A (resp. B)
moves faster than vA

max (resp. vB
max), the maximal possible inter-penetration

will not be greater than

(vA
max + vB

max)∆t

If we can admit the maximal inter-penetration depth ε then it is sufficient to
take

∆t ≤ ε

vA
max + vB

max

(5.2)

Obviously if the denominator vA
max + vB

max = 0 then there is no need for
dynamic collision detection, because it means the objects are not moving at
all. The ε should be less than the thickness of the thinnest simulated object.
Our particular choice of ε is discussed in section 5.2.5. Nevertheless, the
smaller the ε, the slower the algorithm will be in the worst case, since the
number of steps is

t1 − t0
ε

(vA
max + vB

max)

5Nevertheless, the results still apply for general objects given by triangular surfaces.
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This could be improved by introducing dynamic bounding volumes, which
bound the whole swept volume, as described in [14]. However, for capsuloids,
the speed-up is not necessary, since already this algorithm is quite fast (see
section 5.2.5).

5.2.4 Time of Contact

As described in section 5.2.3 we have found the first time of collision te and
we have the time t0 without collisions as well. Then it is easy to determine
the time of contact tc ∈ 〈t0, te) by the binary search. The algorithm 4 finds
tc up to a given time precision εt > 0.

Algorithm 4: Find time of contact
Input: Time t0 without collision, te with collision
Output: The time of contact tc ∈ 〈t0, te)
findContact(t0, te, εt)
(1) ts = t0, tk = te
(2) while tk − ts ≥ εt

(3) tm = ts+tk
2

(4) if there is a collision in time tm then tk = tm
(5) else ts = tm
(6) return ts

The correctness of the algorithm is obvious from the invariant: ts is always
collision-free and in tk is always present a collision. The time complexity is

O
(

log
te − t0

εt

)

Note that the algorithm always returns the time without a collision, when
the system is in a correct state.

5.2.5 Implementation

The line segments are defined by the weapon’s model file. By convention, the
last mesh in the weapon model contains the auxiliary vertices, that define
the weapon’s shade and the capsuloid’s skeleton.

There are actually three values of radii used by the application: Rn =
0.5cm, R = 1cm, Rb = 1.25cm. The inner capsuloid corresponds to the ”rigid
core”, which really can not penetrate the other one. The R = 1cm capsuloid
is the approximating one, as depicted in Fig. 5.6b. The outer layer represents
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a ”safe distance” that will be used in the separation of capsules, section 6.4.
The non-penetration condition of the inner capsuloids implies the value of ε,
used in the collision search algorithm from section 5.2.3, namely ε = R−Rn.

The dynamic collision detection routines are implemented together with
collision response in class ColResp. The collision search algorithm, to-
gether with the time of contact computation, is implemented in the function
ColResp::findCollision. It uses a subroutine ColResp::maxStep, which
computes the step ∆t according to the equation (5.2). A useful property is
that the movement with constant linear and angular velocity (about a fixed
axis) is equivalent to SLERP of the starting and final homogeneous matrices.

An average number of steps the collision search algorithm has to iterate
is about 55. However each step is quite fast, since it consists of only two
SLERPs and three segment to segment distance calculations. The average
running time for the collision search algorithm is thus only 1.36ms. The
time of contact computation according to algorithm 4 is executed only if the
collision search algorithm has reported collision. It is even faster than the
collision search, the average running time is below one millisecond.



Chapter 6

Collision Response

What makes the fencing interesting is the behavior of the weapon colliding
with another weapon. Our task is to simulate the weapon-weapon collisions
in a plausible way. For the purposes of simulation, the weapon is considered
to be a rigid body, which is a good approximation for tough weapons, such
as a sword. This enables exploiting the rigid body mechanics to simulate the
object’s dynamics, especially focusing on the reaction to collisions.

Concerning the rigid bodies collision response, a lot of work has been
done, but no uniform approach is the best in general. See [2] for a survey.
Physically based collision response together with dynamics simulation (via
numeric solution of differential equations) is explained in excellent tutorial
[4, 5]. Besides the colliding contact, it involves also a resting contact treat-
ment, which is one of the most difficult problems. [4, 5] show a physically
based solution of the resting contact using static forces. These forces are
computed with quadratic programming. Another method for the contact
forces computation is based on the linear-complementarity problem (LCP)
[3, 8]. [28] proposes an alternative to static forces by so called micro-collisions
– many small impulses that are used instead of static forces.

Well readable articles intended for game developers are [22, 12]. They
cover mainly the basic physics and colliding contact. An interesting recent
result is described by [26] – they formulate the dynamics simulation as an
optimization problem and solve it by quadratic programming.

The existing algorithms are quite complex, because their goal is to enable
a general simulation of rigid bodies. Thus, we have extracted only the stuff
relevant for the simulation of two rigid bodies, which represent the weapons.
We simplified certain approaches, namely the resting contact handling. Our
method is described in [14]. Because no public simulation library was found,
we have implemented the routines ab initio.

68
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6.1 Rigid Body Mechanics

A rigid body is a solid object that can not be deformed in any way – its
shape does not change during the simulation. If we denote the body’s volume
V ⊆ R3 and density function ρ : V → R we can define the body’s mass

m =

∫
V

ρ(r)dV

and the center of mass ∫
V

rρ(r)dV

m

Vectors relative to the center of mass are denoted by subscript c. The mo-
ments of intertia are defined as follows

Ixx =
∫

V
(r2

c,y + r2
c,z)ρ(rc)dV Iyy =

∫
V
(r2

c,x + r2
c,z)ρ(rc)dV

Izz =
∫

V
(r2

c,x + r2
c,y)ρ(rc)dV Ixy =

∫
V

rc,xrc,yρ(rc)dV
Ixz =

∫
V

rc,xrc,zρ(rc)dV Iyz =
∫

V
rc,yrc,zρ(rc)dV

(6.1)

where rc = (rc,x, rc,y, rc,z) is a body space vector relative to the center of
mass. The moments form together an inertia tensor

Ibody =


 Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz




All integrals are computed in the body space relative to the center of mass.
The placement of a rigid body is advantageously described relatively to

its center of mass. In a world space coordinate system in time t we define the
position of the center of mass rc(t) and orientation given by rotation matrix
R(t). Then the vector rb in body space maps to the vector rw(t) in world
space by formula

rw(t) = rc(t) + R(t)rb (6.2)

The actual inertia tensor I(t) for a rotated body is computed from the body’s
space inertia tensor by equation

I(t) = R(t)IbodyR(t)T (6.3)

as derived in [4].
The movement of a rigid body can be decomposed to a linear velocity vc(t)

of the center of mass and an angular velocity ω(t) relative to the center of
mass. ω(t) is the unitary axis of rotation multiplied by the angular velocity.
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The velocity v(t) of a point that has world space position r(t) is computed
as

ṙ(t) = v(t) = vc(t) + ω(t) × (r(t) − rc(t)) (6.4)

The linear momentum p(t) is computed from the linear velocity using the
mass of the body:

p(t) = mvc(t) (6.5)

By analogy the angular momentum b(t) is computed from the angular veloc-
ity using the inertia tensor:

b(t) = I(t)ω(t) (6.6)

To describe the state of a moving body it is recommended to use rather
moments than velocities because they are conserved in nature unlike the
velocities1.

The rigid body’s linear momentum can be changed by an application of
force F acting in the center of mass. The change in linear momentum is
described as

∂p

∂t
= F

To rotate the object it is necessary to apply a torque τ . The torque is
determined by the force F and the point of its application r in the world
space relative to the center of mass:

τ = (r − rc) × F

The change in angular momentum is similar to the linear case2

∂b

∂t
= τ

From the linear and angular moments it is straightforward to derive the
velocities by multiplying equations (6.5), resp. (6.6) by inverse mass m−1,
resp. inverse inertia tensor I−1. Note that the inertia tensor is a regular
matrix if and only if the rigid body’s mass is not zero.

1In a gyroscope ω(t) can change even if b(t) is constant.
2More correctly we should say that τ means the total external torque as well as F is the

total external force, because all the contributions of individual forces and torques reflect
in moments.
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6.1.1 Simulation of Rigid Body Collisions

In nature, the rigid bodies do never penetrate each other. When a collision
occurs, the velocities of the colliding objects are changed in a discontinuous
way, so that the bodies do not penetrate. The physical explanation for this
phenomena is an impulse. The impulse of force JF is

JF =

∫ t1

t0

Fdt

if 〈t0, t1〉 is the period of collision. The impulse of force corresponds to the
difference of linear moments

∆p = p(t1) − p(t0) = JF

Consider that a rigid body A with linear momentum pA collides with a rigid
body B with linear momentum pB. If the change of linear momentum ∆p is
added to pA, then the opposite impulse −∆p must be added to pB to satisfy
the law of conservation.

The impulsive torque of a force F applied in point r in world space is
defined as

Jτ = (r − rc) × JF

Like the impulse of force changes the linear momentum, the impulsive torque
changes the angular momentum

∆b = b(t1) − b(t0) = Jτ

Since the angular momentum must be conserved too, the opposite impulsive
torques have to be applied to both rigid bodies, as in the linear case.

We are especially interested only in the impulsive forces and torques that
arise during the collision and prevent the rigid bodies from penetration.

6.2 Types of Contact

Assume that the algorithms presented in section 5.2 reported a collision be-
tween capsuloids A and B and computed the exact time of the first contact
tc. Now we shall examine the collision event and methods for its handling
pursuant [5]. Let rA(tc), resp. rB(tc) be the point of contact of body A, resp.
B in world space with respect to the center of mass of A, resp. B. The
coordinates of these points are returned by the function that computes the
segment to segment distance.
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The points rA(tc) and rB(tc) coincide in the absolute coordinate system
(not relative to the center of mass), but their velocities ṙA(tc), resp. ṙB(tc)
can be quite different. Let us assume that the linear velocity of weapon A
in time tc is vA(tc) and angular ωA(tc), analogically for weapon B. How to
estimate these velocities is discussed in section 6.5.

Substituting to equation (6.4) we obtain following relations

ṙA(tc) = vA(tc) + ωA(tc) × rA(tc) (6.7)

ṙB(tc) = vB(tc) + ωB(tc) × rB(tc) (6.8)

for the actual velocities of the contact points.
The direction of the collision is described by the unit normal vector nB(tc)

of the surface of rigid body B3 in point rB(tc). Important fact is, that nB(tc)
points out of the object B’s volume. As described in section 5.2.1, the normal
to a capsuloid can be computed efficiently.

Now examine the relative velocity vrel of two objects projected to the
nB(tc) direction

vrel = nB(tc)(ṙA(tc) − ṙB(tc)) (6.9)

nB

object A

object B

v > 0relv > 0rel

v = 0rel

v < 0rel

Figure 6.1: Possible relative velocity of two objects

If vrel is positive (see Fig. 6.1), then the bodies are moving apart. If we
have correctly computed the contact point then this option is theoretically
impossible. If vrel is negative, then the bodies are approaching, and if we
do not change the object velocities immediately, then an inter-penetration
occurs. This option is known as colliding contact and a method for computing
new velocities is presented in section 6.3. If vrel is zero, the bodies are neither

3We could choose the body A as well, it is just a convention introduced by [5].
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receding, nor approaching. This situation is called a resting contact, and it
is discussed in section 6.4.

Consider that we always work up to a certain numeric precision, thus we
can not test if vrel = 0, since it will practically never be true. This must
be replaced with something like |vrel| ≤ εr. It follows that what we classify
as a resting contact, can be a small retreating or colliding contact in reality,
which introduces certain difficulties. However the colliding contact event is
quite clear since the condition is vrel < −εr.

6.3 Colliding Contact

The physical model for a colliding contact response is an impulse J , as ex-
plained in section 6.1.1. The impulse direction is given by nB(tc) and what
remains to compute is the impulse magnitude j (a scalar) so that

J = jnB(tc)

Once we have computed J , it is easy to compute the change of linear and
angular moment (section 6.1.1). Recall that we use normal nB(tc) outgoing
from the rigid body B, pointing toward the rigid body A. Therefore the
impulse acts positively on the rigid body A, and a negative impulse −J must
be applied to B due to the laws of conservation. From the new moments
we obtain the new linear and angular velocities by inverting equations (6.5)
and (6.6), as explained in the end of section 6.1.

In order to compute the impulse magnitude j we denote the pre-impulse
quantities by superscript − and the post-impulse one’s by +. The empirical
law for frictionless collisions states

v+
rel = −Cv−

rel (6.10)

where C is a restitution coefficient satisfying C ∈ 〈0, 1〉. It is connected with
the elasticity of the collision: C = 1 means perfectly bouncy collision, where
no kinetic energy is lost. On the other hand C = 0 means no bounce at all,
the maximum of the kinetic energy is transformed.

The post-impulse velocities are connected with the pre-impulse one’s by
equations

v+
A(tc) = v−

A(tc) +
jnB(tc)

mA
(6.11)

ω+
A(tc) = ω−

A(tc) + I−1
A (tc)(rA(tc) × jnB(tc)) (6.12)

where mA is the mass of the object A and IA is its inertia tensor. Recall that
IA depends on the rotation of the object, eq. (6.3), and therefore on the time
tc. In the following we omit the time variable since it is always tc.
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Plugging equations (6.11) and (6.12) into (6.7) for post- and pre-impulse
velocities we obtain

ṙ+
A = v+

A + ω+
A × rA = v−

A +
jnB

mA
+ (ω−

A + I−1
A (rA × jnB)) × rA

= ṙ−A + j

(
nB

mA
+ (I−1

A (rA × nB)) × rA

)

The same can be derived for B considering that B is object of opposite
impulse, i.e. of magnitude −j

ṙ+
B = ṙ−B − j

(
nB

mB
+ (I−1

B (rB × nB)) × rB

)

Substituting these formulas into the v+
rel expression according to equa-

tion (6.9) and using the unit length of vector nB, nB · nB = 1 we have

v+
rel = nB(ṙ+

A − ṙ+
B) = nB(ṙ−A − ṙ−B) +

j(
1

mA
+

1

mB
+ nB(I−1

A (rA × nB)) × rA) + nB(I−1
B (rB × nB)) × rB))

= v−
rel + j(

1

mA
+

1

mB
+

nB(I−1
A (rA × nB)) × rA) + nB(I−1

B (rB × nB)) × rB))

Applying the restitution law (6.10) yields

(−1 − C)v−
rel = j(

1

mA

+
1

mB

+ nB(I−1
A (rA × nB)) × rA) +

nB(I−1
B (rB × nB)) × rB))

from which we can already derive the impulse magnitude j since all the other
variables are known. The inertia tensor inversion can be efficiently computed
using equation (6.3) and realizing that

I−1 = (RIbodyR
T )−1 = RI−1

bodyR
T

The I−1
body can be computed off-line.

The impulse J can be used not only for the post-collision velocities com-
putation. If the input device supports force-feedback, we can project the
impulse to the input device 2D space and set a force on the device propor-
tional to the impulse magnitude.
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6.4 Resting Contact

As mentioned above, resting contact is a situation where the relative veloc-
ity of two bodies is negligible, i.e. |vrel| ≤ εr. Physically based treatment
of resting contact is quite difficult, as mentioned in the beginning of this
chapter. We simplify this task considerably by not accounting the friction
and by exploiting the special properties of capsuloids. Originally in [14], only
convex objects, such as one capsule, were considered. However, the capsu-
loid approximating the weapon (Fig. 5.6b) is not convex. The algorithms
for convex objects can still be used (with certain adjustments), because our
capsuloid is union of only two convex capsules.

Consider the convex objects first. Recall that in time tc the objects are
very close, but still not colliding. Because of the convexity assumption, we
can use a separation theorem from computational geometry. It claims that
if two convex sets are disjoint, then there exists a separation plane [24]. The
problem is how to find the separation plane. To do this in a mathematically
correct way, we would need the nearest points from both bodies and construct
the separation plane as in the proof of the theorem (see for example [24]).
But since the algorithm of this section is rather heuristic, it is sufficient to
approximate the separating plane, exploiting the fact that the objects are
very close to each other.

We have already computed the normal nB(tc) of object B in point rB(tc).
Assume for a while that the point rA(tc) is equal to rB(tc) in absolute coor-
dinate system. Then, since the (non-strict) separating plane exists, it must
pass through the point rB(tc). Because it must separate the bodies, the only
choice in general is the tangential plane in point rB(tc), i.e. with normal
nB(tc). This is a good approximation since the points rA(tc) and rB(tc) can
be made arbitrarily close by the algorithm in section 5.2.4.

The idea of the resting contact solution for capsules (or general convex
objects) is simple: we let the bodies move as if they were not influenced
by each other – using the zero friction assumption. A problem may occur
when the actual vrel is small but negative. In this case the objects may
even collide, which is tested dynamically as described in section 5.2. Small
inter-penetration can be prevented by process we call separation: pushing
the rigid bodies apart in the direction of the normal of the separation plane.
We need to push the capsuloid skeletons, so that their distance is at least
2Rb, using the Rb from section 5.2.5. If the original capsules distance is d, we
accomplish this by translating the object A by vector 2Rb−d

2
nB(tc), and the

object B by −2Rb−d
2

nB(tc). Note that this really gets the capsules to distance
2Rb apart, as demonstrated in Fig. 6.2.

The separation for a non-convex capsuloid is somewhat more complicated,
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Rd

b2R

a) b)

Figure 6.2: a) The resting contact situation, b) after separation to the dis-
tance 2Rb

since it is not possible to exploit the separating plane theorem. The general
non-convex objects can come into a position, from which the separation is
non-trivial (e.g. pieces of a puzzle). However, it is not a failure, if the
separation could not be executed – the objects simply stop moving and wait
until the user breaks the clinch. In the fencing, this corresponds to weapons
locked together4.

The idea of pushing the objects apart can be still used even in the non-
convex case, but the choice of the pushing direction is difficult. The exact
computation of the smallest-distance pushing direction is presented in [16],
but this approach would be swatting flies with a cannon. We settle for an
approximation of the ideal separating direction. It depends on the number
of features (blade-blade, blade-guard, guard-blade) that are in contact:

1 – the same direction as used in the convex case is a good attempt. How-
ever, it does not guarantee a successful separation because of non-
convexity.

2 – an average of the two directions is applied.

3 – a rare case indeed, indicating a weapon lock. Nevertheless, we try the
average of all the three directions.

Suppose we have determined the unit separating direction n′
B. Now it is

necessary to compute the distance s, such that the translation of object A
by s

2
n′

B and B by − s
2
n′

B makes the capsuloids distance 2Rb apart (according

4Which is really used in the historical fencing to perform some more sophisticated
actions, such as disarming the opponent.
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to the capsuloids distance definition from section 5.2.1). This is not as easy
as in the convex case.

Let D(s) denote the distance of capsuloid A shifted by sn′
B to capsuloid

B. D(s) is a continuous function, although not necessarily smooth. Note
that D(0) < 2Rb, because otherwise no separation would be necessary. If we
find an upper bound u such that D(u) > 2Rb, then we can apply a binary
search algorithm, similar to algorithm 4. This is correct, because thanks to
the continuity of D(s), there exists x ∈ (0, u) such that D(x) = 2Rb. The
property that the left margin of the interval has D(s) < 2Rb and the right
margin has D(s) > 2Rb is preserved by the invariant, so the binary search
algorithm really exits with some5 x′ such that |x′ − x| < εs, D(x) = 2Rb.
The εs > 0 is the given precision.

It remains to be clarified how one finds the upper bound u such that
D(u) > 2Rb. This can be done using a sphere that bounds the capsuliod’s
skeleton. Let cX , X ∈ {A, B}, be the center of the longer line segment of
capsuloid X, and rX half of that line’s length. The sphere with center cX and
radius rX then bounds the skeleton of capsuloid X (the smaller line segment,
corresponding to guard, also fits into this sphere). Now we push the sphere
centers cA, cB to the distance rA + rB + 2Rb. Put in a more formal way, we
compute u such that

∀v ≥ u : |cA − cB − vn′
B| > 2Rb + rA + rB

The inequality can be simplified to the quadratic function u2 +C0u+C1 > 0,
which can be efficiently solved for the unknown u (taking the maximum of
the roots).

6.5 Simulation Issues

This section could be also named ”putting it all together”. So far we have dis-
cussed how to handle single colliding or resting contact, but several questions
are still open. Note that we have to simulate the whole time period 〈t0, t1〉,
i.e. the evolution of the system from the previous to the current frame. In
order to implement the simulator, following problems must be addressed

• compute the inertia tensors of the weapon models

• estimate the velocity of the weapons

• consider more than one collision during the simulated time interval

5In some special situations there could be more x satisfying D(x) = 2Rb. The algorithm
then returns one of them.
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• animate the weapons after the colliding contact (deflection)

The moments of inertia are defined by integrals (6.1). We assume constant
density in the whole object. The integrated functions are quite simple, but
the integration domain is somewhat complex – it is the volume of the weapon.
Direct numerical integration is very slow and leads to inaccurate results.
Much more effective technique for moments computation has been described
in [27]. It exploits the divergence theorem to cast the integrals to 2D, and
then the Green’s theorem for reduction to 1D. The 1D integrals are computed
analytically, since the integrated functions are still simple.

Using the first moments, the weapon model is placed so that its center of
mass aligns with the origin of the model’s coordinate system. The weapon
position and orientation is then always expressed relative to its center of
mass6.

The estimate of both linear and angular velocity is trivial, if the objects
do not collide, because we know the positions and orientations in times t0, t1.
However, if there is a collision in time tc ∈ (t0, t1), we can not use this
formula directly, because the period (tc, t1〉 corresponds to an incorrect state
of the system. Put in another way, the movement after tc is not possible
anyway, thus the estimate would be biased. Our solution is to store the
linear and angular velocities from the previous frame, and interpolate them
with the current ones, using tc−t0

t1−t0
as the interpolation parameter. Only the

magnitudes of the velocities are interpolated this way, there is no point to
interpolate the direction (axis of rotation). Note that we do not actually
simulate the linearly accelerated movement – the interpolation is used just
to estimate the actual velocity of the objects in time tc.

The core of the simulator is function ColResp::GO. It computes tc using
the algorithms described in section 5.2. After estimating the velocities, we
determine the type of collision using the vrel from section 6.2. In the case
of colliding contact, the impulse, together with the post-impulse velocities,
is computed by function ColResp::applyImpulse, according to equations
from section 6.3. Now we try to simulate the movement of the weapons
during (tc, t1〉 using the post-collision velocities. If the dynamic CD routines
return no collision, we are done with simulating the time period 〈t0, t1〉. If the
dynamic CD report a collision, the whole cycle is repeated – next collision is
simulated. The number of collisions due to the colliding contact is bounded,
because the restitution law implies an exponential decrease of the relative
velocity. Thus, after a few iterations we eventually end up with resting

6For the deflection simulation, one could expect rotation around the point, where the
weapon is held by the hand. However, the weapon’s center of mass is a good approximation,
because the handle is near to the center of mass, and the hand grip is not firm.
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contact.
The resting contact (as well as the colliding contact with low relative ve-

locity) is resolved using the concept of separation, as presented in section 6.4.
There is the same problem as with the colliding contact – one separation may
not be enough during (tc, t1〉. The solution is a succesive separation, which
works according to algorithm 5.

Algorithm 5: Successive separation
Input: Simulated time period (tc, t1〉, object positions, orienta-
tions and velocities in tc
Output: Object positions and orientations in t1
sepPerPartes()
(1) t = tc
(2) repeat
(3) compute separation direction n′

B and distance s
(4) separate the objects
(5) ts = t + f(s)
(6) if ts ≥ t1 then return
(7) simulate the motion during 〈ts, t1〉 with dynamic CD
(8) t = first collision during 〈ts, t1〉
(9) until no collision during 〈ts, t1〉

The function f(s), used in the algorithm, can be interpreted as the time
for the separation to distance s. It has been introduced in order to bound
the number of iterations of algorithm 5. A simple linear function can do
this job. The algorithm 5 is implemented in ColResp::separatePerPartes,
which uses function ColResp::separate for the actual separation.

6.5.1 Deflecting Weapon

Suppose we have successfully simulated the movement of the weapon during
〈t0, t1〉. However, this is not sufficient: the impulse should influence the
movement of the weapon for a longer period of time (the t1 − t0 is usually
less than 0.1 second). When the weapon is hit hardly by the opponents
weapon7, the fencer looses control of his own weapon for a short amount of
time, because of impulse delivered by the other weapon.

The precise way would be to simulate the dynamics of the human arm,
but we did not investigate this possibility because of its complexity – already
the kinematics of human arm (section 4.2) is not easy. We deal with this

7action known as batuta aiming to deflect the opponent’s weapon
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problem in two steps. First, we restrict the movement of the weapon itself,
so that it does not fly away. Second, we simulate the process of re-gaining
the control of the weapon.

The restriction of the weapon movement due to the collision is based
on the angular velocity – it influences the deflection more than the linear
velocity. The maximal deflection angle is computed using the post-collision
angular velocity by function g, that was tuned empirically

g(|ω|) =

(
1 − 1

|ω|
6

+ 1

)
π

3

Obviously, the deflection angle converges to the maximal value, that was
set to π/3, as the angular velocity approaches infinity. From the angle is
determined the time t, which the angular velocity ω must act to achieve
angle g(|ω|). The position and orientation corresponding to the maximal
deflection (homogeneous matrix maxDef) is then computed using time t. This
is implemented in function ColResp::compDeflection. The position and
orientation corresponding to no deflection (homogeneous matrix noDef) is
also computed there, but it is trivial.

Another important variables are tsc (timeSinceCol), the time since the
collision event, and tun (unControlTime), the total time when the weapon is
not controlled only by the hand, i.e. when the fencer is catching the weapon.
The resulting position and orientation R of the weapon in given time ta is
then computed as SLERP of noDef and maxDef with interpolation parameter
ta−tsc

tun
.

In some situations, the SLERP from the noDef to maxDef placements can
animate the weapon through the body of the avatar, that holds this weapon.
This is not desirable, although it is not completely unnatural8. We can avoid
some of these situations by considering the alternative path of the SLERP,
as introduced in section 2.6. If the original path is found to be colliding with
the humanoid body (which is for these purposes approximated by a cylinder),
the other way is examined. If it also collides, then the original, shorter one,
is chosen.

The influence of the actual hand (sword-holder) position and orientation
must be also accounted, because it affects the direction of the caught weapon.
Let us denote the actual sword holder homogeneous matrix by S. The re-
sulting sword-holder position and orientation is then computed by SLERP
of homogeneous matrices R and S, with interpolation parameter ta−tsc

tun
. This

stuff is implemented in function ColResp::applyDisplacements.

8Even in real fencing the fencer can be accidentaly injured by his own weapon.
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When we compute the final position and orientation of the sword-holder
joint, there is yet one more problem concerning the inverse kinematics of the
human arm (section 4.2). Recall that we used sampled elbow positions for
the key postures of the sword-holder joint. Unfortunately, we can not use the
sampled elbow positions when simulating the deflected weapon, because the
weapon can move arbitrarily after collision (with all 6 DOFs). The solution
is to use the comfortability optimization for the swivel angle determination,
as described in section 4.2.2. The most comfortable swivel angle θno is com-
puted for the noDef position, and θmax for the maxDef. Elbow positions
corresponding to θno, θmax are interpolated to produce plausible in-between
swivel angles. The switch to the optimized swivel angle can be discontinuous,
but this only emphasizes the collision event.

6.5.2 Performance and Conclusion

As presented in section 5.2, a dynamic CD test for two capsuloids is quite
fast. However, during one simulation step (one call of ColResp::GO), more
than one dynamic CD query may be necessary. The average running time of
one iteration of function ColResp::GO, simulating both weapons, is 3.83ms.
However, there are big fluctuations: the maximal time was 40ms and minimal
0.39ms. This is apparent – the collision free events are processed quickly, but
some complicated collisions involving several colliding and resting contacts
can be rather lengthy. Nevertheless, even the peak time is still admissible
for real-time simulation.

The dynamics of the complex structure of the human arm holding weapon
has been considerably simplified, in order to be able to solve it in an interac-
tive application. The drawbacks can be observed seldom: the already men-
tioned penetration of the fencer’s body with his own weapon, unnaturally
loose hold of the weapon, etc. In spite of this, we believe that the applied
algorithms are adequate for the virtual fencing application. Undoubtedly, a
lot of work can be done in realistic dynamics simulation in future.



Chapter 7

Application Implementation

In the previous sections, we attempted to describe certain general topics with
only a sketch of the actual implementation. Although these topics can be
interesting by itself, the important fact is that they cooperate together. This
chapter describes certain software aspects of the application’s design, explor-
ing some new features. The material of this chapter is of course original.

To document all the classes and functions of the application, another book
would be necessary. Thus, we have selected only the most interesting parts.
Some other features are described in the user’s handbook, appendix A.

7.1 Networking

Since this is a computer graphics thesis, the networking support has not
been the primary goal. However the support of more than one computer was
enforced, because not every computer has two 2D input devices. Originally,
we intended a peer to peer network architecture. Later we found that this
is not suitable, because of the collision response. The collision response
can not be computed by each participant individually, unless a sophisticated
synchronization would be applied. The client-server model appears to be
more appropriate. In this model, the server does all the animation, collision
detection and response. The client is only a terminal with little intelligence,
which can only display the current state of the simulation and send to server
the user events.

More than two clients can be connected to the server, but only two can
control the avatars. The others can be only in the viewing mode, acting
as additional cameras (serving for example to the real judge). Prior to any
networking design is the question of the communication protocol. The basic
communication entity is a message. Several types of messages are supported
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by the application, for example avatar’s posture, triangle hit, user input
event etc. The list of messages can be found in file Communication.h. We
have concluded that the data should be transmitted in the most confined
form, since the network layers are slow. The avatar’s posture is encoded very
economically in class CModelState. It contains the position and orientation
of the sword holder, and parameters of the legs animation (type of step,
time).

The server is initialized by function CServerSocket::startServer.
The incoming client connection is signaled by call-back function
CServerSocket::OnAccept, which registers the new client (if there is room
for it) and sends him the initialization message. The message, for example
that one informing the client about a new posture of the avatars, is send to
all clients by CServerSocket::sendAllModelState. The low-level TCP/IP
functionality is inherited from standard MFC class CAsyncSocket.

The actual endpoint of the communication pipe represents class
CCommSocket, which is also derived from CAsyncSocket. It is used stan-
dalone on the client’s side, and also as a member of CServerSocket. The
received message is handled by call-back function CCommSocket::OnReceive,
which buffers the incoming message, and when it is completed, ensures its
processing. For example, the mouse event message (sent by a client) is dis-
patched to the appropriate ActionMID object on the server side. The client
is initialized by CCommSocket::startClient, which also tries to connect to
a given server. A message, for example the user input event message, is sent
to the server by function CCommSocket::sendInputEvent.

The application has strong demands on the quality of the network con-
nection. The very important factor is the network latency, which determines
the delay of the network layer. Consider that if the user on the client machine
moves the mouse, the message must be sent to server. The server computes
the inverse kinematics, collision detection and eventually response and sends
back the state of the models. Only after the client receives this message, it
can display the result to the user. Thus only fast LAN networks are admis-
sible. However, the use of extra input devices instead of the network is still
recommended.

On the other hand, the network can be sometimes advantageous. Imagine
we have machine A with strong CPU and two others (B,C) with slower CPU,
but fast graphics. Then the server can run on machine A, performing the
computations and letting the client machines B,C to draw the results.
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7.2 Operation Modes

We have already touched the operation modes in section 7.1 a little bit:
the client and server mode. In fact, the application provides more modes,
enabling additional functionality:

• simulation mode – the default. It is the main part of the program: the
actual simulation of fencing between two avatars. It can act also as
a server, if the networking is set up. The simulation is saved to file
sequence.sav, so that it is possible to replay it.

• replay mode – loads and replays a saved sequence. This can be used
to analyze the fencing mistakes, as well as the program bugs.

• animtest mode – only one fencer is displayed and controlled. The user
can test the avatar’s behavior and skin deformation without interfering
with another virtual humanoid.

• viewer mode – client. This mode is automatically entered after a client
has established connection with the server. It displays the state of the
models transmitted by server, and sends the input events to the server.

Each of these modes is implemented by a class inherited from the base
class of all modes, CMainMode. Each mode must provide some basic function-
ality, for example displaying the scene by function CMainMode::draw. The
main computations (e.g. for the simulation mode it is the inverse kinemat-
ics, collision detection and response) are done in function CMainMode::play,
which is executed when the idle state has been signaled, i.e. there are no
messages from the operating system in the queue. There is no fixed FPS
rate.

The saving of the simulation progress, as mentioned above, is accom-
plished by class AnimSaver. Each time its function AnimSaver::saveState

is called, it stores the current state of both virtual humanoid models – the
joint transformations, hit triangles etc. For replay is used class AnimLoader,
which first loads the sequence file into the memory. Then it can retrieve the
model’s state in arbitrary saved time by function AnimLoader::loadRecord.
Please note, that there are saved some additional frames in the sequence,
in order to simplify debugging. During the replay, these frames are distin-
guished by different color of the background.

The modes can be switched dynamically, by simply destructing the
old mode object and creating a new one. This does the function
CChildView::initMode.
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7.3 Multiple Cameras

The basic framework of a MFC application contains two window classes:
CMainFrame and CChildView. The CChildView actually occupies some part
of the CMainFrame window. In our application, more windows are sup-
ported, in order to enable multiple independent cameras viewing the virtual
environment. We implemented this by additional window objects of type
CCameraView. During the main loop in the CChildView class, the array of
active cameras is scanned, and each of them is instructed to redisplay.

The object of type CCameraView encapsulates the interface to the ac-
tual OpenGL displaying. First, it initializes the OpenGL rendering con-
text by CCameraView::InitRendering. The main drawing is performed by
CCameraView::DrawGLScene. This function sets up the viewing transforma-
tions, depending on the actual settings of the camera, and then calls the draw
function of the current operation mode (a virtual function in CMainMode).

There is a lot of options in the viewing transformation settings. They are
described in the user handbook, appendix A.

7.4 Virtual Humanoids

As already mentioned in section 3.1, the virtual humanoid’s skeleton and
skin is represented by class Model. However, we need a higher-level control
of the virtual fencer – this presentes the class FencerModel. This class en-
capsulates the virtual humanoid model, together with its weapon model (also
represented by class Model) and k-DOPs hierarchy for the purposes of col-
lision detection. The class FencerModel offers only a little functionality by
itself. Somewhat more interesting are their descendant classes RemoteModel

and LocalModel.

The LocalModel class represents a fencer model, which is controlled by
the local machine, possibly acting as a server. Besides the fencer model itself,
this class also contains the inverse kinematics class IKAN, keyboard input
class KeyboardInputDevice, and 2D input device ActionMID. The function
LocalModel::updateModel does the virtual fencer’s animation: it checks
the current state of the input devices, calls the weapon deflection routine
(which simulates the collision reaction, see section 6.5.1). It also calls the
inverse kinematics for the hand, and the key frame interpolation for the legs.
Finally, it propagates the new joint transformations to the whole skeleton by
Model::setFinalMatrices.

The class RemoteModel represents model, which is controlled from the
client, i.e. the actual animation and simulation is executed on a remote
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machine. Recall that only a position and orientation of the sword-holder,
together with the current time of the legs animation in transmitted. The
RemoteModel has to reconstruct the avatars posture from this values, us-
ing inverse kinematics and key frame interpolation. This is implemented in
function RemoteModel::changedModelState.



Appendix A

User Handbook

The virtual fencing application is, by its specification, an experimental pro-
gram. It has no on-line help, and the user-friendliness was not one of the
primary objectives. This appendix may help to overcome this problem.

The application needs not to be installed, but please check the hardware
and software requirements from section 1.3. The file gl1.exe should not
be executed from the CD, because the simulation is recorded in the actual
directory. At startup, the program opens one camera window ”Camera 0”,
and the main control window ”gl1”.

A.1 Main Control Window

The menu of the main control window is an entry point to the majority
of program functions. The purpose of this window’s fields is sketched in
Fig. A.1. The unlabeled fields are intended for debugging purposes only.

Note that some controls can be used only in certain mode, for example
the replay buttons and slider bar are useful only when the replay mode is
active.

The camera window opened at startup can be closed, and the simulation
is still performed – just the results are not displayed (it can be useful in the
server mode). The main menu commands are following

• Main

– New Camera – creates new camera window. Multiple indepen-
dent cameras can be active at once.

– Start Judge – starts an automatic judge. The automatic judge
displays its messages in each camera window. Its first message is
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the main menu

TCP/IP port
host IP address

current FPS

apply subdivision

transparency

replay controller
replay: one step
forward

use subdivision?
applied subdivision

replay: one step
backward

Figure A.1: The main control window

”En Guard”, which means that the judge waits until both players
go to guard position. Only after that the fencing can start.

– Go – switches to the simulation mode (the default).

– Replay – switches to the replay mode. An open file dialog ap-
pears, allowing to select the sequence file. The default one is
sequence.sav.

– AnimTest – switches to the animtest mode.

– Viewer (client) – switches to the viewer mode. However, the
user should not use this option directly, because without a con-
nection there is nothing to display. This mode is automatically
entered when a client connection is established.

– Exit

• Keyboard – opens the key selection dialog for the legs movements.

• Input 0 – input devices for avatar 0. The selected input device for
avatar 0 is checked. The contents of this pop-up changes dynamically.
During initialization of the application, the list of all attached joysticks
is appended to this menu. If a joystick does not appear in this menu,
then there is some problem with the device or DirectX. The dialog
of joystick attack and parry buttons assignment (corresponding to left
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and right mouse buttons) is opened by another click on the already
selected joystick.

Besides the joysticks, there are always two other possible input devices:
Nothing and Mouse. The Nothing input device simply generates no
input events – it is intended mainly for testing purposes. Note that both
avatars can be controlled by the same input device (useful for testing
in one person).

When the application is in the server mode and a new client connects,
its IP address and port number are added to the list of input devices.
If this is selected as the input device for avatar 0, it means that avatar
0 is controlled remotely by the appropriate client.

• Input 1 – the same as input 0, but for avatar 1. The selected input
device for avatar 1 is checked here.

• Network

– Listen (server) – initializes the servers and starts listening on
given port. Switches to the simulation mode.

– Connect (client) – connects to the server on given IP address
and port. If the connection is successfull, switches to the viewer
mode.

– Close connection

• Help – only a brief about box

A.2 Camera Window

As mentioned above, there can be active more camera windows in one in-
stance of the application. Each of them can be configured independently
using the camera window’s menu.

• Main

– Fullscreen – switches this camera to fullscreen mode.

– Close

• View – defines where the camera is located

– Examine – the view of both avatars. Useful mainly for replay.
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– Avatar 0 – view from avatar’s 0 head. Turns on avatar’s 0 trans-
parency.

– Avatar 1 – the same for avatar 1.

– Transparent avatar 0 – switches the transparency of avatar 0.
The opacity is controlled using a slider in the main control window.

– Transparent avatar 1 – the same for avatar 1.

• Look At – determines how the camera is directed. Meaningful only if
either avatar 0 or avatar 1 view is enabled, because it specifies the part
of the opponent’s body to which the camera is aimed.

– Root – the pelvis

– Head

– Hand

– Elbow

– Shoulder

For every combination of View and Look At items, it is possible to
fine-tune the camera’s position and orientation (for example if you wish to
aim the camera slightly above the root). When holding the Shift key and
dragging the mouse, the camera translates. Holding Ctrl and simultaneously
moving the mouse rotates the camera.

A.3 Virtual Fencer Control

It is not so easy to learn the virtual fencing, which is all right, because it is
not easy to learn the real fencing as well.

First of all, it is important to enter the guard position. When the virtual
fencer is not in guard, it can not do any step. If using judge, it automatically
moves the fencers to the starting positions after hit. The guard then have to
be entered again.

An ideal cut has three phases. The preparation, which enables the weapon
to gain speed during the attack itself. Please note that it is necessary to swing
the weapon up to the bounds of the 2D input device range – unless a cut will
not be allowed, as discussed in section 4.3. After a succesfull preparation,
the attack button (left button on the mouse) can be pressed, proceeding to
the main phase of the cut. When holding the attack button, move the input
device in the direction of the attack (just entering the cut position is not so
effective). After performing the cut, release the attack button, or wait some
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time, until the cut finishes automatically and the swing position is restored.
It is also recommended to accompany the cut with a lunge, or at least with
step forward. One can train a classic fencing principle, saying that the hand
movement should precede the legs movement.

The parry positions can be entered anywhere, unlike the cuts, and it is
also possible to stay in a parry for an unlimited amount of time. Because
of high freedom of attack movements, it is difficult to parry, but it can be
trained. The crucial thing is to move the weapon in direction against the
opponent’s attacking weapon when entering the parry position (holding the
right mouse button). If the opponent is approaching, it is recommended to
perform a step back prior to the actual defense (sometimes, it happens that
the opponent does not reach – this is a perfect situation for counter attack).



Appendix B

Fencing Terminology

There is a lot of fencing styles in the world, as summarized in section 1.2.
Each of them has slightly different terminology, although the basic principles
are often the same. For the purposes of this work, we have selected one of
the most popular terms, which are explained below.

• cut – an attack by the blade of the weapon (swept volume of the weapon
is a plane)

• guard – basic posture of the body; an entry point for all legs movements

• hit by the point – an attack by the point of the weapon (swept volume
of the weapon is a line)

• lunge – the legs routine used to quickly advance towards the opponent

• parry – defense action

• prime – type of a parry, see Fig. 1.1

• quarte – type of a parry, see Fig. 1.1

• quinte – type of a parry, see Fig. 1.1

• second – type of a parry, see Fig. 1.1

• sixte – type of a parry, see Fig. 1.1

• stand – a non-combat position of the body postured before the guard

• step forward – a step beginning and ending in guard

• step back – a step beginning and ending in guard

• tierce – type of a parry, see Fig. 1.1
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Structure of the CD

• DATA – key frame positions and orientations of the weapon, discussed
in section 4.2.1

• EXE – the application itself

– DATA – data needed by the application: the weapon models, legs
animations, textures etc.

– gl1.exe – the main program

• SOFTWARE

– CFX Setup.exe – CharacterFX, a shareware virtual humanoid
animation software

– MS3D Setup.exe – MilkShape3D, another shareware program
for virtual humanoid design

• SRC – source code. Each source file describes itself in the header.

• readme.txt – brief info about contents of the CD

• vf.pdf – the text of the diploma thesis
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