# Towards a Taxonomy of Performance Metrics

**Jack Worlton** 

Presentation by Supraja J

## Overview of the Paper

- Discusses deficiency of rigorous taxonomy for performance metrics in Computer Science.
- Defines taxonomy or rather 'rigorous' taxonomies.
- Importance of recursion in developing rigorous or nonoverlapping taxonomies.
- Dimensional Analysis
- Correlation of metrics in physics with performance metrics.
- Some innovative metrics
- In summary: Exploration into the conceptual space of Performance

## Deficiency of metrics for Performance

- Several architectural taxonomies exist.
- Serious deficiency of taxonomies to evaluate performance of computers - Due to lack of accepted taxonomies in the community.
- Leads to controversies in relative performance evaluations.

## Proposal by Worlton

- Concept of taxonomy
- Nature of taxonomies How should a taxonomy not be ?
- An truly interesting taxonomy of performance metrics.

### **Taxonomies**

- One way of keeping track of complexity: Classification
- Taxonomies have to be rigorous.
  - o Rigor:
    - Must be exhaustive and exclusive- Must list all characteristics of category and be non-overlapping.
    - Should help delineate the boundaries of a discipline.

### Example of a *mild* taxonomy

| Measurable<br>Components | Description                                                                                                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CA                       | Characteristics of an application—number of floating-point operations or logical operations, amount of memory traffic, total storage requirements, and branch behavior. |
| V                        | Degree of vectorization, average vector lengths, and strides.                                                                                                           |
| P _                      | Degree and type of parallelism, granularity.                                                                                                                            |
| М                        | Memory references, number relative to floating-point operations, access patterns, likelihood of occurring in various levels of a hierarchical memory system.            |
| I/O                      | Storage requirements (if they exceed the capacity of an extended or virtual memory).                                                                                    |

Fig. 1. Classification of the measurable components of an application.

# (Continued)

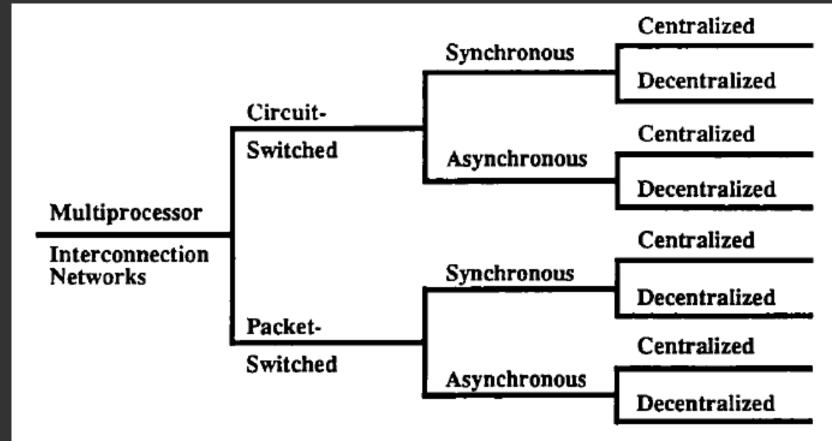



Fig. 3. Classification of multiprocessor interconnection networks.

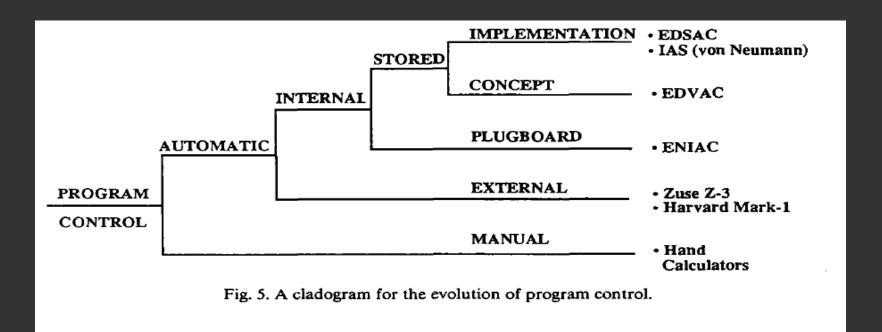
# (Continued) Example of a rigorous taxonomy

| Resources   | Methods of Manipulation |            |               |  |  |
|-------------|-------------------------|------------|---------------|--|--|
|             | Processing              | Storage    | Communication |  |  |
| Matter      | Blast furnaces          | Warehouses | Railroads     |  |  |
| Energy      | Power stations          | Batteries  | Power grids   |  |  |
| Information | CPUs                    | Memories   | Networks      |  |  |

Fig. 2. The van Wyk taxonomy of technologies.

But what of resources that can't be manipulated?

Such as space and time


And emerging methods of manipulation?

■ Such as Interfaces (HCI)

### **Templates**

- Graphical templates show the relationships between categories.
- A taxonomy is usually a taxonomy of taxonomies in the dimensions displayed.
  - 0-D taxonomy: Single metric
  - 1-D taxonomy: List
  - 2-D taxonomy: Tree
- Problem with templates Lack of representation of synthesis of categories.
- Cladograms: Show an evolutionary relationship.
- Matrices: Tree that exhibits the same characteristics at some level of branching.
- Compound Matrices: When a category of a matrix is subdivided into other categories, a compound matrix representation is easier.

### Illustrations




|      | SHARED<br>MEMORY |        | DISTRIBUTED<br>MEMORY |    |                 |                   |
|------|------------------|--------|-----------------------|----|-----------------|-------------------|
| SIMD | 1                | 2      | 3                     | 4  |                 | _                 |
|      | 5                | 6      | 7                     | 8  | SINGLE<br>LEVEL | MULTIPLE<br>LEVEL |
| MMAD | 9                | 10     | 11                    | 12 |                 |                   |
| MIMD | 13               | 14     | 15                    | 16 |                 |                   |
|      |                  | N-CUBE |                       |    |                 |                   |
|      | MULTI-STAGE      |        |                       |    |                 |                   |

Fig. 8. A compound matrix for selected architectural attributes.

#### Recursion in taxonomies

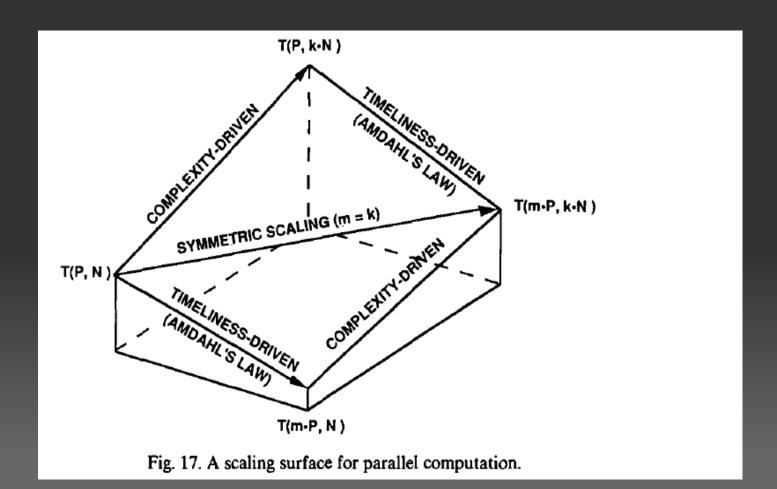
- When classifications become very complex and standard templates become insufficient, recursion is used to represent relationships.
- Resort to recursion when a category holds a multi-dimensional template.



### Some templates: A 24-way template of Performance Metrics

A rigorous taxonomy of performance metrics should include

- Fundamental and Derived units
- Modes of manipulation or functions




#### **Fundamental Metrics**

- Occam's Razor:
  - Do NOT multiply categories needlessly.
- Returning to the fundamentals
  - Are fundamental units of performance analogous to the fundamental units in physics ?
  - o Length:
    - In analyzing algorithms, Length of processing is determined by Time Complexity
    - Space complexity refers to amount of storage
      - Also a length metric.
  - o Mass:
    - Idea of mass of a program Number of floating points operations/second within one instruction count.

### **Innovative Metrics**

- New metrics required to measure new capabilities.
- Scaling metrics:
  - Hold system size constant and increase problem size.
  - Grand Challenge problems Time intractable
  - Proportionate scaling



A serial fraction metric

Karp-Flatt metric:

$$f = \frac{1/s - 1/p}{1 - 1/p} = \frac{p/s - 1}{p - 1},$$

An incremental efficiency metric - Performance of a parallel computer when the number of processors increases.

$$e_n = E_n / E_{n-1}$$

### Conclusion

- This paper explores the conceptual space of performance metrics.
- Reports the lack of rigorous taxonomy as a serious deficiency.
- Reiterates that rigorous taxonomies are necessary for the development of any science.
- Proposes some very interesting taxonomies for performance metrics.

THANK YOU!