
CS 6230: High Performance Computing and
Parallelization

Professor Mike Kirby
School of Computing and Scientific Computing and Imaging Institute
University of Utah

1

Administrative Issues

• Hand out course syllabus

• Discuss research areas of interest

• Discuss what motivates parallel computing

• Goal of the course: This course is structured to train students to reason
about the design and implementation of efficient parallel programs. The focus
areas of the class will be on the modeling, implementation and evaluation of
distributed, message-passing interface (MPI) based programs, shared-memory
thread-based OpenMP programs, and hybrid (MPI/OpenMP) programs. Almost
all examples will be aligned with numerical scientific computing. This course is
appropriate for those that want transform serial algorithms into parallel
algorithms, want to modify currently existing parallel algorithms, or want to write
parallel algorithms from scratch.

2

References Used Throughout Course	

• Textbook (Parallel Computing by Wilkinson and Allen)
• [Lin] Calvin Lin and Lawrence Snyder, Principles of Parallel Programming,

Addison-Wesley, 2009.
• [Pacheco] Peter S. Pacheco, Parallel Programming with MPI, Morgan-

Kaufmann, 1997.
• [Mattson] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill,

Patterns for Parallel Programming, Addison-Wesley, 2005.
• [Grama] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar,

Introduction to Parallel Computing, Second Edition, Addison-Wesley, 2003.
• [Chandra] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff

McDonald, and Ramesh Menon, Parallel Programming in OpenMP, Morgan-
Kaufmann, 2001.

3

Simulation Science: Quantification and Control of Modeling,
Discretization and Uncertainty Errors

Quantification of

Position Uncertainty

in ECG Simulations

Control of Uncertainty Errors

In Material Parameters in

Liver Ablation Simulations

4

Current: Formal Methods for HPC

 Modeling of the MPI Library

 In situ Model Checking

 Verifying One-Sided MPI

Constructs

 Parallel Model Checking

MPI : Widely used HPC library

with COMPLEX and EVOLVING
semantics

Large MPI programs are

“MPI Calls Hanging off a
 Program Scaffolding.”

Hence Finite State Machine
model extraction + Model Checking

is ineffective in many cases

Some of the new MPI

Extensions are Extremely
Poorly Understood

Parallelism can benefit

even the verification process !!

5

Goal of Parallel Computing

The goal of parallel computing has traditionally
been to provide performance -- either in terms of

processor power or memory -- that a single
processor cannot provide; thus, the goal is to use
multiple processors to solve a single problem. The

goal of distributed computing is to provide
convenience, where convenience includes availability,

reliability, and physical distribution (being able to
access the distributed system from many different

locations). [Lee]

6

Concurrency versus Parallelism

Concurrency and Parallelism: Though these terms
are closely related, history influences how we use

them. Concurrency is widely used in the
operating system and database communities to

describe executions that are logically
simultaneous, while parallelism is typically used

by the architecture and supercomputing
communities to describe executions that physically

execute simultaneously. [Lee]

7

Four important parts of parallelism

• Correctness

• Performance

• Scalability

• Portability

[Lee]

8

Possible Software “Solutions” Employed

• OpenMP (www.openmp.org)

• Message-Passing Interface (MPI)

• Charm++ (charm.cs.uiuc.edu)

• Unified Parallel C (upc.lbl.gov)

•High-Performance Fortran (hpff.rice.edu)

9

Sources of Performance Loss

• Overhead, which the sequential computation does
not need to pay

• Non-parallelizable computation

• Idle processors

• Contention for resources

[Lee]

10

Overview of the Pattern Language

Finding Concurrency

Algorithm Structure

Supporting Structures

Implementing
Mechanism

11

Where will we run our tests?

Raven Cluster
- head node: raven-srv.cs.utah.edu (2x AMD Opteron 240)
- compute nodes: raven1-32 (1x AMD Athlon 64 3500+)
- Memory: 3GB on srv, 2GB per node
- GCC v4.5.2
- MPICH2 v1.3.1

CADE Lab 1 (40) and Lab 3 (30) (e.g. lab1-1, lab3-10)
- Intel core i7-860 2.8 GHz Quad Core (2-way)
- Memory: 4GB per node
- GCC 4.4.4
- OpenMPI 1.2.8

12

Next Time

• Read Chapter 1 (note that material in 1.2 will be
discussed in future lectures in detail)

• Discussion of the current “state of the art” in
parallel computing (a guest lecture by Professor
Martin Berzins)

13

