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Abstract

The emergence of the Internet as a pervasive communi-
cation medium, and the widespread availability of digi-
tal video technology have led to the rise of several net-
worked streaming media applications such as live video
broadcasts, distance education and corporate telecasts.
This paper studies the traffic associated with two major
categories of streaming content - on-demand streaming
of pre-recorded content and live broadcasting. Using
streaming logs from a commercial service, we analyze
the traffic along a number of dimensions such as session
characterization, object popularity, protocol choice and
network load. Among our findings, (i) high bandwidth
encodings account for about twice as many requests as
low bandwidth ones, and make up about 94% of the
traffic, (ii) Windows Media streams account for more
than 75% of all requests, when the content is available
in both Windows and Real formats, (iii) TCP based
transport protocols dominate over UDP being used in
about 70% of all bytes transfered (iv) Object populari-
ties exhibit substantial skew with a few objects account-
ing for most of the load, (v) A small percentage of IP
addresses (or routing prefixes or origin autonomous sys-
tems (ASes)) account for most of the traffic demand
across a range of performance metrics. This last behav-
ior suggests that substantial bandwidth efficiency can
be realized with a distribution infrastructure comprised
of a relatively small number of replicas, placed close to
the heavy-hitter ASes. We also found very high vari-
ability in terms of the traffic volume with an order of
magnitude or more increase in the offered load over tens
of minutes, suggesting the potential benefit of a shared
infrastructure that can exploit statistical multiplexing.

1 Introduction

The emergence of the Internet as a pervasive com-
munication medium, and the widespread availabil-
ity of digital video technology have led to the rise
of several networked streaming media applications
such as live video broadcasts, distance education,

corporate telecasts, etc. It is therefore important
to understand and characterize the traffic associ-
ated with these applications in terms of end-system
behavior and network impact, in order to develop
workload models as well as insights into network
traffic engineering and capacity planning for such
applications.

Demand for streaming media is surging. According
to a recent industry study [5], there were 60 mil-
lion people listening to or watching streaming me-
dia each month, 58 US TV stations performing live
webcasting, 34 offering on-demand streaming media
programs, and 69 international TV webcasters. The
study also finds that 6000 hours of new streaming
programming are created each week. The ongoing
deployment of an array of broadband last mile ac-
cess technologies such as DSL, cable and high speed
wireless links will ensure that a growing segment of
the population will have sufficient bandwidth to re-
ceive streaming video and audio in the near future.
According to Forrester Research [8, 19], by 2005,
46 million homes in the US alone will have broad-
band Internet connectivity. This is likely to dramat-
ically increase the use and popularity of streaming
media.

However, due to the high bandwidth requirements
and the long-lived nature (tens of minutes to a cou-
ple of hours) of digital video, server and network
bandwidths are proving to be major limiting factors
in the widespread usage of video streaming over the
Internet. Audio and video files tend to be large in
size, e.g., 4.8 MB for a 5 minutes long 128 Kbps
MP3 audio clip, 450 MB for a 2 hour long MPEG-4
video clip encoded at 500 Kbps.

There is a rich body of literature on end-system
and network mechanisms for delivering streaming
media across the Internet. There has been a signif-
icant amount of work modeling the multi-timescale
bursty bandwidth profile of compressed variable-bit-
rate (VBR) videos [7, 16, 10, 11], and on tech-



niques [18, 17, 21] for efficiently delivering such
streams across the network. A number of experi-
mental studies address the quality of service (delay,
loss, jitter etc.) experienced by multimedia streams
transmitted across networks [23, 2, 13, 12, 22]. How-
ever, there has been very little work on character-
izing requests for streaming content and the associ-
ated server and network workload distributions for
such requests. Historically, a main reason for this
has been the paucity of streaming video content and
the absence of large user base for whatever content
was available. Only recently have a number of fac-
tors, such as the growth in broadband users, and the
development and spread of new compression tech-
niques such as MPEG-4 that can deliver good qual-
ity at low bandwidths, converged to a point where
many large content providers now offer a range of
streaming content such as news, shopping, short
video clips and trailers, and entertainment. In this
paper, we analyze session logs from a commercial
streaming service, and analyze the workload for two
different types of content - stored on-demand media,
and a live, real-time streaming presentation.

Existing empirical work on streaming media can be
categorized as either measuring the performance of
individual streams across the network, or as charac-
terizing streaming workloads. [15] examined inter-
actions of around 200 University users in 1997 with
a courseware application composed of lecture notes
(in HTML) with accompanying synchronized audio
lectures. [14] analyzed five audio traces (RealAu-
dio packet traces corresponding to long-lived Inter-
net radio channels at Broadcast.com), ranging from
83 seconds to 18.2 hours long, and containing up
to 1460 distinct audio data flows and 1397 distinct
user IP addresses.

Prior work on streaming video workload character-
ization, includes [4], which analyzes 58808 RTSP
sessions from 4786 University users to 23738 distinct
streaming media objects from 866 servers across the
Internet, and compares the characteristics to Web
workloads. [1] analyze streaming video workload
associated with two University course projects.

This work is based on log files containing several
orders of magnitude more sessions and users than
any previous work. We extracted and analyzed
4.5 million session-level log entries for two stream-
ing services over a period of 4 months. We also in-
tegrated information from the streaming logs with
BGP (Border Gateway Protocol) routing informa-
tion gleaned from multiple border routers on a tier-

1 ISP. We used this combination of streaming and
routing information to study the network implica-
tions of streaming traffic. Specifically we used net-
work routing-aware clustering techniques [9] to de-
termine the traffic distribution for different TP ad-
dress prefixes and ASes. To our knowledge, this is
the first network-routing-aware study of streaming
traffic distributions.

The remainder of the paper is organized as follows.
Section 2 presents our methodology for analyzing
the streaming traffic as well as the data set we used.
We report our analysis and results in Sections 3-7.
Section 3 discusses the session composition by pro-
tocol family, stream bandwidth and transport pro-
tocol. In Section 4 we consider the traffic distribu-
tion at different levels of aggregation and its impli-
cations for content distribution. Traffic dynamics
over various time-scales as well as object popularity
is investigated in Section 5. The session character-
istics of a few highly popular objects is presented
in Section 6. Section 7 contains a summary of our
results and we conclude the paper in Section 8 with
a conclusion and indication of future work.

2 Methodology

We first outline our data collection and analysis
methodology.

2.1 Measurement approach

This study is based on an analysis of a large dataset
of application level session logs from a commercial
streaming service. A session corresponds to all the
interactions associated with a single client request-
ing and viewing a clip containing both audio and
video. From the log data, we analyze the breakdown
of traffic by protocol family, stream bandwidth, and
transport protocol to get a quantitative understand-
ing of the breakdown of streaming traffic for these
key parameters of interest.

A streaming session is initiated when a new request
for a streaming object is received at a streaming
node. During the session, while the video is being
streamed to the requesting client, user requests for
interactive operations (such as fast forward, rewind,
pause, restart) can arrive. The session terminates



either when the client sends a termination request,
or due to some error situation. At termination,
a single entry is created in the log summarizing a
range of information for that session. The fields in
each log entry include: requesting IP address, par-
ticulars of requested resource, whether the file is
a Real or Windows Media object, transport proto-
col used for streaming (TCP or UDP), total data
transmitted, session end-time, total session time,
status/error codes, etc. Content providers utilizing
streaming services typically develop their own nam-
ing convention for streaming objects from which fur-
ther information about the stream (e.g. its encoding
rate) can be determined.

From the streaming session logs we extracted all the
log entries associated with two particular streaming
sites that serve different types of content - stored on-
demand media, and a long-lived, real-time stream-
ing presentation. For the on-demand data set ses-
sion logs were collected over a four month period of
time, whereas for the live data set, logs were col-
lected for a two month period.

We characterize the workload by looking at a num-
ber of different measures: number of requests, traffic
volume, number of active connections, etc. We then
look at these workload measures at different levels
of address aggregation, from client IP address, to
network prefix and Autonomous System (AS). This
aspect of the study focuses on understanding the
spatial (topological) workload distribution.

In order to better understand the traffic dynamics,
we also present a time series analysis and present
several measures such as traffic volume over several
time scales of interest, ranging from several minutes
to 4 months. This type of analysis is potentially
useful in understanding long-term trends in traffic,
as well as shorter time-scale variations such as flash
crowds. Longer time-scale trends are important for
capacity planning, while shorter time scale varia-
tions are important both in planning for load peaks
as well as in developing load balancing strategies if
streaming services are supported via a content dis-
tribution network.

Analyzing the traffic at the level of individual IP
addresses is useful for several reasons. First, a sin-
gle session entry in the application log always cor-
responds to a single client, allowing us to explore
intra-session client behaviors. Second, IP level infor-
mation provides a fine-grained view of the demand
and load distribution across the network. For exam-

ple, if a single user generated a substantial amount
of request traffic, this would show up in an IP level
analysis. Due to the use of techniques such as dy-
namic address assignment, NAT (Network-address-
translation) and forward proxy servers at the edge
of the network, an IP address may not correspond
to a unique client in general. However, since each
IP address maps to a unique interface (subnet) at
the edge of the network, it is still useful for under-
standing the overall traffic distribution.

We use network prefixes as an intermediate level
of aggregation. An IP router uses longest prefix
matching to map from the destination IP address
of an incoming packet to a list of prefixes in its for-
warding table that determine the next-hop router
to which the packet should be forwarded towards its
destination. All packets mapping to the same prefix
are forwarded to the same next hop router. Hence,
the prefix-level aggregation allows us to group IP
addresses (and clients) that are topologically close
together from a network routing viewpoint. All TP
routing decisions are made at the granularity of the
routing prefix, and so understanding traffic at this
level is important for the purpose of network or
CDN traffic engineering. For similar reasons, we
also study the traffic at larger routing granularities,
including AS level (all prefixes belonging to a sin-
gle AS are part of a single administrative domain).
For instance, if we observe that a few prefixes (or
ASes) account for a substantial fraction of the to-
tal traffic, this might be used by network design-
ers responsible for setting up ISP peering or transit
service relationships or placing network servers, in
order to optimize the network, reduce network load,
and potentially improve streaming performance.

2.1.1 Integrating Routing with Streaming
Data

As mentioned above, we correlate the streaming logs
with routing data collected from multiple routers
across a Tier-1 ISP. BGP (Border Gateway Pro-
tocol) table dumps obtained from the routers each
day are collated to obtain a table of (routing pre-
fix, originating AS number(s)) pairs for that day. In
our data, we note that we do not necessarily have a
unique mapping from a client IP address to a unique
network prefix or originating AS. A routing prefix
might be mapped to multiple originating ASes if
for example, multiple ASes advertise the same pre-
fix. In addition, because IP routing is dynamic, the



routing table entries can change: a prefix can appear
or disappear, or its mapping to an AS can change.
When looking at data for time-scales up to a day,
we integrate the routing information with the ses-
sion logs as follows: for each session log entry, we
use longest prefix matching on the requesting IP
address to determine (from the table for that day),
the corresponding network prefix(es) and originat-
ing ASes for that session. If this does not result in
a unique mapping, we assign the traffic for a ad-
dress mapped to both ASes AS1 and AS2 to a sep-
arate logical AS represented by AS1+AS2. Since
we look at logs over a period of four months, we
need to consider carefully how to combine routing
information with the streaming log data for time
scales longer than a day. To understand the ex-
tent of routing information change, we collected the
routing data for a 22 day period in our 4 month
logging period. We then developed a list of prefix-
AS pairs by merging the prefix-AS mappings into
a single combined table, and discarded any prefix-
AS mapping for which there was no corresponding
streaming log entry. This combined table contained
some prefixes that map to multiple ASs.

For the entries in the combined table, we determined
the number of days that each prefix and prefix-AS
pair appeared. This list contains 30843 unique pre-
fixes of which 26781 (87%) were present all 22 days.
In addition, out of a total of 31247 unique prefix-AS
pairs, 26485 (85%) were present all 22 days. This
suggests that the large majority of the prefixes and
prefix-AS pairs are stable across the 22 days.

The results of the analysis presented in the rest of
the paper use routing table data from selective sin-
gle days in the log file analysis. We believe, based
on the above observations, that the results are not
significantly affected by this simplification.

2.2 Description of Data Set

For this study we used session level logs from two
data sets:

e On demand streaming of pre-recorded clips
from a current affairs and information site - the
On Demand data set.

e A commerce oriented continuous live stream-
the Live data set.

Table 1 shows the collection period, number of ses-
sions, number of distinct requesting IP addresses
and number of distinct requesting ASes for the two
data sets. For each data set, the total traffic over
the measurement period was of the order of several
Terabytes. For On Demand, all content is offered
in both Windows Media (MMS) and Real Media
(Real) formats, and for each format, the video is en-
coded at two different bandwidths: a higher band-
width version at 250 Kbps and a low bandwidth
version at 56 Kbps. There were 4296 unique clips
accessed during the measurement period for this set.
Live consisted of a single 100 Kbps stream in Win-
dows Media format.

3 Session Composition

We profiled the sessions in terms of protocol family
(Real and Windows Media), stream bandwidth, and
transport protocol used. Note that for On Demand,
all content is offered in both media formats, and
as both high and low bandwidth encodings. Hence
the choice of a particular protocol family or stream
bandwidth will be driven by a combination of client-
side and network factors such as user preference,
network connectivity and software deployment.

Table 2 reports the breakdown for On-Demand, and
Table 3 depicts the transport protocol breakdown
for Live. These breakdowns show relatively little
change across the different months and are consid-
ered in more detail below.

3.1 Composition by Protocol Family

Table 2 shows that Windows Media requests dom-
inate by far over the four months - there are 3.35
times as many sessions and 3.2 times as much traf-
fic generated by Windows media requests as com-
pared to Real sessions. Note that the relative ra-
tios are quite stable across the different months.
Fig. 1(a)-(b) depicts the breakdown among the top
ranked ASes that either generate 80% of all the re-
quests or account for 80% of all the traffic, across
the four months. We see that the overwhelming
majority of these heavy-hitter ASes receive much
more Windows traffic than Real. All this suggests
a widespread prevalence and use across the Internet
of the Windows Media software. This dominance



Data Dates Number of | Number of unique Number of
sessions (million) IPs (million) | distinct ASes

On Demand | 12/01/2001 - 03/31/2002 35 05 6600
Live 02/01/2001 - 03/31/2002 1 0.28 4000

Table 1: Data set: Statistics.
Dates Metric Protocol Family Bandwidth Transport
(% of total) MMS Real | Low | High [ Proprietary | HTTP
Streaming
UDP | TCP TCP
Dec, 2001 - Mar, 2002 Requests 77 23 35 65 34 29 37
Traffic Volume 76 24 5 95 28 45 27
Dec, 2001 Requests Yud 23 35 65 32 28 40
Traffic Volume 76 24 6 94 26 45 29
Jan, 2002 Requests 78 22 36 64 34 30 36
Traffic Volume 78 22 7 93 30 45 25
Feb, 2002 Requests 75 25 35 65 39 29 32
Traffic Volume 74 26 7 93 33 45 22
Mar, 2002 Requests 76 24 32 68 33 33 34
Traffic Volume 76 24 6 94 29 45 25
Table 2: On-Demand : Popularity breakdown by protocol family, encoding bandwidth, and transport

protocol, for a number of time intervals. Metrics are number of requests and traffic volume, expressed as a
percentage of the total amount over the corresponding time period.

Dates Metric Transport

(% of total) Proprietary HTTP
Streaming

UDP | TCP TCP
Feb, 2001 - Mar, 2002 Requests 28 17 55
Traffic Volume 17 38 47
Feb, 2001 Requests 30 18 52
Traffic Volume 17 36 47
Mar, 2001 Requests 26 17 56
Traffic Volume 16 36 48

Table 3: Live: Popularity breakdown by transport protocol. Metrics are number of requests and traffic
volume, expressed as a percentage of the total amount over the corresponding time period.

could be at least partially attributed to the Win-
dows strategy of bundling the encoder, server and
player software with their operating system. Still
the fact that Real continued to command about
23% percent of the requests across the 4 months,
suggests that at least for the time-being, content
providers should continue providing the content in
both formats.

3.2 Composition by Stream Bandwidth

We observe from Table 2 that overall there are al-
most twice as many sessions downloading (or re-
questing) high bandwidth streams compared to low
bandwidth streams. The high bandwidth content

accounts for 95% of the total traffic, and the rela-
tive ratios are nearly identical across the different
months. Our logs reveal that the breakdown is sim-
ilar within individual protocol families. High band-
width content accounts for 67% and 94% of all MMS
sessions and traffic respectively (60% and 92% of all
Real sessions and traffic respectively). Given that
these are streaming downloads, the above statistics
seem to indicate that a large majority of requests
for the streaming content are sourced by clients with
good end-to-end broadband connectivity. Fig. 2(a)-
(b) depicts the breakdown, by content bandwidth,
among the top ranked ASes that either generate
80% of all the requests or account for 80% of all
the traffic, across the four months. We find that for
a large majority of these heavy-hitter ASes, sessions
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Figure 1: On demand: per-AS protocol (Windows Media (mms) or Real (rtsp)) breakdown for ASes gen-
erating 80% of requests, and data volume. X-axis numbers the ASes. Y-axis is in percentage of (a) total

requests and (b) total traffic generated by each AS.
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Figure 2: On demand: per-AS breakdown by stream bandwidth (high versus low encoding rate) for ASes
generating 80% of requests, and data volume. X-axis numbers the ASes. Y-axis is in percentage of (a) total

requests and (b) total traffic generated by each AS.

requesting high bandwidth dominate, both in num-
ber of sessions and generated traffic. 90% of all the
ASes originated some sessions for broadband con-
tent for On Demand. For Live which is streamed
at 100 Kbps, there were 4000 requesting ASes. All
this suggests a fairly wide presence of clients with
broadband connectivity (either at home or through
corporate or campus LANSs) across the Internet.

3.3 Composition by Transport Protocol

We next consider the transport protocol used to
stream the video to the clients. Both Windows Me-
dia and RealNetworks recommend that the video be
streamed using their respective proprietary stream-
ing protocols running preferably over UDP. To over-
come firewall restrictions, the protocol can also run
over TCP. There is also the option to stream the clip
using standard HTTP or some variant of it. This is
the fall-back option for going through firewalls (al-
most all firewalls allow outgoing HTTP requests),
and also for older versions of the player software.

For On Demand, Table 2 shows that for the Dec,
2001-March, 2002 period, the majority (63% of the
sessions accounting for 73% of the traffic) use propri-
etary streaming protocols over either UDP or TCP.
Still, a significant 37% of the sessions use HTTP,
the recommended last option. In addition, overall
66% of all the sessions use TCP (HTTP or propri-
etary protocol), and only 34% use UDP. For the
100 Kbps Live stream, over Feb-March, HTTP is
used by 55% of requests accounting for 47% of the
traffic (HTTP appears to be more prevalent for Live
than for On Demand), and overall, 72% of the ses-
sions accounting for 83% of the traffic use TCP. As
shown by the above tables, for both data sets, the
overall breakdown between UDP, TCP and HTTP
sessions remains similar across the months, though
there are some variations in the actual percentages
for each category. Fig. 3(a)-(b) show that TCP
accounts for the majority of the traffic for most
heavy-hitter ASes. This observed widespread use of
TCP occurs in spite of the conventional wisdom that
the congestion-control and reliability mechanisms in
TCP make it less suitable than UDP for meeting the
the real-time constraints associated with stream-
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Figure 3: On demand: per-AS breakdown by transport protocol (TCP (represented by blocks) or UDP

(represented by “+7)) ASes generating 80% of requests, and data volume.

X-axis numbers the ASes.

Y-axis is in percentage of (a) total requests and (b) total traffic generated by each AS.

ing. Firewall restrictions may be a key determin-
ing factor behind such widespread usage of TCP for
streaming, even for high-bandwidth streams.

A consequence of the above composition is that the
bulk of the streaming traffic, by virtue of using TCP,
is still congestion-control friendly. We also find that
the TCP sessions can be long - for example for Live,
9% of sessions using TCP are on for at least 20
minutes. This seems to indicate that even for high
bandwidth streams, the quality of media streamed
using TCP is considered good enough by a large
proportion of the end-users to continue viewing the
content for extended periods. This in turn again
suggests that these clients experience good enough
end-to-end connectivity that the TCP throughput is
sufficient to deliver the video at its encoded bitrate.

4 Traffic Distribution

We next study how the traffic is distributed across
the network at the IP, network prefix and AS aggre-
gation grains. For On Demand, Figs. 4(a)-(b) plot
the ranked CDF of (i) the number of requests gen-
erated by each entity, and (ii) the total traffic gener-
ated by each entity, where an entity is either an IP
address, a network prefix or an AS. Fig. 4(c) plots
the ranked CDF of the total number of unique IP
addresses per prefix and AS. The ranked CDF is ob-
tained by first ordering the IPs (or prefixes or ASes)
in order of decreasing volume, and then plotting the
cumulative volume for the ranked list. Figs. 5(a)-
(c) present the corresponding plots for Live. The
graphs reveal substantial variability in the number
of requests as well as in the traffic volume among
different TP addresses, prefixes and ASes. For On

Demand, 75% of the total sessions and 80% of the
traffic is attributable to just 30% and 20%, respec-
tively of the total IP addresses. For Live, 94% of the
total sessions and 96% of the traffic for Live is at-
tributable to just 30% and 20%, respectively of the
routing prefixes. We note that for each aggregation
grain, the distribution of traffic volume and number
of requests is more skewed towards a few heavy con-
tributors (IP/prefix/AS) for Live compared to the
distribution for On Demand. There is a similar dif-
ference between the distribution of requesting IP ad-
dresses at the prefix and AS levels for two datasets.
The skew in the distribution of the number of ses-
sions increases with larger aggregation grains - from
IP to prefix to AS, for both data sets (Figs. 4(a)
and 5(a)). The same behavior holds for the total
traffic distribution at the prefix and AS levels for
both data sets. However, the IP-level distribution of
traffic volume exhibits the least and the most skew,
respectively, among the different aggregation levels,
for On Demand and Live (Figs. 4(b) and 5(b)). For
both data sets, a few top-ranked ASes together ac-
count for almost all the requests as well as all the
traffic. Fig. 4(c) shows that a tiny percentage of
all the prefixes (or ASes) account for most of the
requesting TP addresses.

We find that the ASes ranked highest in each of the
three metrics have significant overlap. For instance,
for On Demand, the top-ranked 300 ASes (5% of all
the ASes) for all three rankings have 71% common
members, while 310 ASes appear on the top 300 list
for at least 2 of the three rankings. This suggests
a high degree of positive correlation between the

number of requests, traffic volumes and IP addresses
for an AS.

We also found that a large proportion of ASes con-
sistently remain among the top traffic contributors



across the months. Considering On Demand for in-
stance, 207 ASes are among the the top-ranking 300
ASes (this set contributes around 79 — 80% of the
monthly traffic) for each month between Dec. and
March. The significant skew in traffic contributed
by different ASes as well as the persistent high rank-
ing of many heavy-hitter ASes suggests that there
can be benefits from distribution schemes that tar-
get the heavy hitter ASes. We shall explore distri-
bution architectures in more detail next.

4.1 Impact on Content Distribution

In this section we use the data from our stream-
ing logs together with BGP routing information
from a tier-1 ISP to investigate different tradeoffs
for the distribution of streaming content. In all
cases we assume that the streaming content is be-
ing served from a hosting center in the tier-1 ISP
or through a content distribution network (CDN)
originating from the ISP. The user perceived quality
of a streaming presentation is determined by many
factors including encoding rate, frame rate and im-
age size. However, from a network perspective sus-
taining the required bandwidth and reducing the
packet loss appears to be the most important fac-
tors in determining streaming quality. Maintain-
ing a (near) congestion free end-to-end connection
between a streaming client and server is therefore
important to maintain streaming quality. AS hop
count is in general not a good indicator of the con-
gestion that might be experienced in traversing an
end-to-end path other than the fact that the proba-
bility of experiencing congestion increases with ev-
ery network element on the path. However, direct
connectivity to a tier-1 ISP normally avoids con-
gested public peering links. Also, tier-1 ISPs are
normally well connected with other tier-1 ISPs al-
lowing users to benefit from their collective rich con-
nectivity. We therefore make the assumption for
this discussion that a low number of AS hops (e.g. 2)
between a tier-1 ISP and a streaming client will in
general ensure adequate streaming quality.

First we determine how much of the content would
be served to clients no more than one AS hop away.
This is shown in the first lines of Table 4 and Ta-
ble 5 for the month of March for the On Demand
and Live data sets respectively. (We performed the
analysis across all of the months in the data set and
observed similar results.) We consider the traffic
volume, number of IP addresses and the number of

ASes that would fall in this subset of the data ex-
pressed as a percentage of the totals for the time
period. For both data sets the percentages of vol-
ume and number of IP addresses exceed 50% even
though less than 20% of the ASes are covered. This
is as expected given that the BGP data is from a
tier-1 ISP which is well connected to other major
networks and given the highly skewed per-AS dis-
tribution of the data that was presented in Section 4.

Next we consider content that would be served to
clients no more than two AS hops from the tier-1
ISP. The results for this analysis is shown in the
second lines of Tables 4 and 5. The On Demand
data set show substantial increase in all three met-
rics considered. The Live data set on the other hand
show a similar increase in the percentage of ASes
covered, but show only a modest increase in the
volume and number of TP addresses. This seems
to suggest that in the case of the Live content a
number of significant contributor ASes fall outside
the 2 AS hop boundary.

Given the very skewed nature of the per-AS dis-
tributions presented in Section 4 we next consid-
ered the effect of selective additional arrangements
with consistently heavy contributing ASes. In prac-
tice, such arrangements could take the form of con-
tent internetworking or peering relationships with
such ASes, or replica placement at or near to such
ASes. We determined the set of consistently signif-
icant contributor ASes as follows. For each month
covered by our data we determined the list of top
ASes that contributed 90% of the traffic volume.
We then generated a list of ASes for each month
corresponding to the ASes in the 90% list but not
in the one-AS-hop-or-less list. Finally we picked the
set of ASes that was present in all of these monthly
lists (across both data sets) to make the consistent
contributor AS list which consisted of 116 ASes.

Combining the consistent contributor AS list with
the one-AS-hop-or-less list corresponds to a content
distribution approach where a service provider at-
tempts to reach clients either directly through one
AS hop or by selective peering or replica placement
with ASes. The result of such an approach with our
data is presented in the third lines of Tables 4 and 5.
As expected the AS coverage in both cases increase
very little as a relatively small set of ASes were se-
lected. There is roughly a 40% and a 30% improve-
ment in both the traffic volume and the number of
IP addresses respectively for the On Demand and
Live data sets. In the case of the On Demand data
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set the improvement is less significant than for the
two-AS-hops-or less approach, whereas for the Live
data set the improvement is more significant.

Finally we repeated the same exercise but included
on the consistent contributor list only those ASes
not in the two-AS-hop-or-less set. The number of
ASes in this set is only 15. Combining this AS set
with the two-AS-hop-or-less set corresponds to an
approach where the service provider combines the
coverage provided by existing peering arrangements
with selective peering or replica placement in a small
number of heavy contributing ASes. The result for
this approach is shown in the last lines of Tables 4
and 5.

While our data set is not large enough to make gen-
eral conclusions, the analysis suggests that:

e A tier-1 ISP covers a significant portion of end-
points through 2 or fewer AS hops.

e If needed this coverage can be augmented with
selective relationships with a small number of
ASes.

While the economic implications of CDN architec-

tures are beyond the scope of this paper, the analy-
sis hint at the tradeoffs that exists between deploy-
ing and managing more caches versus maintaining
appropriate peering relationships.

5 Traffic Dynamics

In this section we consider the traffic dynamics
across various time-scales. Figures 6(a)-(b) plots
the bandwidth usage across a one-month period for
both On-Demand and Live. The data indicates
substantial variability in the bandwidth demand.
For On-Demand, the mean, median and peak band-
widths are 4.6 Mbps and 1.1 Mbps, and 141 Mbps,
respectively. The peak is 31 times the mean. For
Live, the mean, median and peak bandwidths are
13.4 Mbps, 10.3 Mbps and 122 Mbps respectively.
The graphs also show there are daily local peaks,
and that there can be substantial differences in the
peak bandwidth requirement across days.

Figures 7(a)-(b) focus on the bandwidth require-
ments for each of 2 days (Dec12 and Dec 13, 2001),
for On-Demand. The bandwidths here are averaged



Result Set

Traffic Volume
(% of total)

# IP addresses
(% of total)

# ASes
(% of total)

One AS hop (or less) 52.5 53.5 17.5
Two AS hops (or less) 88.7 89.7 72.7
One AS hop & selected ASes 73.4 72.5 20.1
Two AS hop € selected ASes 91.7 92.1 73

Table 4: On Demand: Content Distribution Statistics.

Result Set Traffic Volume | # IP addresses # ASes

(% of total) (% of total) | (% of total)

One AS hop (or less) 60.1 64.4 18.9
Two AS hops (or less) 63.9 68.7 71.2
One AS hop & selected ASes 79.7 80.1 22.2
Two AS hop & selected ASes 94.6 95.4 77.5

Table 5: Live: Content Distribution Statistics.

over 1 sec. intervals. The graphs reveal the fol-
lowing time-of-day effect. In both cases, the band-
width curve shows a low demand early in the day.
This is followed by an increase in demand (steeply
for Dec 13, more gradually for Dec 12), followed
by a region of high bandwidth requirement. Fi-
nally, the demand drops off. The mean, median
and peak bandwidths for Dec 12 and 13 respectively
are (9 Mbps, 8.76 Mbps, 26 Mbps) and (28 Mbps,
15 Mbps, 153 Mbps), indicating that there can be
a significant variation in bandwidth load across the
entire day. Note that Dec 13 has a much higher
peak than Dec 12 (almost six times higher) and is
among the three high peak days in Fig. 6(a). On
each of these three days, the high load was traced to
heavy demand for a small number of clips. Fig. 7(c)
shows that the increase in bandwidth usage can be
quite sudden. For Dec 13, the load increases from
1.35 Mbps (by a factor of 57) to 77 Mbps within
a span of just 10 minutes. The above data sug-
gests that we have a “flash-crowd” effect for Dec 13.
We also find that the bandwidth variations across
time (Fig. 7(b)) are due to variations in the num-
ber of requests across the day. This can be seen in
Fig. 7(d), where the graph showing the number of
concurrent connections, closely resembles the band-
width usage across the day. Fig. 8 indicated that the
high level daily trends are similar for the live stream-
ing data. Figure 8(b) shows the initial 5 hours of
the ramp up. This is clearly happening much more
gradually than for the On Demand data for Dec 13.
A more gradual buildup in demand, by providing
more reaction time, should make it easier to handle
the increased load, than the sudden surge witnessed
for the On Demand data.

The above graphs show that there can be signifi-

cant bandwidth variability with substantial differ-
ence between peak bandwidth requirement within
a day and across days. In addition, the demand
can spike by several factors within a few minutes.
All this makes it a challenging problem to provi-
sion server and network resources to handle such
a variable workload in a resource-efficient manner.
Provisioning for the peak demand would keep the
system and network resources under-utilized most
of the time, and may be uneconomical for individ-
ual content providers. If the content were hosted at
a single location, the sudden large traffic surges we
see might create hot-spots and performance prob-
lems for the network provider and the end-users of
the content. Instead, a distribution infrastructure
(such as a CDN) shared among many different con-
tent providers might be useful as it offers the po-
tential for statistical multiplexing of resources. This
would allow more efficient and economical resource
usage, with different providers getting access to ad-
ditional burstable bandwidth when required. Ap-
propriate distribution mechanisms can be used to
distribute the request load across the CDN to pre-
vent hot-spots.

5.1 Object popularities

Understanding how the observed traffic relates to
the different clips will be useful for developing traf-
fic models, and for determining appropriate tech-
niques for handling the workload for such stream-
ing content. Figs. 9(a)-(c) show the per-object traf-
fic contribution for three days in Dec, 2001 and
March 2002 for On Demand. Figs. 10(a)-(c) shows
the distribution of the number of sessions per clip
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Figure 6: Bandwidth demand across time for On-demand (Dec 2001) and Live (March 2002). Each point
represents the average bandwidth across a 10-sec interval

for the same three days. Both set of graphs indi-
cate that a small number of “heavy hitter” clips
account for the bulk of the traffic (volume as well
as number of sessions). For instance, for Dec 13,
2001, the top 5 clips (out of a total of 320 clips
requested that day) together accounted for 85% of
the total traffic. This suggests that distribution and
bandwidth management techniques focused on real-
izing resource-efficient delivery for the few “heavy
hitter” clips, might be required. For instance, in
a CDN infrastructure, the few heavy hitters could
be replicated and served from a large number of
the CDN nodes. Also promising are scalable deliv-
ery techniques such as patching and periodic broad-
cast [6, 20, 3] which can deliver a popular clip to a
large number of clients, with significant bandwidth
savings.

For certain types of content, clients may be willing
to view a clip later in time. In such cases, pro-
viding a “delayed download capability” as an op-
tion may be an attractive alternative for the con-
tent provider, network and end-users in times of
high load. (Such an approach clearly offers a dif-
ferent user experience than the instantaneous view-
ing enabled by streaming. However, the use of such
techniques in popular peer-to-peer systems, indicate
that it might be acceptable for certain types of con-
tent.) The server could schedule the downloads to
occur automatically to the clients during off-peak
time. This would help reduce/smooth out the traf-
fic peaks (Fig. 6(a),Fig. 7) while still satisfying many
requests using essentially time-shifted playback.

Finally, for the live streaming, Figure 8 indicates
that there can be a significant number of concurrent
connections for the event. Using multicast delivery
seems a promising way to reduce the bandwidth us-
age in this context.

6 Session Characteristics

We next study the distribution of session durations
and data download sizes for streaming content. Ta-
ble 6 depicts the sizes, durations and bandwidths of
four popular on-demand clips. These clips all corre-
spond to the same content and differ in the format
(Real or Windows) and bandwidth (low or high).

Fig. 11 shows the CDF of the amount of data down-
loaded by the sessions requesting each clip. The
graphs suggest that the data download session can
be highly variable across different sessions request-
ing the same clip. For all the clips, a large fraction of
sessions download only a small part of the video. For
instance for clip 1 (clip 2 is similar), 62% of the ses-
sions download at most 10% of the video, and only
10% download more than 90% of the clip. This be-
havior may be an indication of users either viewing a
prefix of the video or of using forward index jumps
to browse the clip. The behavior may also be an
indication that the user-percieved reception quality
may be inadequate in many cases. We note that for
both low bandwidth clips, sessions tend to download
a smaller proportion of the object than for the high
bandwidth clips. For instance for clip 3, 82% of the
sessions download at most 10% of the video, and less
than 2% download more than 90% of the clip. This
difference could be due to a combination of (i) the
poorer viewing quality of the low-bandwidth encod-
ings, and (ii) poorer connection quality experienced
by users with low bandwidth network connectivity
(e.g. dial-up users) - they are the most likely audi-
ence to request a low bandwidth encoding in pref-
erence to a higher bandwidth version.

For all clips, the CDF shows a spike (more pro-
nounced for clips 1 and 2) around the region where
the data download is 100% of the video size. This is



Volume: Wed Dec 12 00:00:00 2001 (EST) - Thu Dec 12 24:00:00 2001 (EST)

0'03\\\\\\\\\\\\\\\\\\\\\\\
o)
T
S 005
A 00
g
% 0015
g
500l
g
g ous
0
(Il SN . L
0 2 46 811214161820 2 2
Time (hours)
(a)
Volume: Thu Dec 13 12:00:00 2001 (EST) - Fri Dec 13 12:45:00 2001 (EST)
01
2009 /
: o o
b o [ Wy
oo
T 006
: f
3 0% |
? 004 N
¢ s /
g 0
8 oo
1200 1210 1220 1230 124
Time
(c)

Volume: Thu Dec 13 00:00:00 2001 (EST) - Thu Dec 13 24:00:00 2001 (EST)
016
014
0.12
01
008
006
004
002

o e L oo
0 2 46 8 1012141618202 24
Time (hours)

(b)
Thu Dec 13 00:00:00 2001 (EST) - Thu Dec 13 24:00:00 2001 (EST)
1200 Lo

Gbps (averaged over 1 seconds)

1000

800

600

400

200

Number concurrent connections

() e
0 2 4 6 8 1012 1416 1820 2 4
Time (hours)

(d)

Figure 7: On Demand - (a)-(b) plot the bandwidth across time for Dec 12 and Dec 13, 2001. For the latter
day, (c) plot the bandwidth for a 50 min. time interval, and (d) number of concurrent connections for the

entire day.
Name | Format | Bandwidth | Duration (sec)
clipl | MMS High 268
clip2 Real High 272
clip3 MMS Low 271
clips Real Low 272
Table 6: Popular clips: Properties.

due to a mass of sessions downloading the complete
clip.

For all the clips we note that there are some sessions
that each download data in excess of the video size.
The effect is more pronounced for the high band-
width clips. For instance, 0.03% of sessions down-
load more than twice the video size for clip 1. We
are currently investigating the reason for this be-
havior.

Fig. 12 shows the CDF of the connection times for
the sessions requesting each clip. The graphs indi-
cate that session length can be highly variable across
different sessions requesting the same clip. A large

fraction of sessions last for only a short time period,
and small fraction tends to be long-lasting. We note
that a smaller fraction of low-bandwidth sessions are
long-lasting compared to high bandwidth ones. For
instance for clip 1, 36% of the sessions last at most
10 sec, and 16% last more than 200 sec. In com-
parison, for instance for clip 3, 38% of the sessions
last at most at most 10 sec, and 5% last more than
200 sec. The spike in the graphs occurs at around
270 sec, the video length.

Fig. 13(a)-(b) depict the distribution of session con-
nection times for Live. A large proportion of the
sessions (69%) are on for 2 minutes or less. How-
ever the distribution exhibits a long tail ( as seen
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Figure 9: On Demand Traffic volume distribution.

X-axis: clips ranked in decreasing order of traffic

contribution (top 50 clips shown). Y-axis: cumulative traffic contribution (percentage of total).

from Fig. 13(b)). About 12% of the sessions are at
least 10 minutes long, while 8% of the sessions are
longer than 20 minutes. This suggests that there
exists an audience for long-duration network-based
streaming video presentations. For on-demand con-
tent, this in turn argues for expanding the content
offering from the short-duration clips that are the
norm today to more comprehensive presentations.

7 Summary of results

In this Section we list a summary of our findings:

e Requests for Windows Media dominate those

for Real where content is available in both for-
mapts.

e Requests for content encoded at a higher bi-

trate dominate where high and low encoding
rates are available.

Sessions using transport protocols running over
TCP dominate those using UDP.

Request and traffic volumes are highly skewed
at different levels of aggregation (IP address,
routing prefix and AS).

For a tier-1 ISP a significant percentage of
streaming clients are within 2 AS hops of the
ISP.

Selective arrangements with a modest number
of consistently high contributing ASes yield sig-
nificant gain in improving coverage to stream-
ing clients.

Streaming traffic exhibits regular daily patterns
with very high variability in terms of request,
traffic volume and concurrent number of con-
nections.

Ramp up to daily peaks can be gradual over
several hours or very sudden over tens of min-
utes.

Streaming traffic exhibit very high variability
in terms of daily peaks.
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Figure 11: Figs.(a)-(d) plot the cumulative distribution of data download associated with each request for

clips 1-4 respectively

e A small number of streaming objects is respon-
sible for significant portions of the request and
traffic volume.

e Where the same content is encoded in high and
low bitrates, the higher bitrate clients tend to
watch more of the content.

8 Conclusions and future work

This study revealed various important aspects of
streaming traffic on the Internet. For one it showed
the widespread use of streaming with content being
accessed by many endpoints across many different
networks. However a lot of work remains to be done
to fully characterize streaming traffic and applying
such knowledge to deliver streaming content in the
most efficient way to large numbers of clients.

The first obvious future direction for our work is to
determine how the various session compositions we
investigated will develop over longer periods of time
and whether it holds over other larger data sets.

In this paper, we have taken a first pass over

the data towards developing a workload model for
streaming traffic. However, coming up with a pa-
rameterized model for streaming traffic will require
a more detailed look at the relationships between
the request arrival process, the popularity distri-
bution of streaming objects, object sizes and play
times etc.

Similarly, on the network side, the relative stabil-
ity of distributions across longer time scales will be
important in order to engineer scalable content dis-
tributions strategies. In particular, we need to in-
vestigate the general applicability of the suggested
approach of selective relationships with high con-
tributing networks.

Finally, some of the busy days we encountered in our
data set exhibited “flash crowd” behavior. Coupled
with the relatively high per-client bandwidth re-
quirements of streaming media, this can have a sub-
stantial impact on the various resources associated
with a streaming service. Studying these events in
detail will be instrumental in developing techniques
for dealing with or reducing the impact of this phe-
nomena.
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