

SeaCat: an SDN End-to-end Application Containment ArchitecTure

Enabling Secure Role Based Access To Sensitive Healthcare Data

Junguk Cho, David Johnson, Makito Kano, Kobus Van der Merwe and Brent Elieson

Motivation

- "Everything" is networked
 - Nearly all business applications assume network availability
- Also true in healthcare
 - Accessing patient records
 - Remote diagnoses and consultation
 - In-home monitoring
 - Healthcare analytics
 - Plus "regular" vocational applications
 - HR/payroll functions, accessing domain specific literature
 - Plus non vocational use
 - Browsing the web, social networking etc.

Motivation cont.

Problem:

- Same individual, using same device potentially using several of these applications simultaneously
- Applications have very different security and performance constraints:
 - Healthcare records: stringent regulatory privacy and security requirements
 - In-home patient monitoring: different privacy and security needs + reliability and soft real time guarantees
 - Web use: no impact on core healthcare applications
- Devices are increasingly mobile (tablets, laptops, smartphones)
 - Often not part of managed and trusted enterprise environment

Motivation cont.

- Current approaches, combinations of:
 - Device scans when new devices attach to network
 - Run applications on application servers with thin clients on devices
 - Complex network and server access control polices
- Inadequate:
 - Device with up-to-date patch levels might still contain malware
 - Application servers with thin clients constrain the type of applications that can be used
 - Access control policies only deal with access. Provide no protection once data is accessed

Motivation cont.

- Problem generalizes to broad range of access to sensitive data
- Different sets of regulations/practices
 - Protected health information (PHI)
 - HIPAA regulations
 - Student educational records
 - FERPA regulations
 - Federal government work
 - FISMA regulations
 - Business requirements
 - PCI DSS regulations
 - Institutional requirements
 - IRB regulations

SeaCat Approach

- Combine SDN and application containment:
 - End-to-end application containment
- Treat mobile device as "semi-trusted" SDN domain
 - Inter-domain SDN interaction to tie in
- Non-healthcare apps:
 - default context
- Healthcare app:
 - dynamic app specific context
 - app and data contained in this end-to-end context

Threat Model

- Concerned with security and performance of health care applications used from variety of devices in a health care environment
- Assume healthcare applications can be trusted
 - different from conventional threat model where device needs to be protected against untrusted applications
- Specific concerns:
 - Unauthorized access
 - role based authentication and policies
 - Data leakage
 - end-to-end application containment
 - Resource guarantees
 - context based resource allocation with preemption
 - Denial of service
 - resource guarantees plus separation of resources

SeaCat Architecture: Endpoint Containment

- Uses lightweight containers
 - Linux containers
- All applications execute in containers:
 - move "regular apps" into default container
- Only SeaCat Trusted Daemon left in root namespace

SeaCat Architecture: Endpoint Containment

- SeaCat Trusted
 Daemon manages
 containers:
 - Set default
 container up:
 apps unaware
 that anything
 changed
 - Use Overlay FS to restrict container storage accesses
 - Dynamically create secure app container(s)

SeaCat Architecture: Endpoint Network Containment

- SeaCat Trusted Daemon:
 - Manages endpoint SDN domain
- Single switch domain:
 - Sets up context for default apps
 - Sets up context for secure apps: based on interaction with enterprise SDN

SeaCat Architecture: Enterprise Network Containment

- SeaCat Server:
 - Manages enterprise SDN domain
 - Sets up context for secure apps
 - Includes SDN-enabled WiFi
 - Interacts with SeaCat trusted daemon in endpoint
 - Instructs trusted daemon to start secure container
 - Coordinates SDN across domains

SeaCat Architecture: Putting it all together

- Enterprise network treats each mobile endpoint as semitrusted SDN domain
- Secure app user: authenticates using "normal" single-sign-on (SSO) technology
 - SeaCat server integrated with SSO
 - Successful authentication triggers:
 - Creation of app specific SDN context in enterprise
 - Signaling to endpoint SDN to:
 - Create secure container
 - Create endpoint app specific SDN context
 - Ties to enterprise SDN context
- App and data remains in this secure end-to-end context
- When app exits:
 - Complete context is destroyed

SeaCat Demo

- Mobile endpoint:
 - Linux WiFi-enabled tablet
 - With SeaCat Trusted Daemon:
 - Container and SDN management
- Enterprise network:
 - SDN enabled WiFi access point
 - Tallac Networks
 - Virtual APs
 - Mapped to OpenFlow switch
 - Rest of enterprise SDN emulated in a Mininet instance
- SSO:
 - Uses Shibboleth SSO
 - SeaCat (Service Provider) to realize SeaCat functionality
- Medical application:
 - OpenMRS (Medical Record System)

SeaCat Demo

Status

Have working prototype...

Looking for partners to do a trial deployment...