
9

Stabilizing Integrators for Real-Time Physics

DIMITAR DINEV, University of Utah

TIANTIAN LIU, University of Pennsylvania

LADISLAV KAVAN, University of Utah

We present a new time integration method featuring excellent stability and

energy conservation properties, making it particularly suitable for real-

time physics. The commonly used backward Euler method is stable but

introduces artificial damping. Methods such as implicit midpoint do not

suffer from artificial damping but are unstable in many common simula-

tion scenarios. We propose an algorithm that blends between the implicit

midpoint and forward/backward Euler integrators such that the resulting

simulation is stable while introducing only minimal artificial damping. We

achieve this by tracking the total energy of the simulated system, taking

into account energy-changing events: damping and forcing. To facilitate

real-time simulations, we propose a local/global solver, similar to Projec-

tive Dynamics, as an alternative to Newton’s method. Compared to the

original Projective Dynamics, which is derived from backward Euler, our

final method introduces much less numerical damping at the cost of min-

imal computing overhead. Stability guarantees of our method are derived

from the stability of backward Euler, whose stability is a widely accepted

empirical fact. However, to our knowledge, theoretical guarantees have so

far only been proven for linear ODEs. We provide preliminary theoreti-

cal results proving the stability of backward Euler also for certain cases of

nonlinear potential functions.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Real-time, physics-based animation,

stability, energy conservation

ACM Reference format:

Dimitar Dinev, Tiantian Liu, and Ladislav Kavan. 2018. Stabilizing Integra-

tors for Real-Time Physics. ACM Trans. Graph. 37, 1, Article 9 (January

2018), 19 pages.

https://doi.org/10.1145/3153420

1 INTRODUCTION

Numerical time integration of the equations of motion has been

a classical problem in engineering since the seminal work of Eu-

ler. Numerical integration is also a key ingredient of physics-based

animation. However, in computer graphics, we do not necessar-

ily strive for accurate numerical solutions of differential equa-

tions but rather for physically plausible results. Simply put, the

resulting motion needs to look right, depending on the needs of

a particular application. The discrepancy between accuracy and

This material was based on work supported by the National Science Foundation un-
der grants IIS-1617172 and IIS-1622360. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.
Authors’ addresses: D. Dinev and L. Kavan, 50 S. Central Campus Drive, University
of Utah, Salt Lake City, UT 84112-9205; emails: {ddinev, ladislav}@cs.utah.edu; T. Liu,
Moore 103, 3330 Walnut Street, Philadelphia, PA 19104; email: ltt1598@gmail.com.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
© 2018 ACM 0730-0301/2018/01-ART9 $15.00
https://doi.org/10.1145/3153420

plausibility is especially pronounced in real-time applications,

such as computer games or surgery simulators. Interactive appli-

cations need to refresh the screen at fixed time intervals, typically

33ms or even less, to create the illusion of smooth motion. In real-

time simulations, we need to advance the state of the virtual world

by 33ms while using strictly less than 33ms of computing time on

a given hardware (CPU/GPU). Games or training simulators are

complex software systems composed of many subsystems (render-

ing, networking, human-computer interaction, etc.), and therefore

the time budget for physics will be typically only a small frac-

tion of the total frame time (33ms). Historically, rigid body physics

has been the first success story of real-time simulations; each rigid

body has only six degrees of freedom. The situation is more com-

plicated with deformable objects, such as biological soft tissues,

which require many more degrees of freedom and, consequently,

much more computation.

Adaptive timestepping methods with error control are popular

in scientific computing. These methods are necessary in engineer-

ing applications, such as when designing an airplane or nuclear

reactor, where simulation accuracy may be critical. Unfortunately,

adaptive timestepping is incompatible with the requirements of

real-time applications, where we have only a limited computing

budget per frame. Despite progress in parallel-in-time methods,

timestepping is a fundamentally sequential process, difficult to

parallelize. Real-time simulations therefore have to compromise

accuracy to retain interactivity. However, the goal is to do this

gracefully and retain physical plausibility by keeping the in-

evitable errors under control. The most striking manifestation of

inaccuracy is the case of instabilities (“explosions”), where small

discretization errors compound and the discrete approximation

departs dramatically from the true continuous solution. The clas-

sical way of avoiding such catastrophic failures is to reduce the

timestep. Unfortunately, this is not an option in real-time physics,

which needs to operate within a limited computing budget.

An important feature of numerical time integrators is their con-

servation properties (i.e., which features of the exact continuous

solution are mimicked by the numerical integrator). Nondissipa-

tive mechanical systems conserve many first integrals, notably

the Hamiltonian (i.e., total energy) and momentum (both angular

and linear), as well as the symplectic form of the system. Previ-

ous work can be broadly classified in two main branches: energy-

momentum conserving methods and symplectic methods. Energy-

momentum methods [48] try to exactly preserve the energy and

momenta; however, this does not always result in plausible simu-

lations, as we explain in Section 2. Symplectic integrators [52] fo-

cus on conserving the symplectic form, which implies momentum

conservation and also good energy behavior—the total energy os-

cillates around the correct value. Unfortunately, with stiff systems

and fixed timesteps, these oscillations can be extreme and result

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.

https://doi.org/10.1145/3153420
mailto:Permissions@acm.org
https://doi.org/10.1145/3153420


9:2 • D. Dinev et al.

in visual “instabilities” or “explosions” (see Section 3 for a didactic

example). There are various definitions of stability in the literature,

but an informal understanding is that simulations dramatically de-

part from the true solution. Since neither symplectic methods nor

energy-momentum methods can guarantee visual plausibility for

large timesteps, most real-time physics-based simulators continue

to rely on backward Euler time integration, despite its numeri-

cal damping. Higher-order backward methods, such as BDF2, re-

duce this damping, but the remaining numerical dissipation is still

obvious.

In this article, we propose a novel time integration method

for real-time simulation of deformable objects that inherits the

stability of backward Euler but does not suffer from artificial

numerical damping. We achieve this by starting with the im-

plicit midpoint integrator. Implicit midpoint does not introduce

artificial damping, but unfortunately the energy oscillations

can be dramatic and produce visually catastrophic results. We

observe that these oscillations can be tamed by adding only a

small contribution of backward Euler integration. Similarly, in

cases where the initial implicit midpoint solve underestimates

the total energy, we can correct this by blending with forward

Euler. The key is to determine the right amount of blending

between implicit midpoint and forward/backward Euler. We do

this by tracking the total energy of our simulated system, taking

account of energy-changing events such as damping (energy

dissipation) or forcing (energy injection). When we detect that

implicit midpoint overshoots the total energy (indicating that

future timesteps could develop instabilities), we calculate which

blend between implicit midpoint and backward Euler will result in

an “as-energy-conserving-as-possible” state. Usually, only a very

small contribution of backward Euler is sufficient to stabilize the

simulation while introducing only a minimal amount of numerical

damping. Similarly, we use forward Euler blending when implicit

midpoint loses energy. This is not critical for guaranteeing stability

but it helps to improve the visual quality of the resulting motion.

Our method derives its stability from backward Euler. Accu-

rately solved backward Euler is known to be stable in practice,

even with complicated nonlinear elastic potentials. Insufficiently

accurate numerical solutions of the backward Euler equations can

introduce instabilities [4]; however, these instabilities are avoid-

able by iterating Newton’s method until convergence, resulting in

highly accurate backward Euler solutions. The stability of (exact)

backward Euler is well studied in case of quadratic potentials, cor-

responding to linear ODEs [2]. However, nonlinear deformation

energies such as mass-spring systems or corotated elasticity are

common in graphics applications. To our knowledge, there is no

backward Euler stability proof for such nonlinear potentials. In

the appendix, we provide a backward Euler stability proof for con-

vex potential functions. Further in the appendix, we discuss the

challenges of generalizing this proof to nonconvex potentials and

present a stability proof for a simple yet nonconvex test poten-

tial (two connected springs). Even though this does not settle the

discussion of backward Euler stability with nonlinear potentials,

it is our hope that our results will inspire future research in this

direction.

To obtain accurate solutions of backward Euler, we have to it-

erate Newton’s method until convergence, which is impractically

slow in real-time simulations. Therefore, a special class of quasi-

Newton methods known as Projective Dynamics [7, 33], based on

local/global optimization, has been developed as a computation-

ally efficient alternative to Newton’s method. Projective Dynamics

is derived from backward Euler integration and therefore inherits

the undesired numerical damping. In this article, we also present a

local/global acceleration for implicit midpoint and its stabilization

via forward/backward Euler to facilitate high-quality real-time an-

imations. Even though local/global solves are typically not iterated

until convergence, our experiments demonstrate that we still ob-

tain stable simulations while avoiding numerical damping. The ad-

ditional computing overhead over standard Projective Dynamics is

small, typically on the order of 20% to 30% of extra computing time.

In summary, we present three main contributions: (1) stabiliza-

tion of implicit midpoint via energy tracking and blending with

forward/backward Euler, (2) a fast local/global numerical proce-

dure for implicit midpoint, and (3) proofs of backward Euler sta-

bility for certain types of nonlinear potential functions. The first

two contributions lead to a fast integrator with good conservation

properties, and the third provides some theoretical insights into its

stability guarantees. It is our hope that our method will be useful

especially in real-time simulations with immediate applications,

such as in computer games or training simulators.

2 RELATED WORK

Integration in physics-based animation. The dramatic insta-

bilities of forward Euler have been observed since in the early days

of physics-based animation. Pioneering work from the 1980s ap-

plied backward Euler integration [54–56] to remedy these issues.

Subsequent works explored explicit methods such as the popular

Runge-Kutta family, featuring simpler implementation and faster

runtime, until Baraff and Witkin [4] demonstrated the advantages

of approximately solving backward Euler, using a method analo-

gous to one iteration of Newton’s method without a line search.

Despite the fact that the numerical damping of backward Euler is

a well-known issue [11, 52], many physics-based systems continue

to use this method. Alternative methods such as BDF2 [6, 11] re-

duce the numerical damping but do not eliminate it completely.

Symplectic methods, including the Newmark family of integrators

[49] (which for γ = 1/2 is symplectic even though not in the tradi-

tional sense [61]), do not exhibit the undesired numerical dissipa-

tion. Unfortunately, this good behavior applies only for sufficiently

small timesteps, where “sufficiently” depends on the parameters

of the simulated system [18, 49]. At larger timesteps, these oscil-

lations can be very large. One solution is to adaptively change the

timestep [25]. Asynchronous integrators [31, 57] offer even more

flexibility by allowing us to vary the timestep sizes spatially [1, 21,

62]. Instead of varying the timestep, one could also use adaptive

remeshing [45]. However, these methods are not suitable for real-

time physics, where we cannot afford fluctuations in computing

time.

Stability. Stability of numerical integrators is theoretically well

understood in the context of linear ODEs, where the problem es-

sentially reduces to eigenanalysis [2, 23]. However, the situation

is much more complicated with nonlinear ODEs which are com-

mon in physics-based animation. As an illustration of this fact,

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:3

note that the implicit midpoint method (a symplectic integrator) is

unconditionally stable when applied to linear ODEs—for instance,

the stability of the numerical approximation using implicit mid-

point is equivalent to the stability of the true continuous solution

regardless of the size of the timestep. However, this result does not

hold with nonlinear ODEs where implicit midpoint becomes only

conditionally stable [18, 28]. Previous work in physics-based ani-

mation cautions against the instabilities of symplectic schemes [26,

49]. Numerical instabilities can be cured by reducing the timestep

size, but unfortunately this is not possible in real-time applications

that need to operate under strict computing limits.

Another way of analyzing the stability of numerical integrators

is by observing their energy behavior. For example, forward Euler

causes unbounded increases in the total energy during the course

of a simulation, manifesting as “explosions.” In this article, we con-

sider a simulation stable if the total energy (the Hamiltonian) is

bounded over an arbitrary number of integrator steps, assuming

that the potential is bounded from below (see Appendix B for a

more formal discussion).

Enforcing energy conservation. Unstable simulations are char-

acterized by the total energy dramatically departing from its true

value. A logical way to avoid this problem is by explicitly enforc-

ing constraints on total energy. This can be implemented either as

a postprocessing (projection) step after running an arbitrary inte-

grator [29, 48, 53] or by imposing an energy-conserving constraint

using Lagrange multipliers [22]. Even though enforcing energy

conservation can help in some cases, there are no guarantees of

improved accuracy. It has been demonstrated that enforcing en-

ergy conservation can lead to less accurate results [19]. This may

seem counterintuitive; after all, the exact continuous solutions of

Hamiltonian systems exactly conserve energy, so one could ex-

pect that enforcing this constraint would lead to better results.

Unfortunately, this is not always the case, as numerical schemes

inevitably deviate from the true continuous solution due to dis-

cretization errors. Strictly enforcing some aspects of the ideal con-

tinuous solution is dangerous because we may destroy other de-

sirable properties, such as symplecticity. For example, if numerical

error is concentrated at one part of the simulated object, the en-

ergy conservation mechanism can nonphysically “teleport” energy

to remote parts of the object, which can lead to unrealistic motion

(often manifesting itself as unnatural oscillations). Another caveat

is that stability is not guaranteed with projection-type methods

[48, 53], as kinetic energy cannot be decreased below zero. La-

grange multiplier approaches guarantee stability with arbitrarily

large timesteps [22] but do not guarantee accuracy. Figure 1 shows

a simple mass-spring system cloth falling under gravity with en-

ergy conservation enforced using Lagrange multipliers [22]. Even

though the energy is conserved perfectly, the simulation is not

visually plausible—the cloth gets “stuck” in one position and the in-

dividual elements begin to oscillate in place. This is because New-

ton’s method arrives at a local minimum that satisfies the energy-

conserving constraint but does not correspond to plausible motion.

Symplectic methods. Flows of mechanical systems without dis-

sipation (Hamiltonian systems) exactly conserve not only energy

and momenta but also the symplectic form [14]. Numerical inte-

grators that conserve the symplectic form are called symplectic in-

Fig. 1. A mass-spring cloth model with gravity, with energy conservation

enforced using the method of Lagrange multipliers as described in Huges

et al. [22] (top) and the corresponding energy graph (bottom). Although

the energy is perfectly conserved, the resulting motion gets “stuck,” re-

sulting in a very poor animation (see the accompanying video).

tegrators. Symplectic integrators can be elegantly derived by dis-

cretizing the principle of least action [20, 52, 60]. Using backward

error analysis, it is possible to show that symplectic integrators

exhibit good long-time energy behavior [20]; in particular, the

energy oscillates about its true value. However, this is true only

with sufficiently small timesteps; otherwise, symplectic integra-

tors (both explicit and implicit ones) can oscillate dramatically

[3, 28], or even diverge. One can attempt to correct this via en-

ergy preservation as discussed in the previous paragraph. Unfor-

tunately, there are known theoretical limitations—fixed timestep

methods cannot have all three of the following properties: (1) sym-

plecticity, (2) energy conservation, and (3) momentum conserva-

tion [63]. It is possible to achieve all three with adaptive timestep-

ping [25]. However, as discussed previously, adaptive timestepping

does not meet the needs of real-time simulations. Recently, there

has been renewed interest in exponential integrators that com-

bine analytical solutions of the linear part of the ODEs with nu-

merical solutions for the nonlinear residual [39]. Exponential in-

tegrators are computationally efficient, robust, and well suited for

applications such as molecular dynamics [38]. However, just like

with other symplectic schemes, stability is not guaranteed, which

is problematic in real-time simulations where there is no “second

chance” to rerun the simulation in case of instability.

Generalized-α methods. Good energy behavior is exhibited also

by methods such as the well-known Newmark family of algorithms

[46]. More general schemes, such as the generalized alpha method,

have been developed [12] and applied to computer graphics [50].

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:4 • D. Dinev et al.

These integration methods provide several parameters. Kane [24]

showed that the Newmark-β method is symplectic with the com-

mon setting β = 1/4,γ = 1/2, even though not in the traditional

sense of the canonical symplectic form. Unfortunately, similarly

to the symplectic methods discussed earlier, with a fixed timestep

there is no guarantee of visually plausible results.

Position-based methods. Position-based dynamics [43] is a

physics-based simulation approach that specifically caters to the

needs of real-time applications such as computer games. Closely

related techniques have been followed in the Nucleus solver [51].

Position-based methods have been extended with more advanced

solvers [27, 40, 59], finite element models [5, 41], fluid simulation

[35], and a unified simulator supporting multiple phases of mat-

ter [36]. As pointed out by Liu [32], position-based dynamics can

be derived from backward Euler integration (BDF1) and therefore

inherits its artificial numerical damping. It is possible to upgrade

position-based dynamics to BDF2 [6]. This helps, but it does not

completely eliminate the undesired numerical dissipation. BDF2

can be replaced with, for example, implicit midpoint or another

implicit symplectic scheme that avoids numerical damping, but

this compromises stability. Real-time applications cannot risk in-

stability, and therefore current systems accept the “lesser evil” of

uncontrollable numerical damping.

Projective Dynamics. Backward Euler is often used for real-time

applications due to its stability. Newton’s method is the classic

method for computing accurate solutions to optimization prob-

lems and is typically used to compute the solution to backward

Euler in real-time animation. Unfortunately, it can be slow because

the Hessian matrix changes at every iteration. In real-time appli-

cations, accuracy is usually a secondary concern to visual plausi-

bility. To remedy these problems and provide an integration tech-

nique suitable for real-time applications, Projective Dynamics, in-

troduced by Bouaziz et al. [7], provides a fast method for solving

backward Euler that trades accuracy for speed while providing sta-

bility with fixed timesteps. Projective Dynamics has been further

accelerated by advanced numerical techniques [58] and extended

to more general materials [33, 44]. However, all of these methods

are still based on backward Euler and inherit its artificial damping

properties.

3 BACKGROUND

Forward Euler. Forward Euler (sometimes called explicit Euler)

uses only the current state to update the next state; it is an explicit

method. The update rules are very simple:

xn+1 = xn + hvn (1)

vn+1 = vn + hM−1 f (xn ), (2)

where xn+1 and vn+1 are the positions and velocities at the next

state, xn and vn are the positions and velocities at the current

state, M is the mass matrix, h is the timestep, and f (xn ) is the

net force evaluated at xn . Unfortunately, this scheme is not very

robust, unless the time step is very small. Even though using only

the current state to estimate the next state is straightforward

and intuitive, it typically results in an overestimation of the

total energy at every timestep. In Appendix A, we prove that for

convex potential functions, forward Euler cannot decrease the

total energy of the system. With larger timesteps, there are often

significant increases of the total energy, leading to the commonly

observed instabilities (or “explosions”). The analysis is more com-

plicated for nonconvex potentials, as we discuss in Appendix C.

Backward Euler. Whereas forward Euler uses the current state to

compute the next state, backward Euler uses the next state, xn+1

and vn+1. Since we no longer have closed-form formulas for calcu-

lating the next state, we have to solve a system of (typically non-

linear) equations to obtain xn+1 and vn+1:

xn+1 = xn + hvn+1 (3)

vn+1 = vn + hM−1 f (xn+1). (4)

This is more computationally intensive than explicit methods, but

the advantage is that the usual Courant-Friedrichs-Lewy (CFL)

limitations no longer apply. Simply put, explicit methods can prop-

agate forces only to the immediately adjacent nodes. For example,

when simulating a cloth picked up at one corner, the external con-

tact forces propagate very slowly throughout the entire system.

Implicit methods can achieve such propagation during one step.

The use of backward Euler in physics-based animation has been

popularized by Baraff and Witkin [4], who demonstrated its su-

perior behavior compared to forward Euler, especially with larger

timesteps and stiff systems. Backward Euler has the exact oppo-

site error behavior compared to forward Euler: it underestimates

the energy of the true solution. This is not always a problem, be-

cause some amount of dissipation can in fact improve the visually

plausibility of the motion. Unfortunately, the amount of numeri-

cal dissipation of backward Euler is not explicitly controllable by

the user and instead indirectly depends on resolution, timestep,

and stiffness. Backward Euler also results in loss angular momen-

tum. Higher-order backward methods such as BDF2 produce more

accurate solutions, but uncontrolled numerical dissipation is still

present. Asynchronous timestepping methods such as those of

Zhao et al. [62] also mitigate the numerical damping of backward

Euler, but at the cost of introducing variable computing demands.

This is not desirable in real-time simulations where each frame

should ideally take the same amount of computing resources.

Backward Euler is known to be very stable but without much

understanding as to why. Although proofs exist for the uncondi-

tional stability of backward Euler for linear ODEs and basic sta-

bility analysis has been done for some nonlinear ODEs [13, 30],

we are not aware of any general proofs in the nonlinear case, such

as for the deformation energies commonly used in computer ani-

mation. In Appendix B, we present a stability proof for backward

Euler for convex potential functions. As in the forward Euler case,

the analysis becomes more difficult for nonconvex potentials, even

simple ones such as mass-spring systems (see Appendix C). Note

that our theoretical analysis presented in the appendix assumes

exact solutions of Equations (3) and (4). Instability can be also in-

troduced by inaccurate numerical solvers (which compute only ap-

proximate solutions of Equations (3) and (4)), such as using only

one iteration of Newton’s method). These numerics-induced insta-

bilities have been observed already by Baraff and Witkin [4], who

proposed a solution by adapting the timestep.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:5

Fig. 2. A simple spring-type potential run using an implicit midpoint at a

timestep hsmall = 0.00033 (left) and hlarge = 0.033 (right). Each point rep-

resents a state at a time t . The red circle illustrates the initial stretched

length of the spring.

Implicit midpoint. Intuitively, it is obvious that both forward and

backward Euler are biased: the former relies entirely on the current

state, whereas the latter relies entirely on the next state. Implicit

midpoint can be seen as a compromise between the two: instead of

using just the current or just the next state, implicit midpoint uses

their average:

xn+1 = xn +
h

2
(vn+1 + vn ) (5)

vn+1 = vn + hM−1 f
(

xn+1 + xn

2

)
. (6)

This integrator has very nice properties—namely, it is symplec-

tic and momentum preserving. A side effect of the preservation of

the canonical symplectic form is good energy-preserving behav-

ior [20]. However, this does not mean that the total energy has to

be close to its exact value. Even in very simple simulations, it is

not hard to obtain extreme energy oscillations. For example, the

simulation in Figure 2 uses the potential function:

EsimpleSpring (x) =
1

2
k ( | |x| |2 − 1)2, (7)

which is a squared version of a classical Hookean spring of length

1m with one endpoint fixed at the origin. For our experiment, we

used stiffness k = 105N/m, a mass of 0.5kg, two timesteps hsmall =

0.00033s (Figure 2, left) and hlarge = 0.033s (Figure 2, right), an ini-

tial velocity of (0, 10, 0)m/s, and initial length of 1.5 (corresponding

to the spring being prestretched). Figure 2 shows that with hlarge,

the simulation does not behave plausibly even during the first

few timesteps—contrary to our expectations, the rotating spring

does not return to its rest length (1m) but instead further extends

beyond the initial length of 1.5m (indicated by the red circle). If

we decrease the timestep to hsmall, this behavior disappears and

the revolving spring contracts as expected, staying within the red

circle.

What happened with the larger timestep h = 0.033s? We plot

the total energy of this simple system in Figure 3. We can see that

the simulation reaches incredibly large energy levels—the system

starts out at an energy level of around 25,000J but quickly pro-

ceeds to energy levels of several orders of magnitude higher, at

which point the moving endpoint flies off the screen with unreal-

Fig. 3. Energy (top) and angular momentum (bottom) corresponding to

the simulation from Figure 2 with h = 0.033s.

istic speed. Even though the energy is fluctuating wildly, the angu-

lar momentum is still conserved, as shown in Figure 3. This poor

behavior of implicit midpoint can be observed even with more

complex models, such as the rotating cube modeled with corotated

elasticity in Figure 4.

A related integrator comes from using the trapezoid rule instead

of the midpoint rule. This corresponds to the Newmark integrator

with γ =1/2 and β =1/4. Although this integrator can behave better

than implicit midpoint, it is still prone to explosions (see Figure 4).

As a final remark, we note that implicit midpoint can also be

written as a composition of backward and forward Euler:

xn+ 1
2
= xn +

h

2
vn+ 1

2
(8)

vn+ 1
2
= vn +

h

2
M−1 f (xn+ 1

2
) (9)

xn+1 = xn+ 1
2
+
h

2
vn+ 1

2
(10)

vn+1 = vn+ 1
2
+
h

2
M−1 f (xn+ 1

2
). (11)

By substituting Equation (10) into Equation (8) and substituting

Equation (11) into Equation (9), we get

xn+ 1
2
=

xn + xn+1

2
(12)

vn+ 1
2
=

vn + vn+1

2
. (13)

When we substitute these back into Equation (10) and Equation

(11), we get the implicit midpoint update equations (Equations (5)

and (6)). If we instead do a step of forward Euler first and backward

Euler second, we get the trapezoidal rule. These interesting facts

motivate our method: perhaps some other combination of basic

integrators could lead to a better time integration method for real-

time physics?

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:6 • D. Dinev et al.

Fig. 4. A spinning deformable cube modeled with corotated elasticity simulated with timestep h = 0.033. After several hundred timesteps, the implicit

midpoint and implicit Newmark integrator start producing visually implausible results.

4 METHOD

Overview. We will first explain our method in the case of a Hamil-

tonian system—that is, a dynamic system without any forcing or

damping (we will discuss how to support these phenomena in Sec-

tion 4.3). Our method is composed of two main steps. First, we cal-

culate a timestep according to the implicit midpoint rule, which

conserves momenta and the symplectic form and therefore pro-

vides an excellent “initial guess.” As demonstrated in the previous

section, the main problem of implicit midpoint is that wide oscil-

lations of the total energy can occur, departing dramatically from

a visually plausible solution. In the second step, we therefore cal-

culate the energy increase/decrease due to implicit midpoint (with

a Hamiltonian system, the exact solution conserves the total en-

ergy). If the energy erroneously increases, we correct this by com-

puting a backward Euler step, which dissipates energy. A detail

that will be important later is that the backward Euler solution

process uses the state computed by implicit midpoint as an initial

guess. We then solve for the optimal linear blending parameter,

which will bring the total energy as close as possible to its original

value. Similarly, if we detect that implicit midpoint erroneously

decreased energy, we perform analogous blending with the for-

ward Euler step, taking advantage of its energy injection property.

Our experiments reveal that each timestep typically only required

a small amount of blending, meaning that we do not depart too

far from the symplectic and momentum-conserving solution given

by implicit midpoint . This is also why we choose implicit mid-

point instead of an explicit symplectic integrator; explicit integra-

tors “explode” more dramatically at large timesteps and would lead

to a larger amount of backward Euler blending. We address this in

more detail in Section 5.

4.1 Optimization Form

Both implicit midpoint and backward Euler methods require an

iterative solution process. In this section, we focus on accurate

(up to rounding errors) solutions using Newton’s method, and in

Section 4.2, we discuss fast approximate solvers based on a local/

global approach. In both cases, it is advantageous to formulate the

implicit midpoint rule as an optimization problem (as Gast and

Schroeder [16] and Gast et al. [17] did for backward Euler). To

derive this optimization problem, we start by substituting Equa-

tion (6) into Equation (5), resulting in

xIM
n+1 = xn + hvn +

h2

2
M−1 f �

�

xIM
n+1 + xn

2
�
�
. (14)

We assume that both xn and vn are known. For conciseness, in the

following we denote the unknown state as x (instead of xIM
n+1) and

define a new symbol y := xn + hvn . Rearranging terms, we obtain

M(x − y) − h2

2
f

(
x + xn

2

)
= 0. (15)

To turn this into an optimization problem that finds x, we need to

antidifferentiate Equation (15) with respect to x. With conserva-

tive forces (we discuss nonconservative forces in Section 4.3), we

can write f (x) = −∇E (x), where E is an energy potential function.

This allows us to perform the antidifferentiation:

д(x) =
1

2
(x − y)T M(x − y) + h2E

(
x + xn

2

)
. (16)

The critical points of д (i.e., ∇xд(x) = 0) correspond to the solu-

tions of Equation (15). Having computed the positions x (which

correspond to xIM
n+1), computing the velocities is straightforward

from Equation (5):

vIM
n+1 =

2

h

(
xIM

n+1 − xn

)
− vn . (17)

To apply Newton’s method to minimize д, we need the gradient

and Hessian of д(x). These can be computed easily:

∇xд(x) = M(x − y) +
h2

2
∇E

(
x + xn

2

)
(18)

∇2
xxд(x) = M +

h2

4
∇2E

(
x + xn

2

)
. (19)

In this section, we assume that a solution (xIM
n+1, v

IM
n+1) has been

computed by iterating Newton’s method until convergence (i.e.,

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:7

achieving high numerical accuracy). The next task is to compute

our final state (xour
n+1, v

our
n+1) by correcting for the total energy error

in (xIM
n+1, v

IM
n+1).

Energy error. Minimizing the energy error corresponds to bring-

ing the following function as close as possible to zero:

e (x, v) = E (x) + K (v) − Htotal, (20)

where K (v)= 1
2 vTMv is the kinetic energy, E (x) is the potential

energy, andHtotal is the initial total energy of the system, specified

by the initial conditions (x0, v0). If e (xIM
n+1, v

IM
n+1)>0, it means that

implicit midpoint erroneously increased the total energy, in which

case we take advantage of the numerical dissipation properties of

backward Euler to reduce e . When e (xIM
n+1, v

IM
n+1)<0, it means that

implicit midpoint incorrectly decreased the total energy, which we

correct using forward Euler.

Blending. The way we stabilize energy overshoots is by calculat-

ing a blend between the implicit midpoint result (which resulted in

erroneous energy injection) and the backward Euler result (which

may potentially remove too much energy). The results of two inte-

grators are blended linearly, using a blending parameter α ∈ [0, 1]:

xn+1 = (1 − α )xIM
n+1 + αxBE

n+1 (21)

vn+1 = (1 − α )vIM
n+1 + αvBE

n+1. (22)

A higher α would yield a solution closer to backward Euler. At the

extreme, α =1 would result in a full step of backward Euler. As-

suming that backward Euler is stable, this implies stability of our

method. Even though in Appendix C we prove stability of back-

ward Euler only for certain potential functions, our experiments

suggest that our method is stable even for more complex poten-

tials. Even extreme initial conditions, as shown later in Figure 7,

do not introduce instabilities in our method. Most practical simu-

lations do not contain such large deformations, and we only need

to introduce a small amount of backward Euler (i.e., α is close to

zero). These small modifications early on in the simulation make a

large difference in the long-term stability and perceived vividness

of the motion. Without these small α modifications, the energy

will gradually drift upward over a long period of time, leading to

“explosions” [15]. This can be observed in Figure 4.

In an analogous fashion, we handle energy underestimates,

which we correct by blending with forward Euler. Keeping the

convention that higher α yields a more “damped” solution, we re-

place (xIM
n+1, v

IM
n+1) with (xFE

n+1, v
FE
n+1) and replace (xBE

n+1, v
BE
n+1) with

(xIM
n+1, v

IM
n+1) in Equation (21) and Equation (22). Now, α = 0 corre-

sponds to a full step of forward Euler and α = 1 corresponds to a

full step of implicit midpoint. This allows us to adjust the energy in

a symmetric way, compensating for both over- and undershoots.

We can reformulate e (x, v) from Equation (20) as a function of α .

In the case of blending with backward Euler, we substitute Equa-

tion (21) and Equation (22) into Equation (20), obtaining

e (α ) = E
(
(1 − α )xIM

n+1 + αxBE
n+1

)
+ K

(
(1 − α )vIM

n+1 + αvBE
n+1

)
− Htotal. (23)

The problem now becomes finding anα value that brings the resid-

ual energy as close as possible to zero. This can be done using a

simple binary search algorithm because e (α ) is continuous. During

our experiments, we found that e (α ) is always monotonic, making

the binary search rapidly converge to a solution. Binary search re-

quires a terminating condition. We base our terminating condition

on the total energy at the last frame:

|e (α ) | < ϵHtotal (xn , vn ). (24)

ϵ ∈ [0, 1] is a variable that controls how accurately we will con-

serve the energy. A small value will result in strict energy conser-

vation, whereas a larger ϵ will result in a looser terminating condi-

tion. In practice, we found that a value of ϵ = 0.01 (corresponding

to a 1% error in the energy) produced good results.

In rare cases, backward Euler may not decrease the energy (we

discuss an example in Appendix C). If both implicit midpoint and

backward Euler increase the energy, then the binary search algo-

rithm will not be able to find a root. When this happens, we simply

take the endpoint α = 1 as a solution. In other words, we take a full

step of backward Euler, and the extra energy will be removed in

future frames.

4.2 Local/Global Solver

Projective Dynamics provides a computational advantage over

Newton’s method by solving a backward Euler optimization prob-

lem using a local/global method, which allows us to precompute

sparse Cholesky factors of the system matrix. In this section, we

provide an overview of Projective Dynamics and then present a

similar local/global optimization strategy for solving the implicit

midpoint optimization problem (Equation (16)).

Projective Dynamics approximately solves the minimization

formulation of backward Euler, which we can derive in the

same manner as we derived the implicit midpoint formulation in

Section 4.1:

д(x) =
1

2
(x − y)T M(x − y) + h2E (x) . (25)

The key idea behind Projective Dynamics is constraint projection.

First, we introduce an auxiliary “projection” variable p. To take

advantage of this auxiliary variable, we need to define a special

energy E (x) for each element i:

Ei (x) = min
pi ∈M

E (x, Si p),E (x, Si p) = | |Gi x − Si p| |2F , (26)

where Si is a selection matrix, p is a stacked vector of the projec-

tion variables that project onto the manifoldM, and Gi is a dis-

crete differential operator. This Projective Dynamics energy can

be used to express many common potentials, although not all po-

tentials can be written in this form. For example, to model a mass-

spring system, as Liu et al. [32] did, we use a sphere as our con-

straint manifoldM, and Gi ∈ R3×3n is an operator that subtracts

two endpoints. p ∈ R3s×1, then, is a variable that projects the cur-

rent state onto the sphereM, and the selection matrix has dimen-

sions Si ∈ R3×3s (where n is the number of vertices and s is the

number of springs). To get a rigid-as-possible model [10], we in-

stead use the manifoldM = SO (3) and the deformation gradient

operator [47] for G.

The total potential E (x) is simply a weighted sum of the

element-wise potentials in Equation (26) (i.e., E (x) =
∑

i wiEi (x)).
The weights wi are nonzero positive values that are typically the

product of the rest-pose volume and stiffness of the element i . We

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:8 • D. Dinev et al.

can now rewrite the optimization from Equation (25) using a few

extra variables:

д(x, p) =
1

2
(x− y)TM(x−y) + h2

(
1

2
xTLx − xTJp

)
. (27)

L := (
∑
wi Gi GT

i )⊗I3 and J := (
∑
wi GT

i Si )⊗I3, I3 ∈R3×3 is the iden-

tity matrix, and ⊗ is the Kronecker product. The optimization is

split up into a local and global step. In the local step, the positions

x are assumed to be fixed and the projection variables p are solved

for by being projected onto the constraint manifold (e.g., a sphere

for simple springs or SO (3) for corotated elasticity). The global step

fixes the resulting projections p and solves a linear system to com-

pute the new state. Taking ∇д(x, p)=0 and rearranging the terms,

we get the linear system:

(M + h2L)x = (h2Jp +My), (28)

which is then solved to get the new x values. The state matrix M +

h2L does not depend on x, so it can be prefactorized and reused.

This prefactorization is where the speedup compared to Newton’s

method comes from.

We need to make a slight modification to Equation (27) to use

the local/global process for implicit midpoint. The potential energy

needs to be evaluated at x+xn

2 due to the update rules for implicit

midpoint (Equation (16)). This changes the objective to

д(x, p) =
1

2
(x − y)TM(x − y)

+h2

(
1

2

(
x+xn

2

)T
L

(
x+xn

2

)
−

(
x+xn

2

)T
Jp

)
. (29)

Just like before, for the global solve, we set ∇xд(x, p) = 0 and re-

arrange to get the linear system we need to solve:(
M +

h2

4
L

)
x =

(
My +

h2

2
Jp − h2

4
Lxn

)
. (30)

The system matrix for implicit midpoint is M + h2

4 L, which is

slightly different from the original Projective Dynamics matrix

M + h2L derived from backward Euler. In our method, we pref-

actorize both of these matrices. The sparse Cholesky factors of

M + h2

4 L are used in the initial implicit midpoint iterations, and

the factors of M + h2L are used for the backward Euler stabilization

(blending with forward Euler does not require any linear solves).

When using backward Euler to stabilize the local/global approxi-

mation of implicit midpoint, the initial guess becomes important.

Projective Dynamics typically uses the inertia term y := xn + hvn

as the initial guess, but since we already have an approximate im-

plicit midpoint solution, we can use it as a more effective initial

guess.

Projective Dynamics is usually iterated only for a fixed number

of iterations [7, 33]. For our method, we typically run 10 iterations

of the local/global process for the initial implicit midpoint solve

and only one iteration for the backward Euler for stabilization.

This is sufficient due to the fact that we use the result of implicit

midpoint as a starting point, yielding a good backward Euler so-

lution even with only one local/global iteration (see Section 5). In

addition to backward Euler, our method also uses forward Euler to

inject energy into the system if necessary. However, since the for-

ward Euler step can be easily computed explicitly, we do not need

any approximate numerical solve; we directly use the update rules

(Equation (1), Equation (2)) to blend with implicit midpoint.

4.3 Nonconservative Forces

Damping is an important aspect of real-world material behavior.

In physics-based animation, damping is often used to control the

amount of dynamic motion. As discussed in Section 4.3 of Su et al.

[53], undamped simulations may result in high-frequency oscil-

lations that expose the underlying mesh structure, which is un-

desired. A very simple explicit damping model is an ether drag

model:

v
damped
i = vi − k

h

mi
vi . (31)

This model has many problems, mainly that it also damps out

the global motion. More sophisticated models, such as the implicit

damping model proposed by Kharevych et al. [26], can mitigate

these problems at the expense of extra computation. Although this

model worked well in our experiments, the implicit solve that it re-

quires was too slow for real-time physics.

This motivates our choice of damping model. Physically, we

want damping that models the energy dissipation due to internal

friction in the simulated material, transforming mechanical energy

into heat (as opposed to modeling dissipation due to outside forces

such as air drag). We also need our model to be fast while preserv-

ing the rigid body modes of the motion. Therefore, in our system,

we chose to use the momentum-preserving damping model intro-

duced in Müller et al. [43]. The key idea is to calculate the differ-

ence between the velocity of each vertex and its velocity in the

best-fit rigid body approximation and damp out only these non-

rigid velocity components:

Δvi = vi − vcm + ωcm × ri (32)

v
damped
i = vi − kΔvi , (33)

where k ∈ [0, 1] is the damping coefficient, vi is the original

(predamping) velocity of vertex i , vcm is the velocity of the cen-

ter of mass, and ri = xi − xcm is the vector that points from the

current position (xi ) to the center of mass (xcm). xcm and vcm can

be easily computed:

xcm =

∑
i mi xi∑

i mi
vcm =

∑
i mi vi∑

i mi
, (34)

wheremi is the mass of vertex i . To compute the angular velocity

ωcm, we need the angular momentum L and inertia matrix Icm. L

is easy to find using the definition of angular momentum:

L =
∑

i

ri ×mi vi . (35)

The inertia matrix Icm can be computed as

Icm =
∑

i

mi R×i RT
×i (36)

where R×i ∈ R3×3 is the cross-product matrix of ri (i.e., given an

arbitrary vector a, R×a = r × a). Finally, we can compute the an-

gular velocity as ωcm = I−1
cmL. The rigid body component of the

motion is fully described by vcm and ωcm. The damping model ac-

cording to Equation (33) can be thought of as damping velocities

that go against this rigid body motion. Choosingk = 0 corresponds

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:9

to no damping at all. Choosing k = 1 means that all nonrigid ve-

locity components will be eliminated, resulting in pure rigid body

motion. Intermediate values of k allow us to control the nonrigid

modes of the motion and are useful to suppress fast oscillations,

which may not be visually appealing.

This is a fast damping model that preserves the rigid motion;

however, it is not a physically accurate damping model. If a body

is highly deformed (e.g., a rope that is coiled), this model can

cause nonphysical damping of the nonrigid motion. Furthermore,

it is not dependent on the timestep, so changing the timestep

can change the result. However, we choose to use this damping

model due to its explicit computation, which fits our real-time con-

straints.

Regardless of the damping model chosen, we only need to make

a slight modification to our error function. Rather than viewing

Htotal in Equation (20) as the starting energy, we can view it as the

target energy we want to reach. In damped simulations, we need

modify Htotal by subtracting energy that dissipated away due to

damping. We will call this value Hdiss—the total energy intention-

ally dissipated from the system by our damping model. This ap-

proach enforces some limitation on the damping model—namely,

it has to be done in a separate step from the optimization. We can

apply the same logic for forcing—that is, intentional energy injec-

tions into the system (e.g., if the user perturbs the simulated object

by applying external forces). Similarly to damping, in the case of

forcing, we again update Htotal to take into account this extra in-

jected energy. We introduce variableHadded that will represent the

amount of energy intentionally inserted into the system.

ALGORITHM 1: Our Method

1 x := x0

2 v := v0

3 Htotal := calculateTotalEnergy(x, v)

4 while !exit do

5 (xUI
n , vUI

n ) = userInteraction(xn, vn)

6 Hadded = calculateTotalEnergy(xUI
n , vUI

n )−
7 calculateTotalEnergy(xn, vn )

8 Htotal := Htotal + Hadded

9 (xIM, vIM) = IMsolve(xUI
n , vUI

n )

10 if e (xI M , vI M ) > 0 then

11 (xBE, vBE) := BEsolve(xIM, vIM, xn, vn )

12 (xn+1, vn+1) := blend(xIM, vIM, xBE, vBE)

13 else if e (xI M , vI M ) < 0 then

14 (xFE, vFE) := FEsolve(xn, vn )

15 (xn+1, vn+1) := blend(xFE, vFE, xIM, vIM)

16 end

17 vdamped := damp(vn+1)

18 Hdiss = calculateTotalEnergy(xn+1, vn+1)−
19 calculateTotalEnergy(xn+1, vdamped)

20 Htotal := Htotal − Hdiss

21 vn+1 := vdamped

22 n := n + 1

23 end

There are several ways to implement forcing. In our implemen-

tation, the user can interact with the simulated object by using

the mouse to move a special set of user-controlled vertices. These

user-controlled vertices are not degrees of freedom of the simula-

tion (i.e., they are not part of the system state x or velocities v), but

they are connected to the actual degrees of freedom (free vertices).

For example, our hanging cloth example uses two user-controlled

vertices as “attachment points” that are connected to the actual

simulated vertices via springs, which propagate the user-specified

(e.g., keyframed) motion to the simulation. The springs connecting

the user-controlled and simulated vertices are included in the po-

tential function. At the beginning of the frame, before we perform

any integration, we check if the user has moved the user-controlled

vertices compared to the last frame. If they have, then we can com-

pute Hadded by subtracting the potential value after user manipu-

lation from the previous potential value, before user manipulation.

Since we have not yet performed any updates to the system, we

know that this difference in potential was entirely a result of user

interaction (i.e., the energy the user injected into the system).

Combining this with the damping term, we get

Htotal = Hinitial + Hadded − Hdiss, (37)

where Hinitial is the initial total energy of the system according

to the initial conditions (e.g., prestretched starting states or initial

velocities correspond to larger Hinitial). This energy-tracking pro-

cess is crucial to our blending as it allows our method to handle

damping and forcing, which are very common actions in interac-

tive simulations. The pseudocode of our method is outlined in Al-

gorithm 1. Here, BEsolve(xIM, vIM, xn , vn ) means running a back-

ward Euler solve using xIM, vIM as an initial guess. FEsolve(xn , vn )

means performing a standard forward Euler step.

Collisions. Although Bridson et al. [9] presented robust mod-

els for handling collisions (including self-collisions) using adap-

tive timestepping, robust real-time solutions remain a challenge.

To support collisions in our current system, we use the standard

model of repulsion springs [37]. Specifically, if an interpenetration

is detected, we introduce collision springs with the following po-

tential function:

Ec (x) =

{
1
2kc | |d · n| |2 d · n ≤ 0

0 otherwise.
(38)

Here, kc is the stiffness for the collision springs, d = x − xs is pen-

etration depth of the vertex (x is the current position, and xs is

the projection of x onto the nearest point on the surface), and n is

the surface normal at xs . This potential is included in E (x) along

with regular deformation energies. The collision detection is ex-

ecuted at the beginning of every frame, and all of the necessary

collision springs are inserted into the potential function and taken

into account during the subsequent integration step.

An important aspect of modeling collisions is modeling friction

between the two colliding objects. We model friction by applying a

damping force after the integration [17]. For every colliding vertex,

we subtract the component of the acceleration that is tangent to

collision normal n:

v
f
i = vi − kf a⊥ (xi ), (39)

where kf ∈ (0, 1) is a friction coefficient and a⊥ (xi ) = h
∇Ec (xi )⊥

mi

is the tangent component of the discrete acceleration caused by

the collision penalty forces. From here, we can treat it just like

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:10 • D. Dinev et al.

damping—we simply update the Hdiss term from Algorithm 1 in

the same way to take this intentionally dissipated energy into ac-

count. Like the damping model, this friction model is physically

inaccurate and is chosen for its explicit evaluation, leading to a

fast computation.

Perfectly elastic collisions (i.e., collisions without any damping)

are energy-conserving phenomena. Whereas the total energy of

an individual object can increase (i.e., a large moving object collid-

ing with a small stationary object will insert energy into the small

object), the total energy of the system cannot increase. For exam-

ple, a ball falling onto a surface should not bounce higher than its

starting point. The extra energy induced from the collision springs

is therefore not included in our energy tracking (Equation (37)), as

it is not energy that was originally in either object before colliding;

it is temporarily introduced to handle interpenetrations. However,

sometimes we want to model inelastic collisions, where energy is

lost during the collision event. Although we did not use this in our

examples, this energy dissipation could be tracked in exactly the

same way as other damping models—for instance, by accounting

for the amount of energy intentionally dissipated during inelastic

collisions in the Hdiss term (Equation (37)).

5 RESULTS

Energy conservation. In Figure 5, we compare the energy preser-

vation behavior of our method and other methods over the course

of several thousand timesteps. The simulation we used was a de-

formable cube modeled using corotated elasticity with linear finite

elements [10, 47] spinning around a fixed axis. Backward Euler

(BDF1) and its second-order counterpart (BDF2) damp out most of

the energy, whereas pure implicit midpoint quickly explodes. Im-

plicit Newmark (using γ = 1/2, β = 1/4, i.e., the trapezoidal rule)

survives longer than implicit midpoint but still eventually ex-

plodes. We also tried to apply the energy budgeting method of Su

et al. [53] to correct the implicit midpoint behavior. Even though

the energy-budgeted simulation survives longer, the method fails

to stabilize systems in the long term and also explodes. This is due

to the fact that projection methods such as those of Su et al. [53]

only modify the velocities, not positions, and therefore large er-

roneous potential energy can build up in the deformation modes.

Our method avoids this problem by changing both positions and

velocities and maintains the total energy over a long run.

Momentum conservation. Momentum conservation is another

important aspect of numerical time integration; Figure 5 also com-

pares the angular momentum conservation properties of our and

previous methods. Although our method does not conserve angu-

lar momentum exactly, it preserves angular momentum much bet-

ter than BDF1 or BDF2. Implicit midpoint preserves the angular

momentum exactly but often exhibits dramatic errors in total en-

ergy. Our method uses implicit midpoint as a starting point and

corrects the energy under/overshoots using forward/backward

Euler. Even though these corrections are often small, our method

is not exactly angular momentum conserving.

Alpha value. The chosen alpha for the blending is typically close

to zero in reasonable simulations. Figure 6 shows the alpha values

chosen for the cube example in Figure 5. The forward Euler alphas

have been rescaled to an interval of [−1, 0] for the purposes of

Fig. 5. A graph showing the total energy (top) and angular momentum

(bottom) of a spinning elastic cube integrated using various methods all

evaluated using a timestep of h = 0.033s. Our method is stable and pre-

serves energy very well even in long simulation runs. Although our method

does not exactly conserve angular momentum, it preserves it better than

the other stable methods (backward Euler and BDF2).

showing both the forward and backward Euler blending. A value

of −1 corresponds to a full forward Euler solution, and a value

of 1 corresponds to a full backward Euler solution. Alpha values

close to zero lead to less forward/backward Euler blending, which

results in smoother and more vivid motion. Large alpha values

correspond to large amounts of backward Euler blending, which

can lead to a lot of damping in the angular momentum, as is the

case if we use explicit symplectic Euler as a starting point. Explicit

symplectic Euler’s tendency to explode faster at large timesteps

causes our algorithm to use an α of almost 1 for most of the sim-

ulation, which causes the angular momentum to drop to nearly 0

very rapidly.

Stability. Figure 7 shows a stability stress test of our method,

featuring a cactus mesh subject to extreme initial conditions.

Specifically, the initial vertex positions were randomized, as seen

in Frame 1. The energy-conserving behavior keeps the simu-

lation stable and at a constant energy level, so introducing a

small amount of damping allows us to recover the original mesh.

We used the momentum-preserving damping model described by

Equations (32) and (33) with a damping coefficient k = 0.08. Im-

plicit midpoint is unable to recover the cactus’ rest shape with the

same amount of damping, as the numerical instabilities overpower

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:11

Fig. 6. The choice of blending alpha values that were used for the simula-

tion in Figure 5, using implicit midpoint (IM) and explicit symplectic Euler

(ES) as starting points.

Fig. 7. An elastic cactus with randomized initial positions integrated using

our method (top) and implicit midpoint (bottom), both using timestep h =

0.033s. We added a small amount of damping so that the cactus eventually

returns to its rest pose. However, the energy overshooting of implicit mid-

point overpowered the damping, and the cactus failed to come to rest even

after 10,000 timesteps. This was not a problem with our method, which

quickly recovered the rest pose.

the damping effect. We ran the simulation for implicit midpoint

for much longer (another 10,000 frames) to see if it would eventu-

ally recover the rest pose, but the energy kept increasing despite

the damping. Both simulations were run using a timestep of h =

0.033s.

Visual motion quality. As mentioned previously, backward Eu-

ler and its higher-order version BDF2 both cause artificial damp-

ing, which is particularly strong in higher-frequency deforma-

tion modes. This can lead to less visually attractive results. Later,

Figure 10 shows how our method produces more realistic wrin-

kles in a cloth simulation where the cloth is being shook by

one of its corners. This causes waves to propagate through the

cloth, which are quickly damped out by backward Euler and BDF2

but are preserved by our method. Another example where this

high-frequency damping causes undesired results is in Figure 11

(shown later). In this simulation, we aimed for a cartoon-like effect

where an elastic dog’s nose is stretched out and released, resulting

in a humorous jiggling effect on the snout and lips. With backward

Euler or BDF2, we were unable to get the desired effect, as all of

the motion quickly died away and the dog’s nose returned to the

rest pose. With our method, we were able to get a comical, vivid

motion. If required, the vividness can be reduced by introducing

user-controlled damping, allowing us to achieve the desired visual

effect. Please see the accompanying video.

The numerical dissipation of backward Euler manifests itself

also in low-frequency deformation modes. In Figure 8, we show

a damping-free elastic bar stretching under gravity. The numer-

ical damping induced by backward Euler causes the bar to fail to

return to its starting position. Using our method, the bar continues

to happily bounce back to its rest state.

Similarly, Figure 9 shows a deformable bunny pinned at the ears,

swinging in a pendulum-like motion. Backward Euler damps the

deformation modes in the ears, causing the swinging motion to

damp out. Our method keeps the bunny swinging in a lively man-

ner due to conserving the total energy.

Our method can be less strict in the conservation of energy, de-

pending on the choice of ϵ in Equation 24. For the results in this

article, we used ϵ = 0.01 (i.e., tolerate an increase or decrease of

1%). In Figure 12, we demonstrate what happens when we use an

unreasonably loose ϵ = 0.5. Although the animation does not ex-

plode, the heavy oscillation between the damping of backward Eu-

ler and the energy injecting of forward Euler manifests itself as a

slowing of the global motion and unreasonable vibrations in the

mesh. Please refer to the video for a much clearer demonstration.

Collisions. To test our method’s ability to cope with collisions, we

designed an experiment featuring an elastic hippo colliding with

spheres (Figure 13). Because our collision detection and instancing

of repulsion springs is executed only once per frame, we run this

simulation at a slightly lower timestep of h = 0.01s to resolve all of

the collisions accurately.

The artificial damping of backward Euler degrades the visual

quality of collision resolution because the repulsion springs are

usually stiff (to quickly remove interpenetrations). This leads to

significant artificial energy dissipation during collisions, result-

ing in rigid-like motion that looks unrealistic for elastic objects,

as demonstrated later in Figure 15. Our method executed in the

same scenario produces a more elastic bouncing of the cube and

less damping (see Figure 15 and the accompanying video).

We can incorporate frictional forces between colliding surfaces

into our method. Figure 14 shows our method applied on a bunny

sliding along a flat surface with and without friction. The friction-

less surface results in the bunny sliding along the plane indefi-

nitely. If we add some friction (kf = 0.8), the bunny not only slows

down but also begins rotating due to the asymmetric base. Since

the frictional forces only affect the base, the bunny’s ears also start

moving as they are pulled back from their motion by the elastic

forces of the mesh.

Performance. Table 1 shows details about our experiments,

including performance measurements. All experiments used a

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:12 • D. Dinev et al.

Fig. 8. An elastic tetrahedral bar stretching under gravity simulated using our method (top) and backward Euler (bottom). Frame 30 corresponds to the

minimum height reached by the bar during the first bounce for both simulations, and frame 122 corresponds to the maximum height reached by the bar

during the second bounce for both simulations. Backward Euler results in the bar deviating farther and farther from the starting position with each bounce,

whereas our method correctly restores the bar to its starting position even after multiple bounces.

Fig. 9. An elastic bunny swings under gravity. Our method (top) results in

the bunny swinging vividly, whereas backward Euler (bottom) damps out

the pendulum motion. The frames chosen correspond to the apex of the

pendulum motion for each example.

Fig. 10. Mass-spring system cloth simulated with backward Euler, BDF2,

and our method. Our method produces more vivid wrinkles due to lower

numerical dissipation.

lumped mass matrix for the masses. We use backward Euler as

a baseline for our comparisons, and we consider two types of

numerical solvers: (1) Newton’s method iterated until convergence

and (2) local/global with a fixed number of iterations. Let us first

Fig. 11. An elastic dog face model starting with a prestretched nose. Our

method keeps the face oscillations, whereas BDF2 damps out the motion.

Fig. 12. Using a looser energy conservation term (ϵ = 0.5) results in poor

visual quality (please see the accompanying video).

Fig. 13. Collision test with our method: an elastic hippo collides with four

spheres.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:13

Fig. 14. A bunny sliding along a plane using our method with no fric-

tion (top) and with friction (bottom). Please refer to the video for a clearer

demonstration.

Fig. 15. An elastic cube falls on a collection of spheres, simulated using

our method (top) and backward Euler (bottom). The frames chosen are the

maximum and minimum heights of the cube after one bounce for each

method. The cube bounces back to the original height with our method

but not with backward Euler due to its numerical damping.

discuss the Newton solver. Our method executes one Newton solve

for the initial implicit midpoint step, and in case this step over-

shoots energy, there is another Newton solve for the backward

Euler stabilization step. Each of the Newton solves is iterated until

convergence. This explains why our method is slower than using

pure backward Euler, which needs only one Newton solve. The α-

search process used to determine the amount of blending between

implicit midpoint and backward Euler steps is not a bottleneck,

as can be seen from the measurements in Table 1. With the local/

global solver, the situation is more favorable for our method, as the

stabilization step uses only one local/global iteration. The motion

quality is high because we blend the single-iteration result with a

more accurate solution (10 iterations) of implicit midpoint. In our

experience, this results in higher motion quality with only small

computing overhead.

Our method derives many of its desirable properties from im-

plicit midpoint. What if instead of using our method we sim-

ply reduced the timestep for implicit midpoint? We study this

question in Table 2, where we use the same simulation scenar-

ios as in Table 1, but this time we compare against implicit mid-

point with substepping—that is, splitting one timestep into several

smaller “substeps.” For example, with the original h = 0.033s and

substepping factor 10, we use 10 steps with 0.0033s each, advancing

Fig. 16. High-frequency oscillations can occur in the horn of this dragon in

an undamped simulation. This is more obvious in the accompanying video.

the simulated time by the same amount. Decreasing the timestep

improves the motion quality generated by implicit midpoint; how-

ever, the extra computing resources are significant, and stability is

not guaranteed even with very many substeps. This is especially

obvious in collision scenarios, where even very small timesteps

are not sufficient to guarantee stability. For example, in our hippo

example (see Figure 13), even 100 substeps of implicit midpoint

was not enough to produce a visually plausible result. Our method

produces stable results despite relatively large timesteps. In addi-

tion to stability, our method also delivers much better energy and

angular momentum preservation than backward Euler. Applying a

local/global solver rather than using Newton’s method results in a

fast yet robust integration algorithm, with only minimal comput-

ing overheads compared to Projective Dynamics [7].

6 LIMITATIONS AND FUTURE WORK

One limitation of our method is that it is not perfectly momentum-

conserving. This is because in cases where implicit midpoint pro-

duces energy overshoots, we correct this using backward Euler,

which does not conserve angular momentum. Fortunately, we typ-

ically need only a small amount of backward Euler contribution to

stabilize the simulation, resulting in much better energy and mo-

mentum conservation than backward Euler (BDF1) or BDF2. How-

ever, an interesting question for future work is whether we could

better preserve angular momentum without compromising stabil-

ity despite relatively large, fixed timesteps.

Implicit midpoint (and the trapezoidal rule) that is run at large

timesteps can introduce local high-frequency oscillations that lead

to explosions. Although blending with backward Euler makes the

simulation stable and mitigates these localized oscillations, they

are not always entirely eliminated and show up as artifacts, par-

ticularly in undamped simulations, as shown in Figure 16. The ac-

companying video shows these artifacts more clearly. The obvious

solution is to introduce some damping to the simulation, but an

interesting future direction is to eliminate these high-frequency

oscillations of implicit midpoint without using damping.

Another direction for future work is collision handling. Cur-

rently, we use a simple method that only handles collisions with

static objects. We did not implement self-collisions in our frame-

work, but we believe that our method can be extended to support

methods such as air meshes [42] or penalty methods [34] to handle

self-collisions.

A limitation of our energy tracking algorithm is that it requires

that damping and friction are applied in a separate step after the

integration. Furthermore, the damping and friction models that we

chose to use for this work are not physically accurate and have is-

sues particularly in the case of large deformations. We chose them

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:14 • D. Dinev et al.

Table 1. Computing Speed: Comparison With backward Euler

Model Ver. (#) Ele. (#) Timestep

Newton’s Method Solver Local/Global Solver (10 Iterations)

Backward Our Method Backward Our Method

Euler Total Time α Search Euler Total Time α Search

Bar 290 716 0.033 148ms 231ms 3.27ms 3.62ms 5.73ms 1.85ms

Cube (Figure 5) 386 996 0.033 277ms 505ms 1.86ms 5.84ms 8.41ms 1.66ms

Cube (Figure 15) 386 996 0.01 365ms 597ms 0.76ms 6.93ms 9.50ms 0.93ms

Hippo 2,387 8,406 0.01 3,985ms 6,296ms 5.00ms 66.4ms 73.3ms 4.93ms

Bunny (Figure 14) 4,497 15,408 0.033 6,288ms 10,720ms 13.8ms 194ms 212ms 9.62ms

Cactus 5,261 17,187 0.033 5,050ms 7,577ms 41.6ms 115ms 174ms 39.90ms

Cloth† 10,201 50,200 0.033 24,958ms 42,758ms 6.11ms 110ms 127ms 7.58ms

Dog 28,390 117,423 0.033 39,101ms 99,138ms 212ms 916ms 1.205ms 193ms

Bunny (Figure 9) 34,844 121,058 0.033 31,624ms 64,037ms 227ms 1.181ms 1.510ms 215ms

Note: We compare the performance of our method to backward Euler to two types of solvers: (1) Newton’s method (middle, iterated until convergence) and (2) local/global (right,

using 10 iterations). All models use corotated elasticity with linear finite elements, except for the cloth† model, which is a mass-spring system. The α -search time is accounted
for in the “total time” of our method. With the local/global solver, both backward Euler (i.e., Projective Dynamics) and implicit midpoint used in the first phase of our method
always use 10 iterations. In the second (stabilizing) phase of our method, we use only one iteration of backward Euler. All of the reported times were taken as an average over 30
frames. The cube (fall) and hippo are collision tests, using a smaller timestep to accurately resolve collisions. The cactus example is a stress test with randomized initial positions
(i.e., not a typical case in practical smulations), which explains the longer α -search time. Using Newton’s method, the dog example takes longer than the bunny example despite
being a smaller mesh because the dog simulation requires more iterations for convergence.

Table 2. Comparison of Our Method and Implicit Midpoint (local/Global Solver, 10 Iterations). Our Examples From Table 1 Compared Against Implicit

Midpoint with Substepping, i.e., Reducing the Time Step Size by 5, 10, 20, and 100 Times. A Cell Color of Green Indicates that the Simulation is Stable at

this Substep Level, While a Cell Color of Red Indicates that the Simulation is not Stable. Reducing the Time Step Improves Stability for Implicit Midpoint

But at Significant Computing Costs

due to their speed and relatively nice numeric properties, which is

what we required for our real-time constraints. More physically ac-

curate damping models that can be run in real time without adding

much overhead to our method is an interesting future direction.

Finally, we believe that our analysis of backward Euler stabil-

ity discussed in the appendix could be extended to more general

cases, such as general mass-spring systems. Empirically, it seems

the stability result still holds, as running numerous stress tests did

not discover any counterexamples with mass-spring systems. Even

more interesting would be to generalize these results to more com-

plex energy potentials, such as FEM with nonlinear materials. Most

likely, not all nonconvex potential functions will lead to stable

backward Euler results. Discovering the conditions on deforma-

tion energy functions that are necessary/sufficient for backward

Euler stability would be a very interesting theoretical investiga-

tion that could lead to new practical insights.

7 CONCLUSIONS

We presented a method that is stable and has good energy-

preserving behavior, even for large fixed timesteps such as the

ones required in real-time physics applications. The key idea was

to take advantage of the artificial damping or artificial energy in-

jection introduced by the backward and forward Euler methods to

“stabilize” the results of implicit midpoint. We determined the right

blending weight between implicit midpoint and backward/forward

Euler by tracking the total energy, explicitly taking into account

energy-changing events: damping and forcing. This resulted in an

integrator that is stable but does not have the undesirable artifi-

cial damping of implicit methods such as backward Euler or BDF2.

Finally, in the appendix, we study the energy behavior of com-

mon integrators, showing that with convex potentials, forward Eu-

ler weakly increases energy and backward Euler weakly decreases

energy. We also provide a backward Euler stability proof for a sim-

ple example of nonconvex potential, hoping to inspire future work

in this direction.

APPENDIXES

A FORWARD EULER INSTABILITY

In this section, we present a proof for the instability of forward

Euler from a Hamiltonian point of view. The Hamiltonian is the

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:15

sum of the potential and the kinetic energies of the system:

H (x, v) =
1

2
| |v| |2M + E (x), (40)

where | |v| |2
M

:= vTMv is a mass-matrix norm and E (x) the poten-

tial energy function. To simplify our discussion, we will assume

that E (x) is defined and finite for any state x. Because we as-

sume that the potential energy is time invariant, in the continu-

ous setting the Hamiltonian is exactly conserved—for instance, at

any time t > 0, the Hamiltonian H (x(t ), v(t )) = H (x0, v0), where

x0, v0 are the initial conditions. This equality is no longer true in

the case of numerical time integration due to discretization error.

We can quantify the Hamiltonian error of a numerical scheme sim-

ply by subtracting the Hamiltonians at two consecutive steps:

H (xn+1, vn+1) − H (xn , vn ). (41)

This error depends on a specific numerical integration scheme. In

this section, we focus on the forward Euler method. Using the for-

ward Euler update rules (Equations (1) and (2)), we can write

H (xn+1, vn+1) =
1

2
| |vn+1 | |2M + E (xn+1)

=
1

2
| |vn − hM−1∇E (xn ) | |2M + E (xn+1)

=
1

2
| |vn | |2M − (xn+1 − xn )T∇E (xn )

+
1

2
h2 | |M−1∇E (xn ) | |2M + E (xn+1). (42)

Plugging this expression into Equation (41) results in

H (xn+1,vn+1) − H (xn , vn )

= E (xn+1) − E (xn ) − (xn+1 − xn )T∇E (xn )

+
1

2
h2 | |M−1∇E (xn ) | |2M. (43)

This formula leads to an interesting fact if we assume that the

potential function E is convex (most practical potential functions

are not convex; however, it is insightful to first study the case of

convex E). With convex E, first-order convexity conditions (Sec-

tion 3.1.3 in Boyd and Vandenberghe [8]) imply that E (xn+1) −
E (xn ) − (xn+1 − xn )T∇E (xn ) ≥ 0 for any xn and xn+1. Because

the term h2 | |M−1∇E (xn ) | |2
M

is always nonnegative (as the mass-

matrix M is positive definite), we have just proven that with for-

ward Euler, the Hamiltonian is weakly increasing.

This shows why the forward Euler method is highly unstable for

convex potential functions. The Hamiltonian cannot decrease, and

therefore, in the best case scenario, it can remain constant. This is

the expected behavior, as h → 0 when the discrete approximation

converges to the continuous solution (where the Hamiltonian is

indeed constant). However, with larger timesteps h, we often ob-

serve significant increases of the Hamiltonian and the Hamiltonian

quickly approaches infinity, indicating instability. This behavior is

often empirically observed also with common nonconvex poten-

tial energy functions. However, with nonconvex potentials, it is

possible to find examples where forward Euler actually decreases

the Hamiltonian (i.e., H (xn+1, vn+1) < H (xn , vn )). The analysis of

nonconvex potentials is more complicated. as we will discuss in

Appendix C.

B BACKWARD EULER STABILITY

Let us start with a quote: “Forward Euler takes no notice of wildly

changing derivatives, and proceeds forward quite blindly. Back-

ward Euler, however, forces one to find an output state whose de-

rivative at least points back to where you came from, imparting,

essentially, an additional layer of consistency (or sanity-checking,

if you will)” (footnote 4, [4]). This remark provides beautiful in-

tuition why backward Euler is more stable than forward Euler. In

this section, we formalize this intuition by providing a formal sta-

bility proof of backward Euler for convex potential functions. With

forward Euler, instability is characterized by increasing the Hamil-

tonian above all bounds. There are various interpretations of the

term stability in the literature. In this article, we say that simulation

is stable if there is a constantC > 0 such thatH (xn , vn ) ≤ C for all

n = 0, 1, 2, . . . . The constantC can depend on the initial conditions

and the parameters of the system but cannot depend on n. In other

words, regardless of how many timesteps we compute, the Hamil-

tonian can never increase above C—it must remain bounded. We

also assume that our potential E (x) is bounded from below. This

is trivially satisfied for all elastic energies. If we use the standard

linear gravity potential, we assume that there is a ground plane

below which the object cannot fall.

Unlike forward Euler, backward Euler does not provide explicit

formulas to compute the next step (xn+1, vn+1); instead, the next

step is given implicitly by a system of (typically nonlinear) equa-

tions. Nevertheless, we can still use a similar analysis as in Appen-

dix A—the main trick being in performing the analysis backward in

time. We start by applying the backward Euler rules (Equations (3)

and (4)) to expand:

H (xn , vn ) =
1

2
| |vn+1 + hM−1∇E (xn+1) | |2M + E (xn )

=
1

2
| |vn+1 | |2M + (xn+1 − xn )T∇E (xn+1)

+
1

2
h2 | |M−1∇E (xn+1) | |2M + E (xn ). (44)

Subtracting the Hamiltonian of the next step yields

H (xn ,vn ) − H (xn+1, vn+1)

= E (xn ) − E (xn+1) + (xn+1 − xn )T∇E (xn+1)

+
1

2
h2 | |M−1∇E (xn+1) | |2M. (45)

If we assume that the potential E is convex, the first-order convex-

ity conditions (Section 3.1.3 in Boyd and Vandenberghe [8]) imply

that

E (xn ) − E (xn+1) + (xn+1 − xn )T∇E (xn+1) ≥ 0 (46)

for any xn and xn+1. The term h2 | |M−1∇E (xn+1) | |2
M

is non-

negative because h > 0 and M is a positive-definite mass ma-

trix. Therefore, with convex E, we can conclude that H (xn , vn ) ≥
H (xn+1, vn+1). This means that we can define the upper bound C
simply as C := H (x0, v0)—in other words, the Hamiltonian never

rises above its value specified by the initial positions and veloci-

ties. With h → 0, we converge to the continuous case where the

Hamiltonian is conserved. In real-time simulations, it is common

to use relatively large h, in which case there can be relatively large

decreases of the Hamiltonian, corresponding to the numerical dis-

sipation of backward Euler.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:16 • D. Dinev et al.

Fig. 17. A simple two spring system where N1, N2, and N3 are connected by springs. N1 and N3 are fixed at a distance of 1 from the x-axis (a), and N2 is

free to move along the x-axis (b). The resulting potential function is nonconvex (c); its derivative is shown in (d).

With nonconvex potentials, this analysis does not hold, and it

is possible to find counterexamples where H (xn , vn ) > H (x0, v0).
We will discuss one such example in Appendix C.

C NONCONVEX POTENTIAL FUNCTIONS

Many potential functions used in physics-based animation are

not convex—even simple mass-spring systems. To our knowledge,

analysis of backward Euler’s behavior with nonconvex potentials

is an open problem. In this appendix, we merely scratch the sur-

face by analyzing a simple toy example of a nonconvex potential.

In this didactic case, we show that key result still holds—that is,

with backward Euler, there exists an upper bound on the Hamil-

tonian H (xn , vn ). However, the analysis is more complicated than

in the convex case studied in Appendix B where the Hamiltonian

is weakly decreasing. In the nonconvex case, the Hamiltonian can

temporarily increase, and we need to show that these increases are

bounded.

We will analyze a very simple mass-spring system, consisting

of three vertices connected by two springs, each of which has

rest length
√

2 (Figure 17). In this system, the two outside nodes

(N 1,N 3) are fixed, and the middle node (N 2) is free to move

along the x-axis. The state x =0 corresponds to the situation in

Figure 17(a), where both springs are compressed to length 1. Fig-

ure 17(b) depicts the case of x =1, where both springs are at their

rest length (i.e., the potential energy is zero). Let us derive a for-

mula of the potential as a function of the free variable x ∈R. The

length of each spring is, according to the Pythagorean theorem,√
x2+1. Plugging this into Hooke’s law and summing the two

springs, we obtain

Etest (x ) = k
(√

x2 + 1 −
√

2
)2
, (47)

where k > 0 is the spring stiffness, which we assume is the same
for both springs. The potential of our test system is graphed in

Figure 17(c). We can immediately notice that the potential is non-

convex, with two local minima at −1 and 1 and a local maximum

at 0. Let us also compute the derivative of this potential function:

E ′test (x ) = 2k
(√

x2 + 1 −
√

2
) x
√
x2 + 1

. (48)

We graph it in Figure 17(d).

Fig. 18. The Hamiltonian for a simulation of our simple test system from

Figure 17 computed using backward Euler. The Hamiltonian can occasion-

ally increase despite the overall dissipative trend.

We can use the potential function Etest to construct an exam-

ple where a backward Euler step actually increases energy, pro-

viding a counterexample that the approach from Appendix B does

not trivially generalize to nonconvex potentials. To construct such

an example, we can pick any starting point x0 ∈ (0, 1) and set the

initial velocity v0 = −x0/h (where h is the timestep). In this case,

the backward Euler rules (Equations (3) and (4)) are satisfied with

x1 = 0,v1 = v0, because E ′test (0) = 0. In this case, the kinetic en-

ergy remains the same because v1 = v0, but the potential energy

increases because Etotal (0) > Etotal (x0) (in fact, we could even pick

x0 slightly larger than 1 and this inequality would still hold). In

other words, in this case, the nonconvexity of Etest caused back-

ward Euler to increase the Hamiltonian.

Numerical simulation of our simple test system reveals that

backward Euler can consistently increase the Hamiltonian over

several timesteps, as shown in Figure 18. The increases are visible

as little bumps in the otherwise generally decreasing Hamiltonian.

This means that we cannot hope to prove that the Hamiltonian

will be weakly decreasing with nonconvex potentials. However,

we can still hope to prove stability if we can show that the oc-

casional Hamiltonian increases due to potential nonconvexity are

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



Stabilizing Integrators for Real-Time Physics • 9:17

in fact bounded. The graph in Figure 18 suggests that this indeed

may be the case. In the following, we prove this for the case of our

simple potential Etest. The key idea of the proof is the fact that the

nonconvexity of Etest is localized to the interval [−1, 1]. In the fol-

lowing three lemmas, we consider three different cases depending

on which intervals xn and xn+1 are in.

Lemma 1. Let xn ,xn+1 ∈ R be two consecutive timesteps of

backward Euler applied to Etest. If |xn+1 | > 1, then H (xn ,vn ) ≥
H (xn+1,vn+1).

Proof. First, we define a function G (x ) such that

G (x ) =

{
0 x ∈ [−1, 1]

Etest (x ) otherwise.
(49)

Because Etest (x ) is a nonnegative function,G (x ) ≤ Etest (x ) ∀x ∈ R.

Because G (x ) is convex and differentiable (note that E ′test (±1) =
0), we can apply the first-order convexity condition to get the

inequality:

G (xn ) ≥ G (xn+1) + (xn − xn+1)G ′(xn+1). (50)

Because we assumed that |xn+1 | > 1, we can write G (xn+1) =
Etest (xn+1) and G ′(xn+1) = E ′test (xn+1). Putting these facts to-

gether yields the following inequality for Etest:

Etest(xn )≥G (xn )≥Etest(xn+1)+ (xn−xn+1)E ′test(xn+1). (51)

Plugging this inequality into Equation (45) shows thatH (xn ,vn ) ≥
H (xn+1,vn+1) just like in the convex case (Appendix B). �

Lemma 2. There is a constant β > 1 such that for any two consec-

utive time steps xn ,xn+1 ∈ R of backward Euler applied to Etest, it is

true that if |xn | ≥ β , |xn+1 | ≤ 1 then H (xn ,vn ) ≥ H (xn+1,vn+1).

Proof. Lemma 1 showed that if |xn+1 | > 1, then H (xn ,vn ) ≥
H (xn+1,vn+1) regardless of the value of xn . However, if xn+1 ∈
[−1, 1], there are situations when H (xn ,vn ) ≤ H (xn+1,vn+1).
Now we will show that this cannot happen if |xn | ≥ β . First, we

will assume that xn ≥ β (the case of xn ≤ −β is analogous) and

show that

Etest (xn ) ≥ Etest (xn+1) + (xn − xn+1)E ′test (xn+1). (52)

This inequality leads to H (xn ,vn ) ≥ H (xn+1,vn+1) as in the con-

vex case (Equation (45)). Our first task is to find a suitable β . Let

us consider the line

l (x ) = Etest (0) + (x + 1)E ′test (xmax). (53)

The value xmax is defined as xmax := argmax x ∈[−1,1] E
′(x ) (i.e.,

the maximal derivative on the interval [−1, 1]). Etest (0) is the max-

imum value of the potential on the interval [−1, 1]. We will then

define β as the intersection point between l (x ) and Etest (x ) with

x > 0 (Figure 19). In other words, we pick β as the positive solution

of

Etest (β ) = Etest (0) + (β + 1)E ′test (xmax). (54)

It is hard to evaluate β symbolically; however, we can easily ap-

proximate it numerically: β ≈ 2.209. An important fact is that the

β depends only on the potential Etest (i.e., it does not depend on

the states xn ,xn+1).

Fig. 19. Illustration for Lemma 2: the potential function Etest (x ) (blue) and

our lines l (x ) (red) determining the constant β .

Using the definition of the line in Equation (53), we can show

that the following inequality is also satisfied ∀xn+1 ∈ [−1, 1]:

Etest (β ) ≥ Etest (xn+1) + (β − xn+1)E ′test (xn+1). (55)

To show this, we refer to Equation (54) and observe that Etest (0) ≥
Etest (xn+1) because Etest (0) ≥ Etest (x ) ∀x ∈ [−1, 1]. The fact that

E ′test (xmax) ≥ E ′test (xn+1) follows from the definition of xmax. Fi-

nally, β + 1 ≥ β − xn+1 follows from |xn+1 | ≤ 1.

Etest is a convex function on interval [1,∞], which implies that

E ′test (β ) ≥ E ′test (xmax) (56)

because β is the intersection between l (x ) and Etest (x ). The con-

vexity on [1,∞] further implies that

Etest (xn ) ≥ Etest (β ) + (xn − β )E ′test (β ) (57)

due to first-order convexity conditions [8]. We can now substitute

Equation (55) into Equation (57):

Etest (xn ) ≥ Etest (xn+1) + (β − xn+1)E ′test (xn+1)

+ (xn − β )E ′test (β ). (58)

Plugging in Equation (56) and using the fact that E ′test (xmax) ≥
E ′test (xn+1) and our assumption xn ≥ β results, after some simpli-

fications, in

Etest (xn ) ≥ Etest (xn+1) + (xn − xn+1)E ′test (xn+1). (59)

This is the same inequality as Equation (46), and therefore the re-

sultH (xn , vn ) ≥ H (xn+1, vn+1) follows just like in the convex case

(Appendix B). The proof for xn < −β is completely analogous due

to the fact that Etest (x ) = Etest (−x ). �

Lemma 3. If β > 1 is as in Lemma 2, there exists a constantHc > 0

such that for any two consecutive timesteps xn ,xn+1 ∈ R of back-

ward Euler applied to Etest, such that |xn+1 | ≤ 1, |xn | ≤ β , it is true

that H (xn+1,vn+1) ≤ Hc , where Hc = Etest (0) + m
2 (

β+1
h

)2, where

m is the mass of vertex N2 and h is the timestep.

Proof. Because xn+1 ∈ [−1, 1], we immediately have a bound

on the potential energy:

Etest (xn+1) ≤ Etest (0). (60)

To obtain a bound on the kinetic energy, we use the update rule

of backward Euler (Equation (3)) and the facts that xn+1 ∈ [−1, 1]

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.



9:18 • D. Dinev et al.

and xn ∈ [−β , β], which lead to

|vn+1 | =
����
xn+1 − xn

h

���� ≤
β + 1

h
. (61)

Combining Equation (60) and Equation (61) will get us a

Hamiltonian bound:

H (xn+1,vn+1) = Etest (xn+1) +
m

2
(vn+1)2 (62)

≤ Etest (0) +
m

2

(
β + 1

h

)2

= Hc . � (63)

Finally, we put the results of the previous three lemmas together

in the following theorem.

Theorem 1. If x0,v0 ∈ R are arbitrary initial conditions of our

test problem, then the Hamiltonian at any step n of exactly solved

backward Euler integration satisfies

H (xn ,vn ) ≤ max(H (x0,v0),Hc ),

where Hc = Etest (0) + m
2 (

β+1
h

)2 as in Lemma 3.

Proof. The proof is by induction. The theorem is trivially

satisfied for n = 0. Moving from n to n + 1, there are several

possibilities. If |xn+1 | > 1, Lemma 1 applies and shows that the

Hamiltonian must weakly decrease. If |xn+1 | ≤ 1 and |xn | ≥ β ,

Lemma 2 applies and also asserts that the Hamiltonian must

weakly decrease. Finally, if |xn+1 | ≤ 1 and |xn | < β , the Hamil-

tonian may increase, but Lemma 3 shows that it cannot increase

arbitrarily much, because H (xn+1,vn+1) ≤ Hc . �

We have shown that for our simple but nonconvex potential

Etest, exactly solved backward Euler is stable. A logical question is

whether a similar result would hold also for arbitrary mass-spring

systems. Unfortunately, the situation becomes more complicated

because our bounds would have to be extended to the multivariate

case. For example, the two lines in Figure 19 could be replaced by a

translated convex cone. However, there is a complication, because

in general mass-spring systems, some springs can be contracted,

whereas others can be extended. Even a single contracted spring

can, in theory, introduce nonconvexities. The backward Euler sta-

bility proof for general mass-spring systems will therefore be more

complicated, and we defer it to future work.

ACKNOWLEDGEMENTS

We thank Robert Bridson, Mathieu Desbrun, Eitan Grinspun,

Dominik Michels, Daniele Panozzo, and Eftychios Sifakis for many

inspiring discussions. We also thank Cem Yuksel, Petr Kadle-

cek, and Nghia Troung for proofreading. We also gratefully ac-

knowledge the support of Activision and hardware donation from

NVIDIA Corporation.

REFERENCES
[1] Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. 2012.

Speculative parallel asynchronous contact mechanics. ACM Transactions on
Graphics 31, 6, 151.

[2] Uri M. Ascher and Linda R. Petzold. 1998. Computer Methods for Ordinary Dif-
ferential Equations and Differential-algebraic Equations. Vol. 61. SIAM.

[3] Uri M. Ascher and Sebastian Reich. 1999. The midpoint scheme and variants
for Hamiltonian systems: Advantages and pitfalls. SIAM Journal on Scientific
Computing 21, 3, 1045–1065.

[4] David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Pro-
ceedings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’98). ACM, New York, NY, 43–54. DOI:http://dx.doi.org/
10.1145/280814.280821

[5] Jan Bender, Dan Koschier, Patrick Charrier, and Daniel Weber. 2014. Position-
based simulation of continuous materials. Computers and Graphics 44, 1–10.

[6] Jan Bender, Matthias Müller, Miguel A. Otaduy, Matthias Teschner, and Miles
Macklin. 2014. A survey on position-based simulation methods in computer
graphics. Computer Graphics Forum, 33, 6, 228–251.

[7] Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly.
2014. Projective Dynamics: Fusing constraint projections for fast simulation.
ACM Transactions on Graphics 33, 4, 154.

[8] Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press, New York, NY.

[9] Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust treatment of
collisions, contact and friction for cloth animation. ACM Transactions on Graph-
ics 21, 3, 594–603.

[10] Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple
geometric model for elastic deformations. ACM Transactions on Graphics 29, 4,
38.

[11] Kwang-Jin Choi and Hyeong-Seok Ko. 2002. Stable but responsive cloth. ACM
Transactions on Graphics 21, 3, 604–611.

[12] J. Chung and G. M. Hulbert. 1993. A time integration algorithm for structural dy-
namics with improved numerical dissipation: The generalized-α method. Jour-
nal of Applied Mechanics 60, 2, 371–375.

[13] K. Dekker and J. G. Verwer. 1987. Stability of Runge-Kutta methods for stiff
nonlinear differential equations. ZAMM—Journal of Applied Mathematics and
Mechanics/Zeitschrift fr Angewandte Mathematik und Mechanik 67, 1, 68.
DOI:http://dx.doi.org/10.1002/zamm.19870670128

[14] Robert W. Easton. 1998. Geometric Methods for Discrete Dynamical Systems. Ox-
ford University Press.

[15] Robert D. Engle, Robert D. Skeel, and Matthew Drees. 2005. Monitoring energy
drift with shadow Hamiltonians. JJournal of Computational Physics 206, 2, 432–
452.

[16] Theodore F. Gast and Craig Schroeder. 2014. Optimization integrator for large
time steps. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on
Computer Animation.

[17] Theodore F. Gast, Craig Schroeder, Alexey Stomakhin, Chenfanfu Jiang, and
Joseph M. Teran. 2015. Optimization integrator for large time steps. IEEE Trans-
actions on Visualization and Computer Graphics 21, 10, 1103–1115.

[18] O. Gonzalez and J. C. Simo. 1996. On the stability of symplectic and energy-
momentum algorithms for non-linear Hamiltonian systems with symmetry.
Computer Methods in Applied Mechanics and Engineering 134, 3, 197–222.

[19] Ernst Hairer. 2006. Long-Time Energy Conservation of Numerical Integrators.
Cambridge University Press, CambridgeNY.

[20] Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Differential Equations.
Vol. 31. Springer Science and Business Media.

[21] David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan
Grinspun. 2009. Asynchronous contact mechanics. ACM Transactions on Graph-
ics 28, 3, Article No. 87.

[22] T. J. R. Hughes, T. K. Caughey, and W. K. Liu. 1978. Finite-element methods for
nonlinear elastodynamics which conserve energy. Journal of Applied Mechanics
45, 2, 366–370.

[23] Arieh Iserles. 2009. A First Course in the Numerical Analysis of Differential Equa-
tions. Cambridge University Press, Cambridge, NY.

[24] Couro Kane. 1999. Variational Integrators and the Newmark Algorithm for Con-
servative and Dissipative Mechanical Systems. Ph.D. Dissertation. California In-
stitute of Technology, Pasadena, CA.

[25] C. Kane, J. E. Marsden, and M. Ortiz. 1999. Symplectic-energy-momentum pre-
serving variational integrators. Journal of Mathematical Physics 40, 7, 3353–
3371.

[26] Liliya Kharevych, Weiwei Yang, Yiying Tong, Eva Kanso, Jerrold E. Mars-
den, Peter Schröder, and Matthieu Desbrun. 2006. Geometric, variational
integrators for computer animation. In Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation. 43–51.

[27] Tae-Yong Kim, Nuttapong Chentanez, and Matthias Müller-Fischer. 2012. Long
range attachments—a method to simulate inextensible clothing in computer
games. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation. 305–310.

[28] D. Kuhl and M. A. Crisfield. 1999. Energy-conserving and decaying algorithms
in non-linear structural dynamics. International Journal for Numerical Methods
in Engineering 45, 5, 569–599.

[29] Robert A. LaBudde and Donald Greenspan. 1975. Energy and momentum con-
serving methods of arbitrary order for the numerical integration of equations
of motion. Numerische Mathematik 25, 4, 323–346.

[30] J. D. Lambert. 1991. Numerical Methods for Ordinary Differential Systems: The
Initial Value Problem. John Wiley & Sons, New York, NY.

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.

http://dx.doi.org/10.1145/280814.280821
http://dx.doi.org/10.1002/zamm.19870670128


Stabilizing Integrators for Real-Time Physics • 9:19

[31] Adrian Lew, Jerrold E. Marsden, Michael Ortiz, and Matthew West. 2003. Asyn-
chronous variational integrators. Archive for Rational Mechanics and Analysis
167, 2, 85–146.

[32] Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013.
Fast simulation of mass-spring systems. ACM Transactions on Graphics 32, 6,
209:1–209:7. http://cg.cis.upenn.edu/publications/Liu-FMS

[33] Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2016. Towards real-time sim-
ulation of hyperelastic materials. arXiv:1604.07378.

[34] Tiantian Liu, Ming Gao, Lifeng Zhu, Eftychios Sifakis, and Ladislav Kavan. 2016.
Fast and robust inversion-free shape manipulation. Computer Graphics Forum
35, 2, 1–11.

[35] Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Transac-
tions on Graphics 32, 4, 104.

[36] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014.
Unified particle physics for real-time applications. ACM Transactions on Graph-
ics 33, 4, 153.

[37] Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf,
Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skin-
ning with contact and collisions. ACM Transactions on Graphics 30, 4, Article
No. 37.

[38] Dominik L. Michels and Mathieu Desbrun. 2015. A semi-analytical approach to
molecular dynamics. Journal of Computational Physics 303, 336–354.

[39] Dominik L. Michels, Gerrit A. Sobottka, and Andreas G. Weber. 2014. Exponen-
tial integrators for stiff elastodynamic problems. ACM Transactions on Graphics
33, 1, 7.

[40] Matthias Müller. 2008. Hierarchical position based dynamics. In Proceedings
of the Workshop in Virtual Reality Interactions and Physical Simulation (VRI-
PHYS’08). DOI:http://dx.doi.org/10.2312/PE/vriphys/vriphys08/001-010

[41] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2014.
Strain based dynamics. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Symposium on Computer Animation (SCA’14), Vol. 2.

[42] Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015.
Air meshes for robust collision handling. ACM Transactions on Graphics 34, 4,
133.

[43] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007.
Position based dynamics. Journal of Visual Communication and Image Represen-
tation 18, 2, 109–118.

[44] Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM ⊇ Projec-
tive Dynamics: Fast simulation of general constitutive models. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’16).
21–28.

[45] Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive anisotropic
remeshing for cloth simulation. ACM Transactions on Graphics 31, 6,
152.

[46] Nathan Mortimore Newmark. 1959. A method of computation for structural
dynamics. Journal of the Engineering Mechanics Division 85, 3, 69–74.

[47] Eftychios Sifakis and Jernej Barbič. 2012. FEM simulation of 3D deformable
solids: A practitioner’s guide to theory, discretization and model reduction. In
ACM SIGGRAPH 2012 Courses. ACM, New York, NY, 20.

[48] J. C. Simo, N. Tarnow, and K. K. Wong. 1992. Exact energy-momentum con-
serving algorithms and symplectic schemes for nonlinear dynamics. Computer
Methods in Applied Mechanics and Engineering 100, 1, 63–116.

[49] F. S. Sin, D. Schroeder, and J. Barbič. 2013. Vega: Non-linear FEM deformable
object simulator. Computer Graphics Forum 32, 1, 36–48.

[50] Gerrit Sobottka, Tomás Lay, and Andreas Weber. 2008. Stable integration of the
dynamic Cosserat equations with application to hair modeling. Journal of WSCG
16, 73–80.

[51] Jos Stam. 2009. Nucleus: Towards a unified dynamics solver for computer graph-
ics. In Proceedings of the IEEE International Conference on Computer-Aided Design
and Computer Graphics.1–11.

[52] Ari Stern and Mathieu Desbrun. 2006. Discrete geometric mechanics for varia-
tional time integrators. In ACM SIGGRAPH 2006 Courses. ACM, New York, NY,
75–80.

[53] Jonathan Su, Rahul Sheth, and Ronald Fedkiw. 2013. Energy conservation for the
simulation of deformable bodies. IEEE Transactions on Visualization and Com-
puter Grahics 19, 2, 189–200.

[54] Demetri Terzopoulos and Kurt Fleischer. 1988. Deformable models. Visual Com-
puter 4, 6, 306–331.

[55] Demetri Terzopoulos and Kurt Fleischer. 1988. Modeling inelastic deformation:
Viscolelasticity, plasticity, fracture. In ACM Siggraph Computer Graphics, Vol. 22.
ACM, 269–278.

[56] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically
deformable models. ACM SIGGRAPH Computer Graphics 22, 4, 269–278.

[57] Bernhard Thomaszewski, Simon Pabst, and Wolfgang Straßer. 2008. Asynchro-
nous cloth simulation. In Computer Graphics International, Vol. 2. Wilhelm
Schickard Institute for Computer Science, Graphical-Interactive Systems.

[58] Huamin Wang. 2015. A Chebyshev semi-iterative approach for accelerating pro-
jective and position-based dynamics. ACM Transactions on Graphics 34, 6, 246.

[59] Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-resolution
isotropic strain limiting. ACM Transactions on Graphics 29, 6, Article , 10 pages.

[60] Matthew West. 2004. Variational Integrators. Ph.D. Dissertation. California In-
stitute of Technology.

[61] M. West, C. Kane, J. E. Marsden, and M. Ortiz. 1999. Variational integrators, the
Newmark scheme, and dissipative systems. In Proceedings of the International
Conference on Differential Equations, Vol. 1. World Scientific, 7.

[62] Danyong Zhao, Yijing Li Li, and Jernej Barbič. 2016. Asynchronous implicit
backward Euler integration. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA’16). 1–9.

[63] Ge Zhong and Jerrold E. Marsden. 1988. Lie-Poisson Hamilton-Jacobi theory
and Lie-Poisson integrators. Physics Letters A 133, 3, 134–139.

Received September 2016; revised September 2017; accepted October 2017

ACM Transactions on Graphics, Vol. 37, No. 1, Article 9. Publication date: January 2018.

http://cg.cis.upenn.edu/publications/Liu-FMS
http://dx.doi.org/10.2312/PE/vriphys/vriphys08/001-010

