
A GPU-Based MIS Aggregation Strategy:
Algorithms, Comparisons, and Applications Within

AMG
T. James Lewis, Shankar P. Sastry, Robert M. Kirby and Ross T. Whitaker

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT, USA
Email addresses: {tjlewis, sastry, kirby, whitaker}@sci.utah.edu

Abstract—The algebraic multigrid (AMG) method is often
used as a preconditioner in Krylov subspace solvers such as the
conjugate gradient method. An AMG preconditioner hierarchi-
cally aggregates the degrees of freedom during the coarsening
phase in order to efficiently account for lower-frequency errors.
Each degree of freedom in the coarser level corresponds to
one of the aggregates in the finer level. The aggregation in
each level in the hierarchy has a significant impact on the
effectiveness of AMG as a preconditioner. The aggregation can
be formulated as a partitioning problem on the graph induced
from the matrix representation of a linear system. We present
a GPU implementation of a “bottom-up” partitioning scheme
based on maximal independent sets (MIS). We also present some
novel topology-informed metrics that measure the quality of a
partition. To test our implementation and the metrics, we use an
existing AMG preconditioned conjugate gradient (PCG-AMG)
solver and show that our metrics are correlated with the time and
the number of iterations needed for the linear system to converge
to a solution. For comparable coarsening ratios, we show that the
MIS-based aggregation methods outperform Metis-based “top-
down” aggregation method for the PCG-AMG method. Our
results also indicate that MIS-based aggregation methods provide
aggregates that are evaluated more favorably by our metrics than
the aggregates provided by the Metis-based method.

Index Terms—multigrid; GPU; maximal independent set; ag-
gregation;

I. INTRODUCTION

Relaxation techniques used to solve sparse linear systems
are able to reduce high-frequency errors in the solution within
a few iterations. For removing lower-frequency errors, these
techniques are rather inefficient, in part motivating the devel-
opment of multigrid methods. The Algebraic Multigrid (AMG)
method is a robust iterative method that creates a series of
graphs of increasing coarseness (with the finest level being the
induced graph from the original matrix) in order to efficiently
remove lower-frequency errors that are accrued in each level.
The AMG method provides fast convergence by reducing low-
frequency errors efficiently by applying coarse corrections
and removing high-frequency errors by fine smoothing, with
different frequencies of error being most effectively removed
in different levels of the graph hierarchy. It has been observed
that the AMG method is very efficient when it is used as
a preconditioner for the linear conjugate gradient solver [1]

and other Krylov subspace methods. The AMG method is
explained in more detail in Section 2.

The preconditioned conjugate gradient [2] solver with AMG
preconditioner (PCG-AMG) is typically used for numerically
solving partial difference equations (PDEs) using the finite
element method (FEM). The degrees of freedom of the so-
lution in such a problem correspond to the solution at the
vertices of a finite element mesh. One of the critical steps in
the AMG method is the coarsening phase in which the degrees
of freedom (mesh vertices in the finest level) are aggregated
together to construct a coarser graph that can efficiently and
accurately compute the lower-frequency errors.

The performance of the PCG-AMG solver depends on the
quality of the aggregations that are constructed from the finer
graphs. The aggregations have to be coarse enough to reduce
the cost of the computation of the solution and must also
be fine enough to resolve the errors that have been observed
in the finer graph. Therefore, the size of aggregates ideally
would capture the lower-frequency errors efficiently. Since
the aggregates are obtained from a geometric embedding
(unstructured mesh) of a graph, the shape of the aggregates
also plays a significant role in the performance of the solver.
The AMG method, however, is oblivious to the underlying
geometry. Thus, a measure of the quality of an aggregation
must be obtained from only the topology of the graph at a
fine level.

In this paper, we address the following questions: a) how
do we evaluate the quality of an aggregate, i.e., are there
heuristic metrics to determine if an aggregate positively affects
the performance of the PCG-AMG method; b) how are the
metrics correlated with the solution time and the number of
iterations? In order to answer these questions, we employ
two kinds of techniques to aggregate the graph nodes: a) a
Maximal independent set (MIS)-based “bottom-up” method
and b) a Metis-based “top-down” method. The aggregation
methods are described in Section 3. We use the FEM and
PCG-AMG solvers with the aggregators to solve the elliptic
Helmholtz equation and compare the solution times. We
carry out the numerical experiments on four meshes. The
testing methodology and description of our aggregation quality

metrics are provided in Section 4. In practical applications,
note that the linear solver may be used multiple times, so
improvements in solution times have a very significant impact
on the total time required for a real-world simulation. The
results from our numerical experiments show that a correlation
is present among the aggregate quality, solution time, and
the total number of iterations. These results are provided in
Section 5. We conclude the paper and indicate future research
directions in Section 6.

II. BACKGROUND AND RELATED WORK

In this section, we provide some background on the concepts
and prior work that are related to techniques developed in this
paper.

A. Metis

Metis [3] is a graph partitioning software that uses a multi-
level algorithm involving three distinct phases: a) coarsening,
b) initial partitioning, and c) uncoarsening. In the coarsening
phase, the graph nodes are aggregated together hierarchically
until the coarsened graph is small. Then, initial partitions are
computed using very efficient methods such as spectral parti-
tioning [4], matching, or clustering. These partitions are then
projected back to finer graphs while simultaneously being opti-
mized for the number of edges that cross from one partition to
another. The optimization is carried out using the Kernighan-
Lin method [5], the Fiduccia-Mattheyses method [6], or other
methods. We consider this a “top-down” approach because
the partitioning phase occurs at the coarsest level and then is
projected back to the finer levels. Metis is designed to optimize
the number of edges crossing the partitions. For our purpose,
we use kMetis, which uses a recursive bipartitioning technique
to compute as many partitions as specified by the user.

For our application, we observe that Metis does not perform
well when used to create aggregations composed of very small
groupings because is it based on the recursive bipartitioning
technique. As many recursive calls are needed to produce the
large number of small aggregates, and each call introduces
more variability in partition size, we obtained aggregates with
large variations in their sizes. In some cases, the aggregates
were disconnected.

B. The Algebraic Multigrid Method

In this section, we describe the algebraic multigrid (AMG)
method in some detail. The AMG method is a well-established
method to solve linear systems. Consider a sparse linear
system, Ax = b, that is used to solve a PDE on a lattice. Any
appropriate iterative method can be used to solve such linear
systems. Some techniques such as the Jacobi method, Gauss-
Seidel, and successive relaxation exhibit fast convergence
during the early iterations and slower convergence in the
later stages. In the early stages, the high-frequency errors are
efficiently eliminated by these iterative techniques. This can be
easily observed by plotting the residual, r = b− Axk, where
xk is the solution after k iterations, on the grid. The stalled
convergence in the later stages occurs because the techniques

are inefficient at reducing “smooth” or low-frequency errors. A
multigrid method is based on the idea that the low-frequency
errors, e, can be computed more efficiently on a coarser grid,
and these errors can be interpolated back to the finer grid.
In other words, Ae = r can be solved on a coarse grid, and
the solution to the linear equation can be obtained by adding
e to xk, i.e., x∗ = xk + e, where x∗ is the solution of the
linear system. For a large system obtained from large grids,
the lower-frequency errors are hierarchically eliminated by a
repeated application of the multigrid method until the resulting
systems are small enough to be solved efficiently with a direct
technique.

For unstructured meshes, however, the hierarchy of coarse
meshes is harder to obtain. Thus, algebraic multigrid meth-
ods [7] were developed in order to accelerate linear solvers
for unstructured meshes. As the name indicates, only the
matrix, but not the geometry of the unstructured mesh, is
taken into account in the AMG method. In this paper, we
mainly consider the coarsening phase of the AMG method.
The degrees of freedom in our linear system, which correspond
to mesh vertices at the finest level, are aggregated together in
the coarsening phase to construct a coarser graph with fewer
degrees of freedom. A linear system is then solved using the
coarse aggregation in order to efficiently compute the low-
frequency errors, and the solution is interpolated to the finer
level.

The AMG method can also be used as a preconditioner in
Krylov subspace solvers such as the linear conjugate gradi-
ent, biconjugate gradient, and generalized minimum residual
solvers [2]. It has been observed that the efficiency of PCG-
AMG is greater than PCG with other preconditioners or the
AMG method alone. It is heuristically explained in [1] that
this is because AMG preconditioners try to eliminate all error
components when compared with other preconditioners. Also,
with the AMG method, some very specific error components
may not be computed easily due to imperfect interpolation
from the solution of the coarser linear system, but the iterative
solvers account for such issues.

C. Smoothed Aggregation Multigrid Technique

The smoothed aggregation multigrid method is described in
detail in [2], [8], and [9]. The main step in the interpolation
step (from the coarse graph to fine graph) in this method is the
construction of aggregation and prolongator. The aggregation
is constructed by choosing a set of graph nodes as root points
and grouping its neighbors into one aggregate. If there are
still unassigned nodes, they can be grouped with their nearest
aggregate, or they form a separate aggregate if they are next
to each other. The prolongator is an operator, such as the
damped Jacobi smoother [10], that is used to interpolate the
solution. The goal of these steps is to have a fairly uniform
sizes and shapes of aggregates. As described in [10], MIS-
based methods can be used to construct the aggregates. In
this paper, we implement the GPU-based MIS aggregation
algorithm for PCG-AMG.

III. AGGREGATION METHODS

An MIS of a graph is a set of nodes such that no pair of
nodes in the set is connected by an edge (independence), and
it satisfies the property that addition of any nodes violates the
independence property (maximality). Maximal independent
sets may be generalized by including a parameter for the radius
of independence [11]. Thus, an MIS(k) of a graph is a set of
nodes such that no pair of nodes in the set has a shortest path
of length less than k between them and is maximal. We use
the term aggregation to refer to a labeling of the nodes of a
graph such that all nodes with the same label form a connected
subgraph, all graph nodes are labeled, and the values of labels
are integers from one to the number of distinct labels. In this
section, we present several algorithms that are employed to
compute an MIS(k) and to aggregate nodes of a graph through
the use of the computed MIS(k).

A. General Process

All MIS-based aggregation methods presented in this paper
are similar in their general structure, which can be described
as follows:

1) Select k such that the number of nodes obtained from
the MIS(k) generation is roughly equal to the number of
aggregates required. Use one of the algorithms described
below to generate an MIS(k) of the graph.

2) Assign non-MIS(k) nodes to the aggregate rooted by the
nearest MIS node. The distance is defined as the length
of a shortest path between two nodes. There may be
nodes that are equidistant from multiple root nodes, and
one of many strategies may be used for breaking ties.

3) Apply conditioning operations to improve qualities (size
etc.) of the aggregation or to enforce constraints that the
initial aggregation does not meet.

Below, the MIS(k) algorithms in Step 1 are described in
Section B, and the grouping and conditioning in Step 2 and 3
are described in Section C.

B. MIS(k) Algorithms

For any given graph, there may exist many sets that are
maximally independent, and these sets may have different
cardinalities. We observed that the cardinality of MIS(k) used
for aggregation has an effect on the quality of the resulting
aggregation. In general, an MIS(k) of higher cardinality pro-
duces aggregations that perform better when used for AMG
coarsening. We discuss three algorithms for finding an MIS(k)
of a graph. In these algorithms, the nodes are classified as in
if they are in the MIS(k) being constructed, out if they cannot
be in the MIS(k) being constructed (due to conflicts with other
nodes), or free otherwise. Initially all nodes are marked as
free.

1) Lexicographic.
The nodes of the graph are examined in a sequential
order. If a node is marked as free when being examined,
it is marked as in, and all nodes with a shortest path
of k or less are marked as out. If the ordering of the

nodes is such that every node has a degree less than or
equal to the following node, this algorithm produces a
“lexicographic MIS” of the graph.

2) Flood Fill.
Initially, a node is chosen arbitrarily and marked as in,
and all nodes with a shortest path of k or less to it are
marked as out. Then, the set of all free nodes with a
shortest path of distance k + 1 to an in node is found.
The node in this set with the most adjacent nodes marked
as out is chosen and marked as in, and all nodes with
a shortest path of k or less to it are marked as out. The
process is repeated until all nodes are marked as either
in or out.

3) Randomized Parallel.
This method is a variation of that proposed by Luby [12].
All free nodes are assigned a positive integer value at
random. All in and out nodes are assigned the value
zero. All free nodes with a value greater than the value
of each node with a shortest path less than or equal to k
from it are marked as in, and the nodes with a shortest
path less than or equal to k from them are marked as out,
i.e., each unassigned node is added to the MIS(k) if it
has a value greater than all nodes in its k-neighborhood.
This process repeats until all nodes are marked as in or
out.

The lexicographic algorithm and the flood fill algorithm are
both difficult to parallelize effectively; the lexicographic al-
gorithm is faster than the flood fill algorithm, but the flood
fill algorithm usually produces significantly larger MIS(k)
aggregations. It usually produces MIS(k) of cardinality that is
in between that of the flood fill and lexicographic algorithms.
The randomized parallel version is easily implemented in
parallel, and its GPU implementation is faster than the CPU
version of the flood fill and lexicographic algorithms.

C. Aggregation and Conditioning

An MIS(k) of the input graph is used to allocate graph nodes
to aggregates. The in nodes, which are also the MIS(k) nodes,
become the root nodes for aggregates. The non-MIS(k) are
allocated to their closest root node. This is accomplished by
having each unassigned node check its adjacent nodes to see if
they have been allocated to an existing partition. If a neighbor
is allocated to an aggregate, then the node may allocate itself to
the same aggregate. When a node is equidistant from two root
nodes, one of the following techniques may be used to break
the tie. The first option is to break the tie arbitrarily. In our
implementation, the node is allocated to the first acceptable
aggregate. Since we are operating under the intuition that
aggregates with high internal connectivity are likely to be more
efficient for the PCG-AMG solver, we also tried breaking
the ties using the connectivity information. When a node
may be allocated to more than one aggregate, it is allocated
to the aggregate to which the largest number of the node’s
neighbors are allocated. Another option is to consider the
current size of each potential aggregate and assign the node to
the smallest one among them with the goal of improving the

size regularity. We did not pursue this option as our focus was
on finding effective parallel methods, and it would be difficult
to implement this heuristic in parallel; we leave it as possible
future work.

Our motivation for conditioning the aggregations was to
make them suitable for use in a GPU-based AMG pre-
conditioner. The primary constraint in this application is in
regard to the size of the aggregates. Aggregates need to be
evenly sized so that the workload is well distributed, and no
aggregate should be so large that it requires more resources
than that can be allocated to a GPU thread block. The sizes of
aggregates produced with MIS(k) methods varies with k. We
find that a good value of k is 2. In general, the aggregate size
distribution is a normal distribution, and the vast majority of
aggregates are very close in size to the average size, but there
are a few outlying aggregates whose sizes significantly differ
from the average size. Since there are relatively few outliers,
it is reasonable to devise heuristics for improving the size
regularity. The heuristics carry out the following operations:

1) Aggregates may exchange nodes with their neighboring
aggregates.

2) Two adjacent aggregates may merge into one.
3) An aggregate may split into two new aggregates.
4) Two adjacent aggregates may first merge into one, and

then split into two (Merge-Splitting).
The exchange of nodes between aggregates works reasonably
well when a few aggregates that larger than the maximum
allowable aggregate size. In such cases, the aggregates that
are too large are very likely to be adjacent to aggregates
that are not as large, and by transferring a node from the
larger aggregate to the smaller aggregate, size regularity can
be achieved. The merging and splitting operations affect the
size distribution more significantly than the exchange of single
nodes. These operations do not result in discontinuous aggre-
gates. The removal of a node from an aggregate may cause
the aggregate to become disconnected, and, therefore, the
aggregate may become invalid for the AMG preconditioner.
It is very expensive to check for this condition on a GPU.
Thus, we do not perform this operation. Effective conditioning
methods allow the development of the fixed ratio methods
detailed below, where the only parameter required is the
coarsening ratio desired. The internal parameter, k, for the
MIS(k) can be hidden from external users.

D. Implementations of Methods

We have implemented and tested the following methods for
aggregation in the AMG coarsening phase:

1) Fixed Ratio GPU produces an aggregation with the
specified coarsening ratio and applies a conditioning op-
eration to improve the size distribution of the aggregates.

2) Fixed Ratio CPU is a CPU implementation of the GPU
method described above.

In both methods, it is necessary to find the most desirable
merges, splits, and merge-splits. We define a desirability rating
of merges, splits, and merge-splits, which gives the highest

score to the operations that reduce the standard deviation of
the part sizes by the greatest amount. Given the mean size of
aggregates, µ, two adjacent aggregates A and B, and notation
|X| to denote the number of nodes contained in the aggregate
X , we define the desirability of merging of A and B as:

DM (A,B) ≡ (|A|+ |B| − µ)2 − (|A| − µ)2 + (|B| − µ)2,

and the desirability of A and B merge-splitting as:

DMS(A,B) ≡ 2((|A|+ |B|)/2− µ)2

− (|A| − µ)2 + (|B| − µ)2.

The Fixed Ratio GPU aggregator uses the randomized al-
gorithm to produce an MIS(k), and then allocates nodes to
the aggregate of the nearest MIS(k) node (ties are broken by
connectivity). Then, the initial aggregation is obtained, and
the number of aggregates needed for the specified coarsening
ratio is calculated. The conditioning operations are carried out
in order to obtain size regularity and the desired coarsening
ratio. The operations are prioritized based on the desirability
rating, and they are carried out for all aggregates until their
rating is below a certain threshold.

IV. TESTING METHODOLOGY

A. FEM Solver

For testing the performance of the aggregation methods
for multigrid coarsening, we used the FEM application de-
scribed in [13] as a testbed. The application solves the
elliptic Helmholtz equation over an irregular domain using
a preconditioned conjugate gradient solver with an algebraic
multigrid preconditioner in order to solve the resulting lin-
ear system from the discretized form of the PDE and the
unstructured mesh. As the smoothing steps in the multigrid
method can be performed independently, multiple iterations
of smoothing are performed on partitions of the elements
without global synchronization. The smoothing step on each
of these partitions is handled by an individual GPU thread
block. For the solver to efficiently use available resources,
these partitions must be large enough that each block does
as much work as possible, while not being so large as to
require more resources than are available to a block. In order
to accommodate this requirement, the aggregation phase of
the multigrid setup must not only aggregate the fine mesh for
the next AMG level, but also provide a partitioning of the
fine-level aggregates into groups containing many aggregates.
Each partition must contain all the nodes of all the aggreagates
present in the partition. We will hereafter refer to these two
levels of aggregation as the “fine aggregation” and the “coarse
aggregation” of a level. There are two strategies for producing
such a two-level aggregation, “bottom-up” and “top-down”.
In the “bottom-up” approach, the fine aggregation is created
first, the graph induced by the fine aggregation is aggregated
next, and the aggregation is projected onto the input graph to
form the coarse aggregation. The “top-down” approach is to
create the coarse aggregation by partitioning the input graph
first. Then, each partition of the input graph is partitioned

Fig. 1. An irregular triangular mesh aggregated with an MIS(2) aggregator (left) and with Metis (right). The nodal graph is visualized with colored balls
representing nodes in the mesh; each color indicates an aggregate to which each node is assigned.

individually to create fine aggregates. The MIS-based methods
are naturally suited for the bottom-up approach. Metis, as a
general purpose graph partitioning library, can be used in either
fashion. In our preliminary numerical experiments, we found
that the use of the top-down approach had a very negative
effect on the iteration count of the solver, as well as the
solution time. In order to have an equitable comparison of
the suitability of the different aggregation methods for AMG
coarsening, we use the “bottom-up” approach for the Metis-
based aggregator. Since only the fine aggregation determines
the AMG level coarsening, using the same approach for coarse
aggregations for both methods is appropriate for comparing
their effectiveness as a coarsener for AMG.

B. Adaptations to Metis

In our experiments, we used Metis version 4.0.3. Since
Metis is designed for graph partitioning, but not for aggre-
gation in the AMG method, there were two issues observed:
a) large memory allocation for a large number of partitions
and b) disconnected or empty partitions. As Metis did not
function properly due to a failed request for large memory
allocation (for around 20,000 partitions), we split the graph
into four parts (using Metis), and Metis was used to split each
resulting subgraph into one-fourth the number of partitions
originally required for the application. Disconnected partitions
were treated as separate aggregates and empty partitions were
ignored. The time taken for these postprocessing steps was not
recorded in our timing results.

C. Metrics of Aggregation Quality

Graph partitions are typically optimized for the number of
edges crossing from one partition to another while holding the
number of nodes within a partition to be close to the mean.
The edge cut is defined as the ratio of the number of edges
that have end points in different partitions to the number of
edges that have both end points in the same partition. Graph
partitioning is carried out in the context of load balancing
for parallel scientific computing. The edge cut corresponds
to the volume of communication in such applications. Thus,
the edge cut is a good metric for such purposes. For AMG
aggregations, as we shall demonstrate further in the next
section, it is not an ideal metric to improve the performance. In

this section, we describe the following three novel topology-
informed metrics for measuring the quality of an aggregation:
convexity, eccentricity, and minimum enclosing ball (MEB)
metrics.

We first describe the motivation behind the development of
the metrics. In our investigation, we empirically observed that
an MIS-based aggregation scheme improved performance of
our PCG-AMG solver significantly over the use of Metis-based
aggregation schemes. When we visually compare an MIS
aggregation with a Metis aggregation (see Fig. 1), we notice
that the aggregates produced by the MIS-based method appear
“rounder” than those produced by the Metis-based aggregation
schemes. We believe that the difference in the performance is
due to the difference in the shape of the aggregates and that
quantifying the shape of an aggregate would lead to a metric
that correlates with the performance of the PCG-AMG solver.
Shape is a geometric concept, and in a continuous space, the
ideal shape of our aggregate is a sphere (our hypothesis),
which is convex and has zero eccentricity. The metrics we
define apply these geometric concepts to sets of vertices in
a graph. Our metrics intuitively measure to what extent an
aggregate differs from a sphere. Further, we also define a
metric to measure the quality of a set of aggregates when
the quality of the individual aggregate in the set is given, i.e.,
we combine the metric values for each aggregate to produce
an overall score for an aggregation.

Consider a graph G(V,E) composed of a set of vertices V
and edges E, where each edge consists of an unordered pair
of vertices, (e1, e2). An aggregation of G is a collection of
sets of vertices a = {a1, a2, ..., an} such that all vertices in V
are in one of the sets and the sets are disjoint, i.e.,

n⋃
i=0

ai = V and
n⋂

i=0

ai = ∅.

A quality metric for an aggregation is a function m(G, a),
which takes a graph and an aggregation of the graph as input
and returns a scalar value. We denote the length of the shortest
path distance between vertices v1 and v2 (v1, v2 ∈ V) as
p(G, v1, v2) and use Br(v1) to denote the set of all nodes
vi such that p(G, v1, vi) ≤ r. For a set of vertices s ⊂ V , we
use Gs to mean the subgraph of G consisting of the nodes
contained in s and the set of edges {(ei, ej) ∈ E : ei ∈ s

and ej ∈ s}, i.e., the edges of G that have both endpoints
contained in s.

A set of points in a continuous space is convex if the shortest
line connecting any pair of points lies within the set. The
graph analogue of a straight line connecting two nodes is the
shortest path between them. Whereas a line in a continuous
space is unique, there may exist multiple distinct shortest paths
between two nodes in a graph. We define a set of nodes as
convex if for every pair of nodes in the set there exists a
shortest path consisting only of the nodes in the same set.
Thus, s ⊂ V is convex if ∀vi, vj ∈ s, p(Gs, vi, vj) ∈ Gs.
An aggregate ai in G may or may not be convex. In order to
measure the convexity of an aggregate, we define the aggregate
convexity score of ai as |ai|/|c|, where c ⊂ V is the smallest
convex set that contains ai. In practice, finding c may require
checking all possible combinations of nodes in V that contain
ai as a subset. Since it is not feasible to combinatorially
explore all possibilities, we use heuristic algorithm 1 to find an
approximate c. The aggregation convexity metric is computed
by taking the arithmetic mean of all aggregate convexity
scores.

An ellipsoid in a continuous space has eccentricity equal
to

√
1− a2/b2, where a is the maximum distance from

the centroid of the ellipsoid to the surface and b is the
minimum distance from the centroid to the surface. For a
graph aggregate, we define the centroid of a set of vertices s
as {x ⊂ s :

∑
v∈s p(Gs, x, v) = minvi∈s

∑
v∈s p(Gs, vi, v)},

i.e., the set of vertices in s where the sum of all shortest paths
from the vertex to all others in s is minimum. The centroid c
may not be a single vertex. Thus, we define the path distance
p(G, c, v) to be the average of all p(G, ci, v), ci ∈ c. A vertex
v ∈ ai is on the boundary of ai if v is adjacent to a vertex that
is not in ai. We define the eccentricity score of an aggregate
ai (with ci being the smallest convex set containing ai) as the
ratio of the minimum distance from the centroid of ci to a
boundary node of ci divided by the maximum distance from
the centroid of ci to a boundary node of ci. The aggregation
eccentricity metric is computed as the arithmetic mean of the
aggregate eccentricity scores of all the aggregates.

A sphere of radius r centered at a point c in a continuous
space is the set of all points whose distance to c is less than
or equal to r. An object in continuous space approaches a
sphere as its volume approaches that of the smallest sphere
that fully contains it. The analogue in a graph is the ball Br(v)
around vertex v. The size of the minimum enclosing ball
(MEB) of an aggregate ai, minBall(ai) is minx∈V |Br(x)|
such that ai ⊂ Br(x). We define the aggregate MEB metric as
|ai|/minBall(ai) and compute the aggregation MEB metric
as the arithmetic mean of all aggregate MEB scores. This
metric measures in a sense how far from a sphere an aggregate
is.

V. EXPERIMENTAL RESULTS

In this section, we present the results from our numer-
ical experiments. We examine the correlation between our
quality metrics and the solution time (the time required to

Algorithm 1 Find minimal convex set containing ai
1: procedure MAKECONVEX(ai)
2: c← ai
3: x← ∅
4: repeat
5: opt← {∅}
6: for all vi, vj ∈ ai do
7: good← false
8: paths← GETPATHS(vi, vj)
9: for all path ∈ paths do

10: if ∀x ∈ path : x ∈ c then
11: good← true
12: end if
13: end for
14: if good = false then
15: for all path ∈ paths do
16: opt← opt ∪ {{x ∈ path : x 6∈ c}}
17: end for
18: end if
19: end for
20: x←

⋃
o∈opt o

21: for all s ⊂ x do
22: good = false
23: for all o ∈ opt do
24: if o 6⊂ x then
25: good← false
26: end if
27: end for
28: if good = true and |o| < |x| then
29: x← o
30: end if
31: end for
32: until x = ∅
33: end procedure
34: procedure GETPATHS(vi, vj)
35: return {x ⊂ V : p(Gx, vi, vj) = |x| = p(G, vi, vj)}
36: end procedure

numerically solve the linear system that arises from the mesh
and discretization of a PDE, with AMG levels and operators
defined) to verify if higher-quality aggregations are helpful
in obtaining the solution more efficiently (shorter amount of
time). We also examine the computational context in which
the MIS-based techniques provide higher-quality aggregations
than Metis-based techniques.

For our numerical experiments, we generated four meshes:
unstructured blob mesh, unstructured brain mesh, unstructured
mesh on a cube, and a structured mesh on a cube. All
the meshes contain tetrahedral elements. These meshes were
chosen so that we have several types of domain and meshes.
Our experiments were carried out on a Pentium Xeon X5650
(2.67GHz) server with 12GB of main memory that is equipped
with an NVidia Tesla C2070 compute unit. The Tesla C2070
unit has 448 CUDA cores and 6 GB memory.

In our experiments, for each mesh, we varied the aggre-

gation methods and coarsening ratios. Since our MIS-based
aggregation technique is initiated with a random seeding,
we report the mean solution time for 20 executions of the
FEM solver in which we solve the same linear equation. The
variation in the solution time of the MIS-based is due to the
variation in the aggregations produced by the technique. In
general, they are slightly different for each execution.

Ratio
Mesh 15 20 25 30 35

M
IS

-G
PU Blobs 0.344 0.330 0.324 0.333 0.318

Brain 0.426 0.408 0.416 0.481 0.530
Structured 0.212 0.229 0.280 0.312 0.305

Unstructured 0.321 0.295 0.304 0.286 0.309

M
IS

-C
PU Blobs 0.353 0.334 0.327 0.340 0.312

Brain 0.433 0.405 0.417 0.464 0.515
Structured 0.256 0.254 0.251 0.250 0.240

Unstructured 0.347 0.320 0.309 0.271 0.289

M
et

is

Blobs 0.627 0.331 0.325 0.384 0.340
Brain 0.616 0.465 0.413 0.426 0.407

Structured 0.506 0.263 0.249 0.261 0.205
Unstructured 0.546 0.350 0.333 0.285 0.264

TABLE I
AVERAGE SOLUTION TIME

Ratio
Mesh 15 20 25 30 35

M
IS

-G
PU Blobs 21.8 24.0 25.4 27.2 29.3

Brain 19.0 20.1 22.4 26.4 29.8
Structured 15.0 17.6 21.9 25.6 27.6

Unstructured 26.8 28.3 31.0 34.0 36.8

M
IS

-C
PU Blobs 22.2 23.8 25.2 27.4 28.6

Brain 18.8 20.0 22.2 25.5 28.9
Structured 16.3 18.1 19.4 20.5 21.8

Unstructured 28.0 29.6 31.2 32.3 34.6

M
et

is

Blobs 37.5 23.0 25.0 31.0 33.3
Brain 26.0 23.0 22.0 24.0 25.0

Structured 28.6 18.0 19.0 21.0 20.0
Unstructured 41.0 31.0 33.0 35.0 34.0

TABLE II
AVERAGE PCG-AMG ITERATIONS

Ratio
Mesh 15 20 25 30 35

M
IS

-G
PU Blobs 1.064 0.748 0.641 0.583 0.620

Brain 1.665 1.131 0.954 1.056 1.198
Structured 0.682 0.500 0.752 0.525 0.732

Unstructured 0.587 0.376 0.335 0.375 0.427

M
IS

-C
PU Blobs 3.149 2.123 1.622 1.637 1.629

Brain 6.377 4.019 2.891 2.899 3.177
Structured 3.434 2.537 1.854 1.462 1.081

Unstructured 1.824 1.343 1.044 0.914 0.864

M
et

is

Blobs 7.535 5.811 4.841 4.100 5.243
Brain 15.508 11.603 9.570 8.393 6.723

Structured 8.193 6.128 5.266 4.271 5.113
Unstructured 4.341 3.405 4.494 3.844 3.035

TABLE III
AVERAGE AGGREGATION TIME

Some preliminary results are provided in Tables I, II, and III.
In Table I, the average time to solve the linear equations

by the PCG-AMG method is provided for each aggregation
technique for each mesh. These are average solution times that
are provided for the sake of completeness. The scatter plots
(explained later in this section) provide more detailed results.
Table II provides the average number of iterations needed by
the PCG-AMG solver to converge to a solution. In many cases,
we see that Metis-based aggregations take more iterations
than MIS-based aggregations, which possibly indicates that
the preconditioner is not as efficient due to the aggregation
technique. Table III provides the average time taken by each
aggregation technique to produce the aggregation. Here, we
clearly see that the Metis takes the longest time followed by
the MIS-CPU method and then the MIS-GPU method. The
fact that our algorithm can be implemented on a GPU makes
it an attractive option for aggregation.

We first present the results for the correlation between the
average solution time and quality of an aggregation. In Fig. 2,
the scatter plots of our results are provided for all the metrics
considered in this paper. In each plot, the aggregation quality
is plotted on the X-axis, and the solution time is plotted on the
Y-axis. The colors of the scatter points (circles, pentagons, and
octagons) indicate the domain on which the mesh was gener-
ated. The size of the shapes indicates the coarsening ratio; a
larger circle indicates a larger coarsening ratio. Brighter shapes
indicate that many data points lie close together. A circle
indicates MIS-CPU was used for aggregation; a pentagon
indicates MIS-GPU was used for aggregation; and an octagon
indicates Metis was used for aggregation.

As can be seen in Fig. 2(a), the convexity metric has a
reasonably good correlation with the solution time. In general,
a poorer convexity metric indicates that the solution time for
AMG-PCG linear solver is high. This trend also holds for each
mesh, i.e., for circles of the same color, the correlation is high.
We should add that this trend is absent when we control for
both the mesh and coarsening ratio. We believe that the reason
for the absence of the trend is the lack of sufficient data points.
It is very difficult to obtain many aggregations whose quality
varies enough to observe a trend when we are restricted to use
only a handful of techniques. Thus, we leave the examination
of the correlation for constant coarsening ratios as future work.
For all other metrics, however, as shown in Fig. 2(b), (c),
and (d), the correlation is not strong. This was expected for
the edge-cut ratio metric as it was not developed for linear
solvers but for load balancing purposes. These results indicate
that the convexity of an aggregation is more important than
other metrics. We also notice that Metis gives us some very
nonconvex aggregations when the coarsening ratio is very
small.

Our next set of results explores the quality of the aggrega-
tions provided by each of our techniques and their relationship
with the solution time. The details can be seen in Fig. 3. For
a lower coarsening ratio, the convexity of the aggregation is
better for the MIS-CPU-based technique, followed by the MIS-
GPU-based technique, and finally the Metis-based aggregation
technique. For a higher coarsening ratio, Metis-based aggrega-
tions produce high-quality aggregations, which is also reflected

Fig. 2. Scatter plots for (a) aggregation convexity, (b) aggregation eccentricity,
(c) aggregation MEB, and (d) edge cut metrics. The plots show the relationship
between the metrics and the solution time. Each shape represents the results
from an individual execution, the color of the shape indicates the mesh that
was used, and the size corresponds to the coarsening ratio. Darker shapes
indicate an overlap in data points. Circles indicate MIS-CPU was used to
generate the aggregates; pentagons indicate MIS-GPU was used; and octogons
indicate that Metis-based aggregators were used. These plots indicate that
the solution time is more correlated with the aggregation convexity metric
than with the other metrics, and MIS-based aggregators produce high-quality
aggregations by the convexity metric.

in the solution time for the PCG-AMG linear solver. For the
other two metrics (eccentricity and MEB), we do not see any
such trends.

We visualize the quality of aggregations produced by each
technique using cumulative distribution plots as shown in
Fig. 4. Each figures plot the normalized number of aggrega-
tions whose quality is poorer than a certain value. Just as any

Fig. 3. The average convexity for the structured and unstructured meshes on
the cube domain for various coarsening ratios. It can be seen that for a large
coarsening ratio, the Metis-based aggregator yield higher-quality aggregations.

cumulative probability distribution plot, it is a non-decreasing
curve. In the figures, the cumulative aggregation distribution is
plotted for each coarsening ratio for each technique for each
mesh. Since we found that only the convexity metric has a
correlation with the solution time, we provide the plots only
for the convexity metric.

Visually, if the area under the curve is greater, there are
more poor quality aggregations. It can be seen in the figures
that the quality of the aggregation is poorer for the Metis-
based aggregation technique, i.e., there are more aggregations
with poorer quality. For the Metis-based aggregations, we see
that the quality of aggregations generally decreases from a
coarsening ratio of 10 to 30. For a coarsening ratio of 35,
however, the quality of aggregations drastically improves to
the best value, which may be due to an effect of the recursive
partitioning algorithm employed by Metis. As the number of
partitions increases, the top-down technique may not yield
high-quality aggregations. For a large coarsening ratio, since
the number of partitions is small, Metis may be as effective as,
or more effective than, the bottom-up MIS-based techniques at
producing high-quality aggregations. For the MIS-based CPU
and GPU algorithms, the quality of aggregates is generally
the best when the coarsening ratio is around 20-25 because
the MIS computation naturally provides a coarsening ratio
of around 23 without conditioning. As the effect of the
conditioning steps to achieve the desired coarsening ratio is
not significant, the quality of aggregations produced by an

Fig. 4. The cumulative distribution of the individual aggregate convexity metric. Each curve corresponds to a coarsening ratio. The plot is similar to a
cumulative probability distribution curve, i.e., each point indicates the percentage of aggregates whose quality is below a certain value. It is a nondecreasing
curve. The structured mesh is on the top row, and the unstructured mesh is in the bottom row. Each column corresponds to an aggregation technique; the left
column corresponds to the Metis-based technique, and the two columns to the right correspond to the MIS-based technique.

application of MIS algorithms is very good.
In our experiments, we see that the time taken by Metis-

based aggregations is lower than MIS-based methods for
larger coarsening ratios because the quality of aggregates is
better when Metis-based techniques are used for aggregations.
For smaller coarsening ratios, MIS-based techniques produce
better quality aggregates and result in lower solution time,
which also indicates that the conditioning steps significantly
affect the quality of the aggregates. We leave the development
of quality-aware conditioning techniques as future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed two main approaches for aggre-
gation of degrees of freedom for AMG-preconditioned Krylov
subspace-based linear solvers: (a) the top-down approach
and (b) the bottom-up approach. We used the Metis graph
partitioner for the top-down approach, and we used MIS-based
aggregators for the bottom-up approach. We compared the
relative merits and demerits of the two approaches in a series
of numerical experiments. We designed several metrics that
were used to evaluate the quality of the aggregations. These
metrics were designed based on our hypothesis that a “good”
aggregate is roughly convex and spherical in shape. We also
solved the Helmholtz equation using the PCG-AMG solver and
reported the time it took to compute the solution. Based on
the quality of aggregations and the solution time, we found
that the top-down approach is suitable when the number of
aggregations required is small, i.e., when the coarsening ratio
required by the AMG preconditioner is large. On the other
hand, the bottom-up approach is suitable when the number of

partitions required is large, i.e., when the coarsening ratio is
small. In general, the bottom-up MIS-based CPU and GPU
techniques produced better quality aggregates when measured
using the convexity metric that we designed. For large coars-
ening ratios, the top-down Metis-based technique was able
to produce higher-quality aggregations. We also found that
the solution time and the convexity of the aggregation had a
reasonably good correlation. The correlation of the solution
time with other metrics, however, was not strong.

In our MIS-based technique, we have used conditioning
steps to generate aggregations of the desired size from the
initial aggregation by merging and splitting aggregates and
exchange of nodes from one aggregate to another. Our heuris-
tic algorithm does not take the convexity metric into account.
A possible future research direction is to develop both CPU
and GPU algorithms that take these metrics into account. Our
metrics are only a function of the topology of the mesh,
but the geometry of the aggregates may also be important
for some applications. More research is needed to evaluate
the quality of aggregates for solving other PDEs where the
geometry may play an important role. There are applications
where anisotropic meshes may be needed to solve the problem.
In such cases, the topology-based metrics may need to be
modified to account for the anisotropy in the geometry. Future
research is needed to answer such questions as well. Finally,
a top-down approach that optimizes the convexity metric
may need to be developed for use in AMG preconditioners.
Current techniques optimize the number of edge cuts between
aggregates. We hope that our paper influences research into
many of these open questions.

ACKNOWLEDGMENTS

The work was supported by an NSF REU grant un-
der NSFIIS-0914564, the NIH/NIGMS Center for Integrative
Biomedical Computing grant 2P41 RR0112553-12, the DOE
NET DE-EE0004449 grant, the DOE NET DE-EE0004449
grant, and ARO W911NF1210375 (Program Manager: Dr.
Mike Coyle) grant. The authors would like to thank Zhisong
Fu for his finite element code and the meshes used to solve
the Helmholtz equation. The authors would also like to thanks
Christine Pickett, an editor at the University of Utah, for
finding numourous typos in one of the draft of the paper.

REFERENCES

[1] K. Stüben, “A review of algebraic multigrid,” Journal of Computational
and Applied Mathematics, vol. 128, pp. 281–309, 2001.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.

[3] G. Karypis and V. Kumar, “MeTis: Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 5.0,” http://www.cs.umn.edu/
∼metis, University of Minnesota, Minneapolis, MN, 2009.

[4] L. Hagen and A. Kahng, “New spectral methods for ratio cut partitioning
and clustering,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 11, no. 9, pp. 1074–1085, 1992.

[5] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Par-
titioning Graphs,” The Bell Systems Technical Journal, vol. 49, no. 2,
1970.

[6] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in Proceedings of the 19th Design
Automation Conference, ser. DAC ’82, 1982, pp. 175–181.

[7] J. Ruge and K. Stüben, “Efficient solution of finite difference and finite
element equations by algebraic multigrid,” in Multigrid Methods for
Integral and Differential Equations, ser. The Institute of Mathematics
and its Applications Conference Series, vol. 3, Oxford. Clarendon
Press, 1985, pp. 169–212.

[8] P. Vanek, J. Mandel, and M. Brezina, “Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems,” Computing,
vol. 56, no. 3, pp. 179–196, 1996.

[9] A. Brandt, “Multi-level adaptive solutions to boundary-value problems,”
J. Math. Comput., vol. 31, no. 138, pp. 333–390, 1977.

[10] R. Tuminaro and C. Tong, “Parallel smoothed aggregation multigrid :
Aggregation strategies on massively parallel machines,” in Supercom-
puting, ACM/IEEE 2000 Conference, 2000, pp. 5–5.

[11] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” SIAM Journal on Scientific Computing,
vol. 34, pp. 123–152, 2012.

[12] M. Luby, “A simple parallel algorithm for the maximal independent
set problem,” in Proceedings of the 17th Annual ACM Symposium on
Theory of Computing, 1985.

[13] Z. Fu, T. J. Lewis, R. M. Kirby, and R. T. Whitaker, “Architecting the
finite element method pipeline for the GPU,” Journal of Computational
and Applied Mathematics, vol. 257, pp. 195 – 211, 2014.

[14] N. Bell and M. Garland, “Cusp: Generic parallel algorithms for
sparse matrix and graph computations,” 2012, version 0.3.0. [Online].
Available: http://cusp-library.googlecode.com

[15] F. Pellegrini, “Scotch and libscotch 5.1 user’s guide,” http://gforge.inria.
fr/docman/view.php/248/7104/scotch user5.1.pdf, University de Bor-
deaux, 2008.

[16] R. S. Tuminaro, “Parallel smoothed aggregation multigrid: aggregation
strategies on massively parallel machines,” in Proceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), ser. Supercom-
puting ’00. Washington, DC, USA: IEEE Computer Society, 2000.

[17] M. Adams, “Heuristics for the automatic construction of coarse grids
in multigrid solvers for finite element problems in solid mechanics,”
University of California Berkeley, Tech. Rep., 1999.

[18] T. F. Chan, J. Xu, and L. Zikatanov, “An agglomeration multigrid method
for unstructured grids,” in in Tenth International Conference on Domain
Decomposition, 1998, pp. 67–81.

[19] D. Talmor, “Well-spaced points for numerical methods,” Ph.D. disserta-
tion, Carnegie Mellon University, 1997.

[20] A. Godiyal, J. Hoberock, M. Garland, and J. C. Hart, “Rapid
multipole graph drawing on the GPU,” in Proceedings of the
16th International Symposium on Graph Drawing, I. G. Tollis
and M. Patrignani, Eds., 2009, pp. 90–101. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00219-9 10

[21] M. Adams, “A parallel maximal independent set algorithm,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/CSD-
98-993, Jan 1998. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/1998/5560.html

[22] P. Gajer, M. T. Goodrich, and S. G. Kobourov, “A multi-dimensional
approach to force-directed layouts of large graphs,” in Proceedings of
the 8th International Symposium on Graph Drawing, ser. GD ’00, 2001,
pp. 211–221.

