On performance analysis of heterogeneous parallel algorithms

Alexey Lastovetsky, Ravi Reddy Presented by Joe Mayo

Homogeneous Parallel Algorithms (HomoPAs)

- Assumes a homogeneous environment
 - All processors have the same performance/speed
 - Communication costs are the same between nodes
- Performance analysis of HomoPAs well studied
 - PRAM, BSP, LogP
- Analysis accompanied by relatively small number of experiments
 - To show that the analysis is correct
 - To show the algorithm is actually faster

Heterogeneous Network Environment

- Processors have different performance properties
 - Processor Speed
 - Memory
- Communication is not constant
 - Network may force serial communication
 - Network may allow parallel communication
 - t_{comm} may be constant for a subset of nodes
 - t_{comm} may incur different cost for linking between subsets

Heterogeneous Parallel Algorithms (HeteroPAs)

- No adequate and practical model exists yet to predict execution time with satisfactory accuracy
- Often analyzed experimentally
 - Due to irregular nature of HeteroPAs, often not as convincing as when done with HomoPAs
 - May change when run on different environment
- Design often reduces to the problem of optimal data distribution
 - Proven to be NP-complete

Proposed Approach

- HeteroPA is often just a modification of a HomoPA
- Compare HeteroPA with its HomoPA prototype
- Asses the heterogeneous modification rather than as an isolated entity
- Compare efficiency of HeteroPA on heterogeneous network with efficiency of HomoPA prototype on homogeneous network
 - Homogeneous network has same aggregate performance as heterogeneous network

Equivalent Network Environments

- Postulate: HeteroPA cannot be more efficient than its HomoPA prototype
- Homogeneous network equivalent to heterogeneous if:
 - 1. Aggregate communication characteristics are the same
 - 2. Same number of processors
 - Speed of each processor = average speed of processors on heterogeneous network
- Heterogeneous algorithm is considered optimal if its efficiency is the same as that of its homogeneous prototype

Heterogeneous Communication Networks

- Analysis works on a special case:
 - Network Assumptions:
 - Composed of segments
 - Fast homogeneous comm within segment
 - Interconnected via slower comm links
 - Limit links between segments to serial comm

Heterogeneous Communication Networks

- Analysis works on a special case:
 - HeteroPA Design Assumptions:
 - Relatively rare point-to-point comm ops
 - Large computation between comm ops
 - Comm op consists of passing long messages
- More general cases are left for future research

- Two sets of processors:
 - Both sets consist of same number of processors
 - First set (Homogeneous Network):
 - All processors are identical
 - All processors belong to same homogeneous comm segment
 - Aggregate performance is same as that of the second set
 - Second set (Homogeneous Network):
 - Includes processors of different speeds that span several comm segments
 - Average speed of point-to-point comm is same as speed of point-to-point comm for the first set

- n = # procs in first set
- v = speed of processors in first set
- s = comm speed of segment for the first set
- P = Set of processors in second set
- m = # comm segments: S_1 , S_2 ,..., S_m
- s_i = comm speed between procs in segment S_i
- $n_i = \#$ procs in segment S_i
- v_{ij} = speed of *j*th processor in segment S_i
- s_{ij} = speed of comm link between segments S_i and S_j

Average speed of point-to-point communications between processors in second set should be equal to speed of point-to-point communications in the first:

$$\frac{\sum_{i=1}^{m} s_i \times \frac{n_i \times (n_i - 1)}{2} + \sum_{i=1}^{m} \sum_{j=i+1}^{m} n_i \times n_j \times s_{ij}}{\frac{n \times (n-1)}{2}} = s,$$

Total number of processors in each set should be equal:

$$\sum_{i=1}^m n_i = n,$$

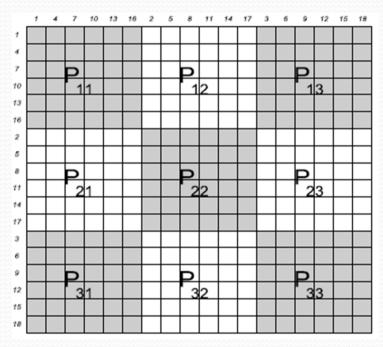
Aggregate performance of processors should be equal:

$$\sum_{i=1}^m \sum_{j=1}^{n_i} v_{ij} = n \times v.$$

Matrix Multiplication: HomoPA Prototype

Data Partitioning:

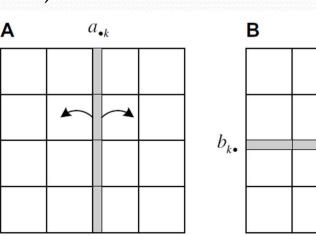
- Unit of computation: an r x r block of matrix elements
- Each matrix (A,B,C) are partitioned identically into p equal squares, called general blocks
- Each processor responsible for calculating its part of C
- Processors arranged in a 2D mxm grid, where $m = \sqrt{p}$

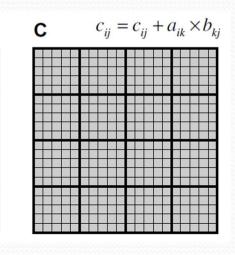


Matrix Multiplication: HomoPA Prototype

Algorithm consists of k = n/r steps At each step k:

- Pivot column of matrix A broadcasted horizontally
- Pivot row of matrix B broadcasted vertically
- Each processor, P_{ij} , updates each unit in its C general block: $c_{ij} += a_{ik} \times b_{kj}$





Matrix Multiplication: HomoPA Prototype

After n/r steps:

$$c_{ij} = \sum_{k=1}^{\frac{n}{r}} a_{ik} \times b_{kj},$$

i.e.,
$$C = A \times B$$
.

Matrix Multiplication: HomoPA Prototype

- Strong dependence between successive steps
 - Since r is usually much less than m: at step k+1, PiK will again be the root of the broadcast
 - At step k+1, the broadcast involving the row of processors Pi* cannot start until processor PiK completes the broadcast at step k
 - Think about how an implementation must use a buffer
 - Cannot reuse buffer until previous broadcast has completed
 - Hinders parallel execution

Matrix Multiplication: HomoPA Prototype

- Removing strong dependence:
 - Within the same set of processors
 - Broadcast ops at successive steps have different root processors
 - Answer:
 - 2-D Block Cyclic Distribution

2-D Block Cyclic Distribution

- mxm processor grid
- Each element in A,B, and C is a square *rxr* block
- Blocks scattered in a cyclic fashion along both dimensions
 - Blocks aij, bij, cij will be mapped to Pij so that
 - $I = (i-1) \mod m + 1$
 - $J = (j-1) \mod m + 1$

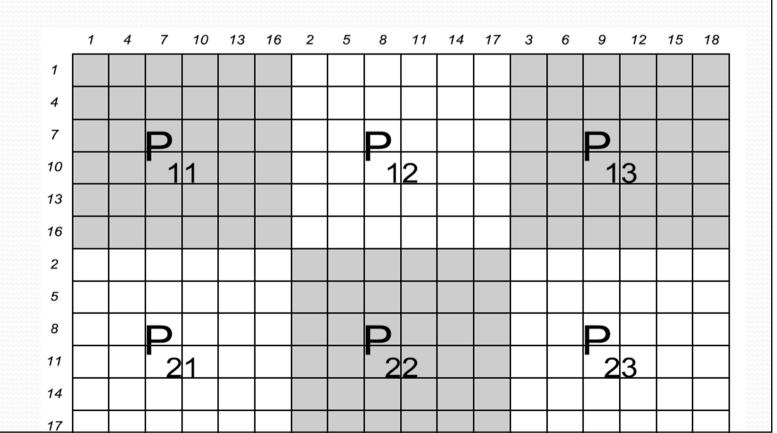
2-D Block Cyclic Distribution

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
2	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₁₁	P ₁₁	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
3	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₁₁	P ₁₁	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃
4	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
5	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
6	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃
7	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
8	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
9	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃
10	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
11	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
12	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃
13	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
14	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
15	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃
16	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃
17	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃
18	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃

1	2	3	4	5	6	7	8
P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂
P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₁₁
P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₁₁
P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂
P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂
P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂	P ₃₃	P ₃₁	P ₃₂
P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂	P ₁₃	P ₁₁	P ₁₂
P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂	P ₂₃	P ₂₁	P ₂₂

2-D Block Cyclic Distribution

Element area covered by each process is the same as with the static partitioning described before:



Parallel Matrix Multiplication on Heterogeneous Platform

- New problem:
 - Each processor may have a different speed
 - Leads to unbalanced workload
- Objective:
 - Keep units of computation to rxr unit blocks
 - # unit blocks allocated to each processor should be proportional to its speed
 - Still the optimal partitioning problem

• Let relative speed of processor P_{ij} is a real positive number, s_{ii} , so that

$$\sum_{i=1}^m \sum_{j=1}^m s_{ij} = 1$$

- The area of rectangle allocated to P_{ij} should be:
 - $s_{ij} \times n^2$

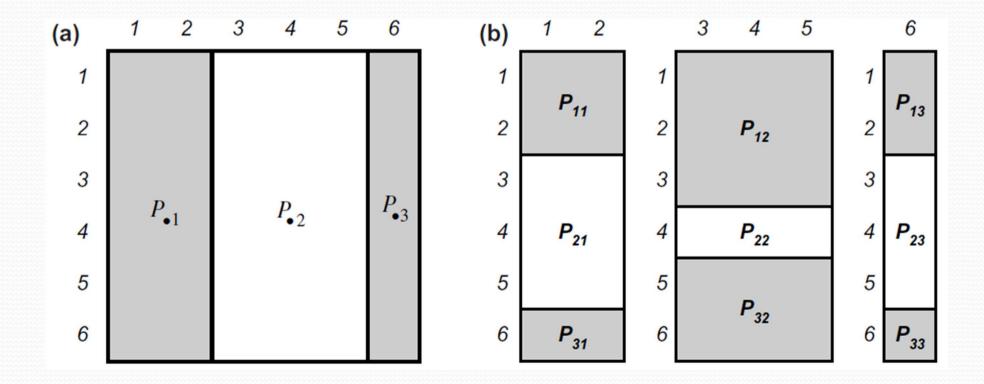
- Generalized blocks:
 - New size:

```
(rxl) x (rxl), where m \le l \le n/r
```

- Partitioned into *m*² blocks
 - Each block assigned to a different processor
 - Area of each block is proportional to the speed of the processor that stores that block
 - Therefore unequal block sizes
- Each generalized block is partitioned the same

- Partitioning of a Generalized Block:
 - *lxl* square of element blocks
 - Each element block is a square of rxr matrix elements
 - *l*x*l* square partitioned into *m* vertical slices
 - Area of *j*th slice is proportional to $\sum_{i=1}^{m} s_{ij}$
 - Each slice is then partitioned independently into *m* horizontal slices
 - Area of *i*th horizontal slice in *j*th vertical slice is proportional to s_{ii}
 - End up with *i*th horizontal slice in *j*th vertical slice is assigned to P_{ij}

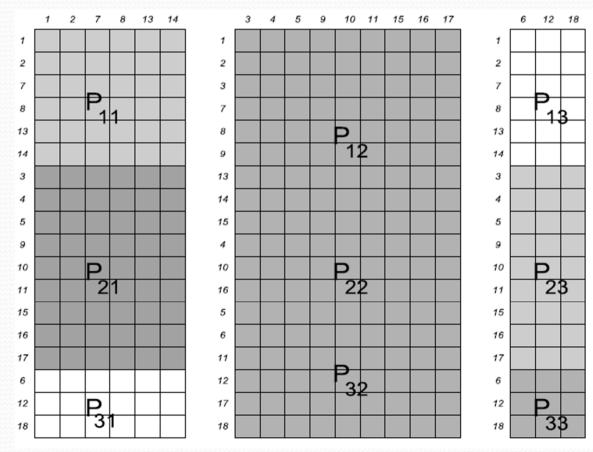
- (a) Vertical slices
- (b) Horizontal slices



Each generalized block has the same partioning:

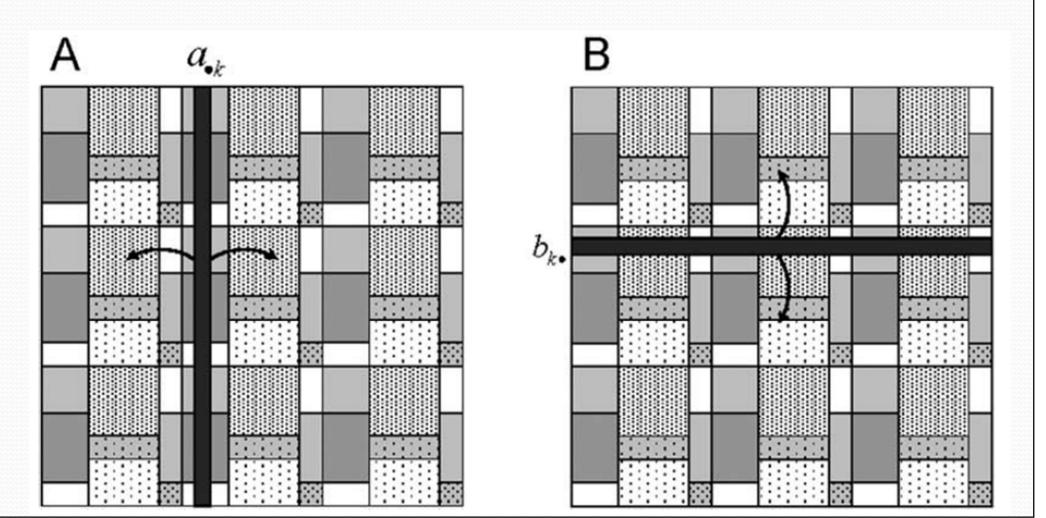
X	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 2	P ₁₁ P ₁₂		P ₁₃ P ₁₁		P ₁₂		P ₁₃	Р	P ₁₁		P ₁₂		P ₁₃					
3 4	P ₂₁			P ₂₂		P ₂₃	P;	21		P ₂₂		P ₂₃	P	21		P ₂₂		P ₂₃
5 6	P ₃₁			P ₃₂		P ₃₃	P;	31		P ₃₂		P ₃₃	P	31		P ₃₂		P ₃₃
7 8	P ₁₁			P ₁₂		P ₁₃	P.	11		P ₁₂		P ₁₃	Р	11		P ₁₂		P ₁₃
9 10	P ₂₁			P ₂₂		P ₂₃	P,	21		P ₂₂		P ₂₃	P	21		P ₂₂		P ₂₃
11 12	P ₃₁			P ₃₂		P ₃₃	P;	31		P ₃₂		P ₃₃	P	31		P ₃₂		P ₃₃
13 14	P ₁₁			P ₁₂		P ₁₃	P.	11		P ₁₂		P ₁₃	Р	11		P ₁₂		P ₁₃
15 16	P ₂₁			P ₂₂		P ₂₃	P;	21		P ₂₂		P ₂₃	P	21		P ₂₂		P ₂₃

Area assigned to each processor is proportional to its relative speed:



Heterogeneous 2-D Block Cyclic Communication

Still have the same number of comm ops:



Effect of parameter l

- Range: $[m, \frac{n}{r}]$
- Controls two conflicting aspects of the algorithm:
 - Accuracy of load balancing
 - Level of potential parallelism in execution of successive steps of the algorithm
- The greater l
 - the better the load of processors is balanced
 - The stronger the dependence between successive steps, hindering parallel execution of steps

Effect of parameter /

- When $l = \frac{n}{r}$,
 - Distribution provides best possible balance of load to processors
 - Turns into pure 2-D block distribution
 - Lowest possible level of parallel execution on successive steps

Effect of parameter /

- When l = m,
 - Distribution identical to homogeneous distribution
 - Doesn't do any load-balancing at all
 - Provides highest possible level of parallel execution on successive steps
- Optimal value of l somewhere in between m and $\frac{n}{r}$

Heterogeneous Parallel Algorithm Summary

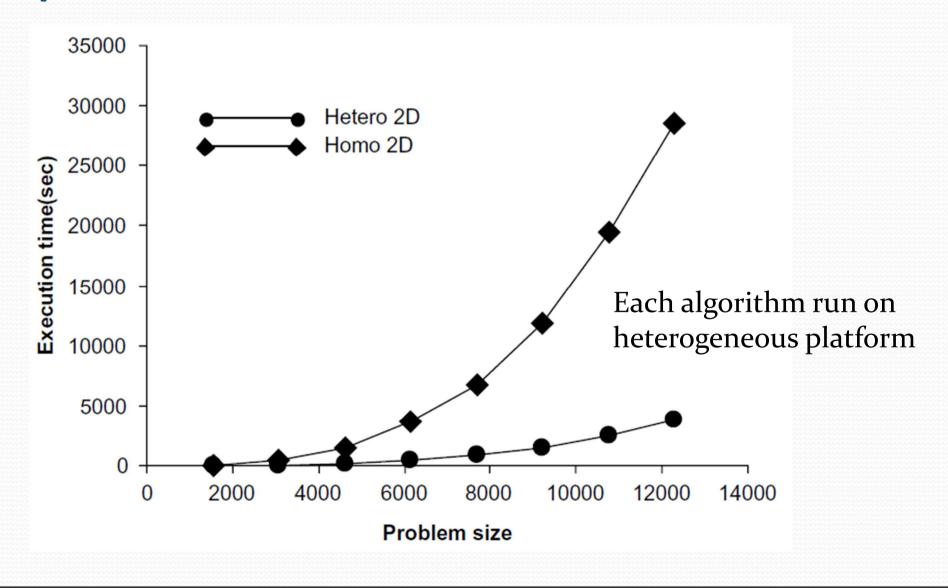
- The core is partitioning of a generalized block into uneven rectangles
- Easily generalized for arbitrary 2-D processor arrangement
- Optimal partitioning a square into rectangles
 - Of any shape or arrangement
 - Proved to be NP-complete

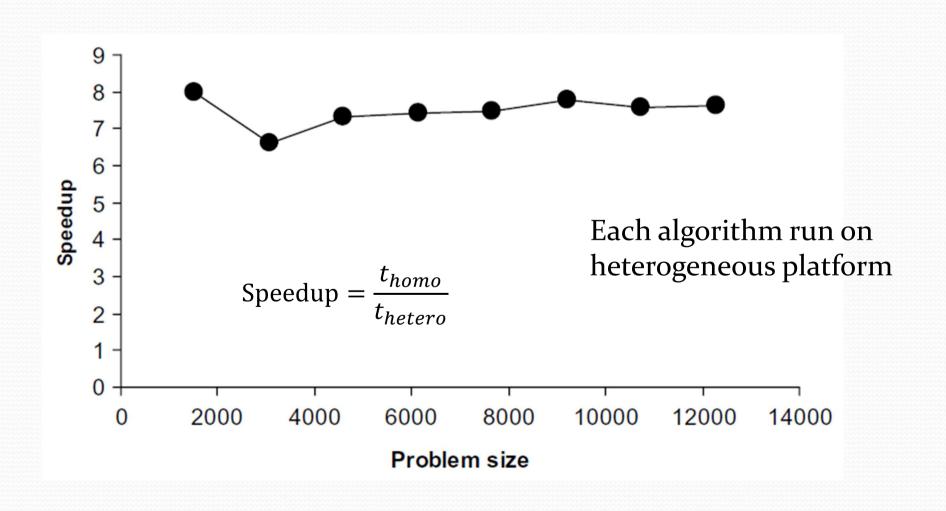
Assessment of HeteroPA

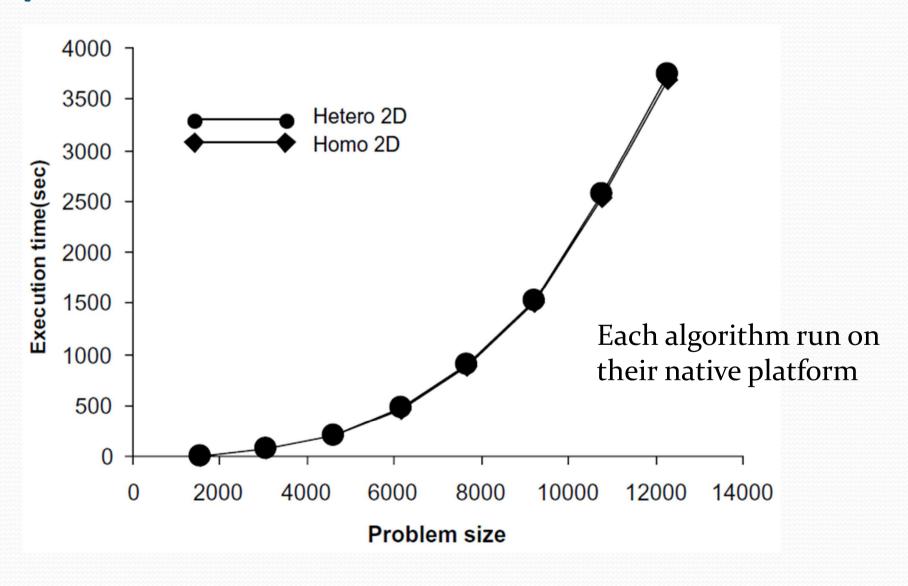
- Compare HeteroPA with its HomoPA prototype
- Assume n,m and r are the same
- Both algorithms consist of $\frac{n}{r}$ successive steps
- At each step
 - Equivalent comm ops are performed by each algorithm
 - If *l* is big enough, each processor of heterogeneous platform performs volume of computation proportional to its speed

Assessment of HeteroPA

- Only source of less efficiency is due to lower level of potential overlapping of comm ops at successive steps
 - A bigger ration between max/min processor speed, the lower is this level
- If communication layer serializes data packages
 - HeteroPA has approximately same efficiency as HomoPA
 - Then HeteroPA is the optimal modification of its HomoPA prototype







- Observations
 - Speedup due to overlapping of comm ops is not very significant
 - Speed of processors in heterogeneous network doesn't differ too much
 - additional dependence between steps is very weak

Other Experiments

- Tried using different values for r and different mappings of processors onto the rxr grid
 - Optimal mapping should arrange processors in a nonincreasing order of their speed along each row/column
- Different shapes of general blocks (pxq)
 - Ex: 2x6, 3x4, etc
 - Compared with different values for r and l
 - Shape does in fact influence efficiency of the algorithm if far off from optimal values of *r* and *l*
 - Doesn't influence execution time of the algorithm if r and l are optimal

Summary

- Design of heterogeneous parallel algorithms is typically reduced to the problem:
 - Optimal data partitioning of some mathematical object such as a set or matrix
- Small number of experiments in a heterogeneous environment
- Compare efficiency to that of a HomoPA prototype run on an equally powerful homogeneous environment