
Computer Physics Communications 192 (2015) 205–219
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Nektar++: An open-source spectral/hp element framework✩

C.D. Cantwell a,∗, D. Moxey a, A. Comerford a, A. Bolis a, G. Rocco a, G. Mengaldo a,
D. De Grazia a, S. Yakovlev b, J.-E. Lombard a, D. Ekelschot a, B. Jordi a, H. Xu a,
Y. Mohamied a, C. Eskilsson c, B. Nelson b, P. Vos a, C. Biotto a, R.M. Kirby b, S.J. Sherwin a

a Department of Aeronautics, Imperial College London, London, UK
b School of Computing and Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, USA
c Department of Shipping and Marine Technology, Chalmers University of Technology, Gothenburg, Sweden

a r t i c l e i n f o

Article history:
Received 22 September 2014
Received in revised form
23 January 2015
Accepted 13 February 2015
Available online 24 February 2015

Keywords:
High-order finite elements
Spectral/hp elements
Continuous Galerkin method
Discontinuous Galerkin method
FEM

a b s t r a c t

Nektar++ is an open-source software framework designed to support the development of high-
performance scalable solvers for partial differential equations using the spectral/hp element method.
High-order methods are gaining prominence in several engineering and biomedical applications due to
their improved accuracy over low-order techniques at reduced computational cost for a given number
of degrees of freedom. However, their proliferation is often limited by their complexity, which makes
these methods challenging to implement and use. Nektar++ is an initiative to overcome this limitation
by encapsulating the mathematical complexities of the underlying method within an efficient C++
framework, making the techniques more accessible to the broader scientific and industrial communities.
The software supports a variety of discretisation techniques and implementation strategies, supporting
methods research as well as application-focused computation, and the multi-layered structure of the
framework allows the user to embrace as much or as little of the complexity as they need. The libraries
capture the mathematical constructs of spectral/hp element methods, while the associated collection of
pre-written PDE solvers provides out-of-the-box application-level functionality and a template for users
who wish to develop solutions for addressing questions in their own scientific domains.

Program summary

Program title: Nektar++

Catalogue identifier: AEVV_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEVV_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions:MIT

No. of lines in distributed program, including test data, etc.: 1052456

No. of bytes in distributed program, including test data, etc.: 42851367

Distribution format: tar.gz

Programming language: C++.

Computer: Any PC workstation or cluster.

Operating system: Linux/UNIX, OS X, Microsoft Windows.

RAM: 512 MB

Classification: 12.

External routines: Boost, FFTW, MPI, BLAS, LAPACK and METIS (www.cs.umn.edu)

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author.

E-mail address: c.cantwell@imperial.ac.uk (C.D. Cantwell).
http://dx.doi.org/10.1016/j.cpc.2015.02.008
0010-4655/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2015.02.008&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AEVV_v1_0.html
http://www.cs.umn.edu
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:c.cantwell@imperial.ac.uk
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

206 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219

Nature of problem:
The Nektar++ framework is designed to enable the discretisation and solution of time-independent or
time-dependent partial differential equations.
Solution method:
Spectral/hp element method
Running time:
The tests provided take a fewminutes to run. Runtime in general depends onmesh size and total integra-
tion time.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Finite element methods (FEM) are commonplace among a wide
range of engineering and biomedical disciplines for the solution
of partial differential equations (PDEs) on complex geometries.
However, low-order formulations often struggle to capture certain
complex solution characteristics without the use of excessive
mesh refinement due to numerical dissipation. In contrast, spectral
techniques offer improved numerical characteristics, but are
typically restricted to relatively simple regular domains.

High-order finite element methods, such as the traditional
spectral element method [1], the p-type method [2] and the more
recent spectral/hp element method [3], exhibit the convergence
properties of spectral methods while retaining the geometric flex-
ibility of traditional linear FEM. They potentially offer greater
efficiency on modern CPU architectures as well as more exotic
platforms such as many-core general-purpose graphics processing
units (GPGPUs). The data structures which arise from using high-
order methods are more compact and localised than their linear
finite element counterparts, for a fixed number of degrees of free-
dom, providing increased cache coherency and reduced memory
accesses, which is increasingly the primary bottleneck of modern
computer systems.

The methods have had greatest prominence in the structural
mechanics community and subsequently the academic fluid dy-
namics community. They are also showing promise in other ar-
eas of engineering, biomedical and environmental research. The
most common concern citedwith respect to using high-order finite
element techniques outside of academia is the implementational
complexity, stemming from the complex data structures, neces-
sary to produce a computationally efficient implementation. This
is a considerable hurdle which has limited their widespread up-
take in many application domains and industries.

Nektar++ is a cross-platform spectral/hp element framework
which aims to make high-order finite element methods accessible
to the broader community. This is achieved by providing a struc-
tured hierarchy of C++ components, encapsulating the complexi-
ties of these methods, which can be readily applied to a range of
application areas. These components are distributed in the form
of cross-platform software libraries, enabling rapid development
of solvers for use in a wide variety of computing environments.
The code accommodates both small research problems, suitable for
desktop computers, and large-scale industrial simulations, requir-
ing modern HPC infrastructure, where there is a need to maintain
efficiency and scalability up to many thousands of processor cores.

A number of software packages already exist for fluid dynamics
which implement high-order finite element methods, although
these packages are typically targeted at a specific domain or
provide limited high-order capabilities as an extension. The Nektar
flow solver is the predecessor to Nektar++ and implements the
spectral/hp element method for solving the incompressible and
compressible Navier–Stokes equations in both 2D and 3D. While it
iswidely used and the implementation is computationally efficient
on small parallel problems, achieving scaling on large HPC clusters
is challenging. Semtex [4] implements the 2D spectral element
method coupled with a Fourier expansion in the third direction.
The implementation is highly efficient, but can only be parallelised
through Fourier-mode decomposition. Nek5000 [5] is a 3D spectral
element code, based on hexahedral elements, which has been used
for massively parallel simulations up to 300,000 cores. Hermes [6]
implements hp-FEM for two-dimensional problems and has been
used in a number of application areas. Limited high-order finite
element capabilities are also included in a number of general
purpose PDE frameworks including theDUNEproject [7] anddeal.II
[8]. A number of codes also implement high-order finite element
methods on GPGPUs including nudg++, which implements a nodal
discontinuous Galerkin scheme [9], and PyFR [10], which supports
a range of flux reconstruction techniques.

Nektar++ provides a single codebase with the following key
features:

• Arbitrary-order spectral/hp element discretisations in one, two
and three dimensions;

• Support for variable polynomial order in space and heteroge-
neous polynomial order within two- and three-dimensional el-
ements;

• High-order representation of the geometry;
• Continuous Galerkin, discontinuous Galerkin and hybridised

discontinuous Galerkin projections;
• Support for a Fourier extension of the spectral element mesh;
• Support for a range of linear solvers and preconditioners;
• Multiple implementation strategies for achieving linear algebra

performance on a range of platforms;
• Efficient parallel communication using MPI showing strong

scaling up to 2048-cores onArcher, theUKnationalHPC system;
• A range of time integration schemes implemented using

generalised linear methods; and
• Cross-platform support for Linux, OS X andWindows operating

systems.

In addition to the core functionality listed above, Nektar++
includes a number of solvers covering a range of application areas.
A range of pre-processing and post-processing utilities are also
included with support for popular mesh and visualisation formats,
and an extensive test suite ensures the robustness of the core
functionality.

The purpose of this paper is to expose the novel aspects of the
code and document the structure of the library. We illustrate its
use through a broad range of example applications which should
enable other scientists to build on and extend Nektar++ for use in
their own applications. We begin by outlining the mathematical
formulation of the spectral/hp element method and discuss the
implementation of the framework. We then present a number

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 207
of example applications and conclude with a discussion of our
development strategy and future direction.

2. Methods

In this section we introduce the mathematical foundations of
the spectral/hp element methods implemented in Nektar++. A
more detailed overview of the mathematical theory can be found
in [3] and is beyond the scope of this paper.Nektar++ supports both
continuous and discontinuous discretisations in one, two and three
dimensions, but the majority of the formulation which follows is
generic to all cases, except where stated.

We consider the numerical solution of partial differential equa-
tions (PDEs) of the form Lu = 0 on a domain Ω , which may be
geometrically complex, for some solution u. Practically, Ω takes
the form of a d-dimensional finite element mesh (d ≤ 3), consist-
ing of elementsΩe such thatΩ =


Ωe andΩe1 ∩Ωe2 = ∂Ωe1e2

is the empty set or an interface of dimension d̄ < d. The domain
may be embedded in a space of equal or higher dimension, d̂ ≥ d.
We will solve the PDE problem in the weak sense and, in general,
u|Ωe must be smooth and have at least a first-order derivative; we
therefore require that u|Ωe is in the Sobolev space W 1,2(Ωe). For a
continuous discretisation, we additionally impose continuity along
element interfaces.

Our problem is cast in the weak form and, for illustrative
purposes, we assume that it can be expressed as follows: find u ∈

H1(Ω) such that

a(u, v) = l(v) ∀v ∈ H1(Ω),

where a(·, ·) is a symmetric bilinear form, l(·) is a linear form, and
H1(Ω) is formally defined as

H1(Ω) := W 1,2(Ω) = {v ∈ L2(Ω) | Dαu ∈ L2(Ω) ∀ |α| ≤ 1}.

To solve this problem numerically, we consider solutions in a
finite-dimensional subspace VN ⊂ H1(Ω) and cast our problem
as: find uδ ∈ VN such that

a(uδ, vδ) = l(vδ) (1)

∀vδ ∈ VN , augmented with appropriate boundary conditions. For a
projection which enforces continuity across elements, we impose
the additional constraint thatVN ⊂ C0.We assume the solution can
be represented as uδ(x) =


n ûnΦn(x), a weighted sum of N trial

functions Φn(x) defined on Ω and our problem becomes that of
finding the coefficients ûn. The approximation uδ does not directly
give rise to unique choices for the coefficients ûn. To achieve this
we place a restriction on R = Luδ that its L2 inner product, with
respect to the test functionsΨn(x), is zero. For aGalerkin projection
we choose the test functions to be the same as the trial functions,
that is Ψn = Φn.

To construct the global basisΦn we first consider the contribu-
tions from each element in the domain. Each Ωe is mapped from
a standard reference space E ⊂ [−1, 1]d by a parametric map-
ping χe : Ωe → E given by x = χe(ξ), where E is one of the
supported region shapes, and ξ are d-dimensional coordinates rep-
resenting positions in a reference element, distinguishing them
from x which are d̂-dimensional coordinates in the Cartesian co-
ordinate space. The mapping need not necessarily exhibit a con-
stant Jacobian, supporting deformed and curved elements through
an isoparametric mapping. The reference spaces implemented in
Nektar++ are listed in Table 1. On triangular, tetrahedral, prismatic
and pyramid elements, one or more of the coordinate directions
are collapsed creating singular vertices within these regions
[11,12]. Operations, such as calculating derivatives, map the co-
ordinate system to a non-collapsed coordinate system through a
Duffy transformation [13] – for example, ωT : T → Q maps the
Table 1
List of supported elemental reference regions.

Name Class Domain definition

Segment StdSeg S = {ξ1 ∈ [−1, 1]}
Quadrilateral StdQuad Q = {ξ ∈ [−1, 1]2}
Triangle StdTri T = {ξ ∈ [−1, 1]2 | ξ1 + ξ2 ≤ 0}
Hexahedron StdHex H = {ξ ∈ [−1, 1]3}
Prism StdPrism R = {ξ ∈ [−1, 1]3 | ξ1 ≤ 1, ξ2 + ξ3 ≤ 0}
Pyramid StdPyr P = {ξ ∈ [−1, 1]3 | ξ1 + ξ3 ≤ 0, ξ2 + ξ3 ≤ 0}
Tetrahedron StdTet A = {ξ ∈ [−1, 1]3 | ξ1 + ξ2 + ξ3 ≤ −1}

triangular region T to the quadrilateral region Q – to allow these
methods to be well-defined.

A local polynomial basis is constructed on each reference ele-
ment with which to represent solutions. A one-dimensional order-
P basis is a set of polynomials φp(ξ), 0 ≤ p ≤ P , defined on the
reference segment, S. The choice of basis is usually made based
on its mathematical or numerical properties and may be modal or
nodal in nature. For two- and three-dimensional regions, a tenso-
rial basis may be used, where the polynomial space is constructed
as the tensor-product of one-dimensional bases on segments,
quadrilaterals or hexahedral regions. In particular, a common
choice is to use a modified hierarchical Jacobi polynomial basis,
given as a function of one variable by

φp(ξ) =



1 − ξ

2
p = 0,

1 − ξ

2

 
1 + ξ

2


P1,1
p−1(ξ) 0 < p < P,

1 + ξ

2
p = P

which supports boundary–interior decomposition and therefore
improves numerical efficiency when solving the globally assem-
bled system. Equivalently, φp could be defined by the Lagrange
polynomials through the Gauss–Lobatto–Legendre quadrature
points which would lead to a traditional spectral element method.

On a physical elementΩe the discrete approximation uδ to the
solution umay be expressed as

uδ(x) =


n

ûnφn

[χe]−1 (x)


where ûn are the coefficients from Eq. (1), obtained through pro-
jecting u onto the discrete space. Therefore,we restrict our solution
space to

V :=

u ∈ H1(Ω) | u|Ωe ∈ PP(Ωe)


,

where PP(Ωe) is the space of order-P polynomials onΩe.
Elemental contributions to the solution may be assembled to

form a global solution through an assembly operator. In a contin-
uous Galerkin setting, the assembly operator sums contributions
from neighbouring elements to enforce the C0-continuity require-
ment. In a discontinuous Galerkin formulation, such mappings
transfer flux values from the element interfaces into the global so-
lution vector.

3. Implementation

In this section, we provide an architectural overview of
Nektar++, sufficient to enable other scientists to leverage the
framework to develop application-specific PDE solvers using high-
order methods. In doing so we summarise the salient features of
the code and how the mathematical constructions from Section 2
are represented in the library.

In designing Nektar++, strong emphasis has been placed on
ensuring the code structure strongly mirrors the mathematical

208 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
Fig. 1. Nektar++ architecture diagram. Shows the relationship between the
individual libraries in the framework and the mathematical constructs to which
they relate.

formulation. The implementation is partitioned into a set of six
libraries, each of which encapsulates one aspect of the above con-
struction. This division maintains separation between mathemati-
cally distinct parts of the formulation, provides an intuitive means
to organise the code and enables developers to easily interject at
the level most appropriate for their needs. The overall architec-
ture ofNektar++ is illustrated in Fig. 1. In summary, the six libraries
cover the following aspects of themathematical formulation given
in Section 2:

• LibUtilites: elemental basis functions ψp, point distribu-
tions ξj and basic building blocks such as I/O handling andmesh
partitioning,

• StdRegions: reference regions E along with integration,
differentiation and other core operations on these regions,

• SpatialDomains: the mappings χe, the geometric factors ∂χ
∂ξ

,
and Jacobians of the mappings,

• LocalRegions: physical regions in the domain, composing a
reference region E with amap χe, extensions of core operations
onto these regions,

• MultiRegions: list of physical regions comprising Ω , global
assembly maps which may optionally enforce continuity,
construction and solution of global linear systems, extension of
local core operations to domain-level operations,

• SolverUtils: building blocks for developing complete
solvers.

We now outline in detail the different aspects of the implemen-
tation, the division of functionality across the libraries, the re-
lationships between them and how together they construct the
Helmholtz operatorHwhich forms an essential component in solv-
ing many elliptic PDE problems.

3.1. Input format

Nektar++ uses one ormoreXML-structured text files as input for
simulations. These describe both the discretisation of the domain
(the finite elementmesh) and the specification of the PDE problem
in terms of the necessary boundary conditions, variables and
parameters required to solve a specific problem. A large number of
example XML input files are provided with the source code in the
Examples and Tests subdirectories of the library demonstration
programs and solvers. The input format and comprehensive list of
the available options are documented in full in the user guide (see
Appendix A.14).

The Nektar++ mesh specification format is of a hierarchical
type in which one-dimensional edges are defined in terms of the
vertices they connect, two-dimensional faces are defined in terms
of the bounding edges and three-dimensional elements in terms of
the bounding faces. A composite is defined as a collection of mesh
entities which have a common shape, but need not necessarily be
connected. Composites are used for specifying the extent of the
domain and for defining boundary regions on which constraints
can be imposed (see Section 3.7). Meshes are typically generated
by third-party mesh generation packages and the necessary XML
specification is generated by the Nektar++ MeshConvert utility.

3.2. LibUtilities library

The primary function of the LibUtilities library is to
provide the fundamental mathematical and software constructs
necessary to implement the spectral/hp element method. In
particular, this includes the description of Q -point coordinate
distributions, ξj, on the standard segment S and the construction
of suitable polynomial bases, ψi, to span PP(S). Each type of basis
is encapsulated in a class which, when augmented with a point
distribution, provides the P × Q basis matrix BS[i][j] = ψi(ξj), the
P×Q basis derivativematrixDBS[i][j] =

∂ψi
∂ξ

|ξj , theQ ×Q diagonal
quadrature weight matrix WS[i][i] = wi and the Q coordinates ξi
of the points on S. As well as providing these basic mathematical
objects, the LibUtilities library also provides a range of
other generic functionality. In particular, parallel communication
routines, Fourier transforms, linear algebra containers and design
pattern implementations are all incorporated into this part of the
framework.

3.3. StdRegions library

Reference regions E ⊂ [−1, 1]d provide core element-level op-
erations and are implemented in the StdRegions library. Classes
are defined for each of the reference regions, as given in Table 1,
and class inheritance is used to share common functionality. An
example of the class hierarchy for two-dimensional elements is
shown in Fig. 2(a). We assume each region is equipped with a ba-
sis φn extended from one of the basis functions ψp. In two- and
three-dimensional elements, the basis is often constructed as a
tensor product of one-dimensional hierarchical bases; for exam-
ple, φn(p1,p2)(ξ1, ξ2) = ψp1(ξ1)⊗ψp2(ξ2) for a quadrilateral region
or φn(p1,p2)(ξ1, ξ2) = ψp1 ⊗ψp1,p2 for a triangular region. However,
nodal and non-tensorial bases are also supported. In a similar way,
coordinates in two- and three-dimensional elements are given by
ξq=q(i). Expansion orders may be different for each of theψpi bases,
although constraints are imposed on simplex regions to ensure a
complete polynomial space. The core operators defined on the ref-
erence element are then:

• BwdTrans: û → u(ξ) =


n ûnφn(ξ),
which evaluates the solution represented by û, on the basis φn,
at the quadrature points ξ. This operation requires the basis
matrix B and therefore evaluates the result as u = Bû.

• IProductWRTBase: f → f̂n =


E
f (ξ)φn(ξ) dξ,

which computes the inner product of a function with respect to
the basis. The discrete approximation of integration, Gaussian
quadrature, leads to f̂[i] ≈


qwqf (ξq)φi(ξq) which can be

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 209
Fig. 2. Example of class inheritance structure for two-dimensional regions. Each LocalRegions class (b) inherits base functionality from the corresponding StdRegions
class (a). Inheritance is used to minimise code duplication. The Expansion class contains member pointers to Geometry and GeomFactors objects (c). Operations, such
as a transform from coefficient to physical space (d), on a physical element are constructed as a composition of functionality from the different libraries.
expressed in matrix form as f̂ = B⊤Wf, where W is a diagonal
matrix containing the integration weightswq.

• PhysDeriv: u →
∂u
∂ξi

,

which computes the derivative of u with respect to the d
coordinates of the element, with matrix representation u′

=

Du.

These operators can be combined to produce more complex
operators such as the mass matrix,

M = B⊤WB.

With this we can project a solution onto the discrete space using
the FwdTrans operation. This requires solving the projection
problem uδ(ξ) = f (ξ). In the weak sense, this has the form

E

vδ(ξ)uδ(ξ) dξ =


E

vδ(ξ)f (ξ) dξ

and is equivalent to solving for û the linear system

Mû = B⊤Wf.

The StdRegions classes also describe the mapping of basis
functions to the vertices, edges and faces of the element, which
are necessary to assemble elemental contributions and construct
a global system for the domain.

3.4. SpatialDomains library

The classes defined in SpatialDomains fall into three main
hierarchies which together describe the geometric information
needed to represent the problem domain and the elemental
entities which comprise it. Geometry classes capture the physical
geometry of an individual element Ωe. There are separate classes
for each elemental region and the class hierarchy follows a parallel
structure to the StdRegions classes, shown in Fig. 2(c). The
GeomFactors class, instantiated by each geometry object, defines
the parametric mapping χe between the physical geometry of
the element Ωe and the corresponding standard region. This
mapping is implemented in a generic manner and does not require
dimension-dependent subclasses.

MeshGraph classes read the mesh definition from the input
file and construct the domain Ω , instantiating a corresponding
Geometry object for each Ωe. The derived classes are again
dimension-dependent. Finally, the BoundaryConditions class
manages the association of specific mathematical constraints to
each boundary of the domain for a given variable.
3.5. LocalRegions library

Physical regions, shown in Fig. 2(b), are an extension of a
reference element augmented with geometric information and a
mapping between the two regions. As such, the physical element
types implemented in the LocalRegions library inherit their
StdRegions counterparts and override core operations, such
as integration and differentiation, to incorporate the geometric
information. For example, the inner product operation becomes

f (x) → f̂i =


Ωe

f (x)φi(x) dx

which, in discrete form is evaluated as f̂[i] ≈


q Jwqf (ξq)φi(ξq).
Here we have incorporated J , the determinant of the Jacobian of
χe. Similarly, for differentiation, the chain rule gives rise to u →

∂u
∂xi

=
n

j=1
∂ξj
∂xi

∂u
∂ξj

. Both J and the terms ∂ξj
∂xi

are provided by the
GeomFactors class.

To identify the relationship between the different libraries
and their respective contributions to the above core operations,
Fig. 2(d) illustrates how those libraries examined so far contribute
to the implementation of the backward transform on a given
elementΩe.

3.6. MultiRegions library

So far, operations have only been defined on the physical
elemental regions; to define operators on the entire domain the
elemental regions are assembled. The MultiRegions library
encapsulates the global representation of a solution across a
domain comprising of one or more elemental regions. While
the same type of basis functions must be used throughout the
domain, the order of the polynomials for each expansion may
vary between elements. Assembly is the process of summing local
elemental contributions to construct a global representation of
the solution on the domain. The information to construct this
mapping is derived from the elemental mappings of modes to
vertices, edges and faces of the element. Mathematically, this
operation can be represented as a highly sparse matrix, but it is
practically implemented as an injective map in the AssemblyMap
classes. Different maps are used for different projections; in
particular, the AssemblyMapCG class supports the exchange of
neighbouring contributions in continuous Galerkin projections,
while the AssemblyMapDG supports the mapping of elemental
data onto the trace space in the discontinuous Galerkin method.

The resulting assembly of the elemental matrix contributions
leads to a global linear system in the GlobalLinSys classes. This

210 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
may be solved using a variety of linear algebra techniques includ-
ing direct Cholesky factorisation and iterative preconditioned con-
jugate gradient. Substructuring (multi-level static condensation)
allows for amore efficient solution of thematrix system. As well as
a traditional Jacobi preconditioner, specialist Preconditioner
classes tailored to high-order methods are also available [14].
These include a coarse-space preconditioner, block preconditioner
and low-energy preconditioner [15]. Performance of the conju-
gate gradient solver is dependent on both the efficiency of the ma-
trix–vector operation and inter-process communication. The rich
parameter space of a high-order elemental discretisation may be
leveraged by providing multiple implementations of the core op-
erators, each of which perform efficiently across a subset of the pa-
rameter space on different hardware architectures. This has been
extensively explored in the literature [16–18]. The gather–scatter
operation necessary for evaluating operations in parallel is imple-
mented in the gslib library [19], developedwithinNek5000. Finally,
a PetSc interface is available which provides access to a range of
additional solvers.

3.7. Boundary conditions

Boundary-value problems require the imposition of constraints
at the boundaries of the domain. Although these conditions are
frequently Dirichlet, Neumann or Robin constraints, depending
upon the application area, other more complex conditions can be
implemented by the user if needed. The specification of boundary
conditions in the input file is generic to support this.
• Boundary regions are defined using one or more mesh compos-

ites. For example, the following XML describes two regions con-
structed from three composites on which different constraints
are to be imposed:
<B ID="0"> C[1,3]
<B ID="1"> C[2]

• The conditions to be imposed on each boundary region for each
variable are described using XML element tags to indicate the
underlying type of condition:
– D: Dirichlet;
– N: Neumann;
– R: Robin.
For example, the following excerpt defines an in-flow boundary
using a high-order Neumann boundary condition on the pres-
sure:
<REGION REF="0">

<D VAR="u" VALUE="0"/>
<D VAR="v" VALUE="0"/>
<D VAR="w" VALUE="y*(1-y)"/>
<N VAR="p" USERDEFINEDTYPE="H" VALUE="0"/>

</REGION>

The USERDEFINEDTYPE attribute specifies the user-imple-
mented condition to be used. The REF attribute corresponds to
the ID of the boundary region.

The list of boundary regions and their constraints is managed
by the BoundaryConditions data structure in the Spatial
Domains library. The enforcement of the boundary conditions on
the solution is implemented at the MultiRegions level of the
code (and above) during the construction and use of domain-wide
operators. User-defined boundary conditions are implemented in
specific solvers. For example both high-order Neumann boundary
conditions and a radiation boundary condition are supported by
the incompressible Navier–Stokes solver.

3.8. SolverUtils library

The SolverUtils library provides the top-level building
blocks for constructing application-specific solvers. This includes
core functionality, such as IO, time-stepping [20] and common
initialisation routines, useful in quickly constructing a solver using
the Nektar++ framework. It contains a library of application-
independent modules for implementing diffusion and advection
terms as well as a number of Driver modules which implement
general high-level algorithms, such as an Arnoldi method for
performing various stability analyses [21].

3.9. Solvers

Nektar++ includes a number of pre-written solvers for some
common PDEs, developed for our own research. Some examples,
outlined in the next section, include incompressible and com-
pressible Navier–Stokes equations, the cardiac electrophysiology
monodomain equation, shallow water equations and a solver for
advection–diffusion–reaction problems. Themodular nature of the
code, combined with the mathematically motivated class hierar-
chy allows the code to be adapted and extended to rapidly address
a range of application and numerical questions.

To illustrate the use of the framework, we first consider the
solution of the Helmholtz equation, since this is a fundamental
operation in the solution of many elliptic partial differential equa-
tions. The problem is described by the following PDE and associ-
ated boundary conditions:

∇
2u − λu + f = 0 onΩ,

u = gd on ∂Ω,
∂u
∂x

= gn on ∂Ω.

We put this into the weak form and after integration by parts, this
gives,
Ω

∇u · ∇v dx + λ


Ω

uv dx =


Ω

f v dx +


∂Ω

v∇u · n dx. (2)

Approximating u and v with their finite-dimensional counterparts
and substituting into Eq. (2) we obtain

m


n

ûnv̂m


Ω

∇Φm · ∇Φn + λ

m


n

ûnv̂m


Ω

Φn · Φn

=


n

v̂n


Ω

f · Φn +


n


m

ûnv̂m


∂Ω

Φn · ∇Φn,

which can be expressed in matrix form as

v̂⊤(DB)⊤W(DB)û + λv̂⊤Mû = v̂⊤B⊤Wf.

The matrix H = (DB)⊤W(DB)+ λM is the Helmholtz matrix, and
the system Hû = f̂, where f̂ = B⊤Wf is the projection of f onto VN ,
is then solved for û.

The above is implemented inNektar++ through the HelmSolve
function, which takes physical values of the forcing function f and
produces the solution coefficients u, as

field->HelmSolve(forcing->GetPhys(),
field->UpdateCoeffs(),
NullFlagList,
factors);

where factors is a data-structure which allows us to prescribe
the value of λ.

3.10. Implementing solvers using Nektar++

To conclude this section, we outline how one can construct a
time-dependent solver for the unsteady diffusion problem using

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 211
the Nektar++ framework, solving
∂u
∂t

= ∇
2u onΩ

u = gD on ∂Ω.

This can be implemented with the following key steps as outlined
below. Only the key statements are shown to illustrate the use
of the library. Full source code for this example is included in
Appendix A.12.
• Create a SessionReader object to load and parse the input

files. This provides access for the rest of the library to the XML
input files supplied by the user. It also initiates MPI communi-
cation if needed.
session = LibUtilities::SessionReader

::CreateInstance(argc, argv);

• Create MeshGraph and field objects to generate the hierar-
chical mesh entity data structures and allocate storage for the
global solution. The mesh provides access to the geometric in-
formation about each element and the connectivity of those
elements to form the domain. In contrast, the field object repre-
sents a solution on the domain and provides the finite element
operators.
var = session->GetVariable(0);
mesh = SpatialDomains::MeshGraph::Read(session);
field = MemoryManager<MultiRegions::ContField2D>

::AllocateSharedPtr(session, mesh, var);

• Get the coordinates of the quadrature points on all elements and
evaluate the initial condition
field->GetCoords(x0,x1,x2);
icond->Evaluate(x0, x1, x2, 0.0, field->UpdatePhys());

• Perform backward Euler time integration of the initial condi-
tion for the number of steps specified in the session file, where
epsilon is the coefficient of diffusion.
for (int n = 0; n < nSteps; ++n)
{

Vmath::Smul(nq, -1.0/delta_t/epsilon,
field->GetPhys(), 1,
field->UpdatePhys(), 1);

field->HelmSolve(field->GetPhys(),
field->UpdateCoeffs(),
NullFlagList,
factors);

field->BwdTrans (field->GetCoeffs(),
field->UpdatePhys());

}

• Write out the solution to a file which can be post-processed and
visualised.
fld->Write(outFile, FieldDef, FieldData);

Here, fld is a Nektar++ field format I/O object.

A second example is provided in the supplementary material
Appendix A.13 which elicits the use of the time-integration
framework to support more general (implicit) methods.

4. Applications

In this section we illustrate, through the use of the pre-written
solvers, key aspects of the Nektar++ framework through a number
of example scientific problems spanning a broad range of applica-
tion areas. The source files used to generate the figures in this sec-
tion are available in the supplementary material (apart from Fig. 3,
due to commercial considerations). Although these problems pri-
marily relate to the modelling of external and internal flow phe-
nomena, the framework is not limited to this domain and some
examples extend into broader areas of biomedical engineering.
Fig. 3. Flow past a front section of a Formula 1 racing car at a Reynolds number of
2.2 × 105 . Streamlines show the flow trajectory and are coloured by pressure. The
simulation has 13 million degrees of freedom at polynomial order P = 3.

4.1. External aerodynamics

One of the most challenging problems in next-generation
aerodynamics is capturing highly resolved transient flow past bluff
bodies using Direct Numerical Simulation (DNS). For example,
understanding and controlling the behaviour of vortices generated
by the front-wing section of a racing car (see Fig. 3) is critical
in ensuring the stability and traction of the vehicle. Apart from
the computational complexity of the simulation, a number of
mesh generation challenges need to be overcome to accurately
capture the flow dynamics. These include high-order curvilinear
meshing of the CAD geometry and the generation of sufficiently
fine elements adjacent to the vehicle surfaces to resolve the thin
boundary layers and accurately predict separation of the flow.

Using the IncNavierStokesSolver, flow is modelled under
the incompressible Navier–Stokes equations,

∂u
∂t

+ (u · ∇)u = −∇p + ν∇2u, (3a)

∇ · u = 0, (3b)
u,
∂p
∂n


∂Ωw

= 0, (3c)
∂u
∂n
, p


∂Ωo

= 0, (3d)

(u, p) |∂Ωi = (f, 0), (3e)

where u is the velocity of the flow, p is the pressure and ν is
the kinematic viscosity. No-slip boundary conditions are applied
to the front wing, body and rotating wheels (Ωw), a high-order
outflow boundary condition [22] is imposed on the outlet (Ωo) and
a constant free-streamvelocity f is applied on the inlet and far-field
boundaries of the domain (Ωi). Due to the high Reynolds number
of Re = 2.2 × 105, based on the chord of the front-wing main
plane, the solution is particularly sensitive to the spatial resolution,
requiring the use of techniques such as spectral vanishing viscosity
(SVV) [23] and dealiasing in order to efficiently maintain the
stability of the solution. To improve convergence of the conjugate
gradient solver, we apply a low-energy block preconditioner [15]
to the linear systems for velocity and pressure. We apply,
in addition, a coarse-space preconditioner, implemented as a
Cholesky factorisation [14], on the pressure field using an additive
Schwarz approach. A high-order operator-splitting scheme [24] is
used to decouple the system into four linear equations together
with consistent pressure boundary conditions [25], although
care must be taken to avoid instabilities arising from this
formulation [26]. Further examples of the capabilities of the
incompressible Navier–Stokes solver are given in Section 4.7.

In contrast, the CompressibleFlowSolver encapsulates
two different sets of equations forming the cornerstone of
aerodynamics problems: the compressible Euler and compressible

212 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
Fig. 4. Examples of external aerodynamics problems solved using the CompressibleFlowSolver. (a) Flow over a cylinder at Re = 3900. (b) Euler simulation of flow
over a NACA0012 aerofoil at Ma∞ = 0.8. (c) Temperature of flow passing over a T106C low-pressure turbine blade at Re = 80,000. Simulation input files are provided in
Appendices A.15, A.16 and A.17, respectively.
Navier–Stokes equations. In these equations, the compressibility of
the flow is taken into account, leading to a conservative hyperbolic
formulation,
∂U
∂t

+ ∇ · F(U) = ∇ · Fv(U),

where U = [ρ, ρu, ρv, ρw, E]
⊤ is the vector of conserved vari-

ables in terms of density ρ, velocity (u1, u2, u3) = (u, v, w), E is
the specific total energy, and

F(U) =


ρu ρv ρw

p + ρu2 ρuv ρuw
ρuv ρv2 + p ρvw

ρuw ρvw ρw2
+ p

u(E + p) u(E + p) v(E + p)

 ,
where p is the pressure. To close the system we need to specify an
equation of state, in this case the ideal gas law p = ρRT where T is
the temperature and R is the gas constant. For the Euler equations,
the tensor of viscous forces Fv(U) = 0, while for Navier–Stokes

Fv(U) =


0 0 0
τxx τyx τzx
τxy τyy τzy
τxz τyz τzz
A B C

 ,
with

A = uτxx + vτxy + wτxz + k∂xT ,
B = uτyx + vτyy + wτyz + k∂yT ,
C = uτzx + vτzy + wτzz + k∂zT ,

where in tensor notation the stress tensor τxixj = 2µ(∂xiui+∂xiuj−
1
3∂xkukδij),µ is the dynamic viscosity calculated using Sutherland’s
law and k is the thermal conductivity.

To discretise these equations in space, we adopt an approach
which allows for the resolution of discontinuities and shocks
that may appear in the solution at transonic and supersonic flow
speeds. We therefore use approximations to our solution com-
prised of functions which are not continuous across element
boundaries. Traditionally, we follow a Galerkin approach by utilis-
ing the variational form of the equations in order to obtain the dis-
continuous Galerkinmethod. One of the key features ofNektar++ is
the ability to select a wide range of numerical options, and to this
end we support both discontinuous Galerkin and flux reconstruc-
tion spatial discretisations, which have various numerical equiva-
lences [27] but may possess different performance characteristics.
In the flux reconstruction formulation, we instead use the equa-
tion in differential form in combination with correction functions
which impose continuity of fluxes between elements.

In either case, information is transferred between elements by
solving a one-dimensional Riemann problem at the interface be-
tween two elements. For the non-viscous terms there is support
for a wide variety of Riemann solvers, including an exact solu-
tion or a number of approximate solvers such as HLLC, Roe and
Lax–Friedrichs solvers [28]. For the viscous terms, we utilise a local
discontinuous Galerkinmethod (or the equivalent flux reconstruc-
tion version). Boundary conditions are implemented in a weak
form by modifying the fluxes for both the non-viscous and viscous
terms [29]. Various versions of the discontinuous Galerkin method
which are available throughout the literature, mostly relating to
the choices of modal functions and quadrature points, can also be
readily selected by setting appropriate options in the input file.

Given the complexity and highly nonlinear form of these equa-
tions, we adopt a fully explicit formulation to discretise the equa-
tions in time, allowing us to use any of the explicit timestepping
algorithms implemented through the general linear methods
framework [20], including 2nd and 4th order Runge–Kutta meth-
ods. Finally, in order to stabilise the flow in the presence of discon-
tinuitiesweutilise a shock capturing techniquewhichmakes use of
artificial viscosity to damp oscillations in the solution, in conjunc-
tion with a discontinuity sensor adapted from the approach taken
in [30] to decidewhere the addition of artificial viscosity is needed.

Fig. 4 shows representative results from compressible flow
simulations of a number of industrially relevant test cases. We
first highlight two simulations which utilise the Navier–Stokes
equations. Fig. 4(a) demonstrates the three-dimensional version
of the compressible solver showing flow over a cylinder at Re =

3900. In this figure we visualise isocontours of the pressure field
and colour the field according to the density ρ. To demonstrate the
shock capturing techniques available in the code, Fig. 4(b) shows
the results of an Euler simulation for flowover aNACA0012 aerofoil
at a farfield Mach number Ma∞ = 0.8 and a 1.5◦ angle of attack.
The transonic Mach number of this flow leads to the development
of a strong and weak shock along the upper and lower surfaces of

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 213
Fig. 5. Contours of velocity magnitude in a periodic hill simulation at Re = 2800.
Simulation input files available in Appendix A.18.

the wing respectively. This figure shows isocontours of the Mach
number where the presence of the shocks are clearly identified.
Finally, in Fig. 4(c), we visualise the temperature field from flow
passing over a T106C low-pressure turbine blade at Re = 80,000 to
highlight applications to high Reynolds number flow simulations.

4.2. Transitional turbulent flow dynamics

Transient problems in which turbulence dominates the flow
domain, or in which the transition to turbulence dominates the
simulation, remain some of the most challenging problems to
resolve in computational fluid simulations. Here, accurate numer-
ical schemes and high resolution of the domain is critical. More-
over, any choice of scheme must be efficient in order to obtain
results in computationally feasible time-scales. Traditionally,
highly resolved turbulence simulations, such as the Taylor–Green
vortex problem, lie firmly in the class of spectral methods. How-
ever, spectral methods typically lead to strong geometry restric-
tions which limits the domain of interest to simple shapes such as
cuboids or cylinders.

Whilst spectral elementmethodsmay seem the ideal choice for
such simulations, particularly when the domain of interest is geo-
metrically complex, they can be more computationally expensive
in comparison to spectral methods. However, when the domain of
interest has a geometrically homogeneous component – that is, the
domain can be seen to be the tensor product of a two-dimensional
‘complex’ part and a one-dimensional segment – we can combine
both the spectral element and traditional spectral methods to cre-
ate a highly efficient and spectrally accurate technique [4].

We consider the application of this methodology to the prob-
lem of flow over a periodic hill, depicted in Fig. 5, where the flow is
periodic in both streamwise and spanwise directions. This case is a
well-established benchmark problem in the DNS and LES commu-
nities [31], and is challenging to resolve due to the smooth detach-
ment of the fluid from the surface and recirculation region. Here
we consider a Reynolds number of 2800, normalised by the bulk
velocity at the hill crest and the height of the hill, with an appro-
priate body forcing term to drive the flow over the periodic hill
configuration.

The periodicity of this problem makes it an ideal candidate for
the hybrid technique described above. We therefore construct a
two-dimensional mesh of 3626 quadrilateral elements at polyno-
mial order P = 6, and exploit the domain symmetry with a Fourier
pseudospectral method consisting of 160 collocation points in the
spanwise direction to perform the simulation. This yields a resolu-
tion of 20.9Mdegrees of freedomper field variable and allows us to
obtain excellent agreement with the benchmark statistics, which
are available in reference [32].

4.3. Flow stability

In addition to direct numerical simulation of the full non-
linear incompressible Navier–Stokes equations, the IncNavier
StokesSolver supports global flow stability analysis through
the linearised Navier–Stokes equations with respect to a steady or
Fig. 6. Linear stability analyses of two-dimensional flow past a circular cylinder
at Re = 42. Illustrative plots of (a) streamwise (left) and transverse (right) compo-
nents of velocity for the dominant direct mode, (b) streamwise (left) and transverse
(right) velocity for the dominant adjoint mode and (c) structural sensitivity to base
flow modification (left) and local feedback (right). Simulation input files are pro-
vided in Appendix A.19.

periodic base flow. This process identifies whether a steady flow
is susceptible to a fundamental change of state when perturbed by
an infinitesimal disturbance. The linearisation takes the form

∂u′

∂t
+ (u′

· ∇)U + (U · ∇)u′
= −∇p′

+ ν∇2u′ (4a)

∇ · u′
= 0, (4b)

where U is the base flow and u′ is now the perturbation. The time-
independent base flow is computed through evolving Eqs. (3) to
steady-state with appropriate boundary conditions. Time-periodic
base flows are sampled at regular intervals and interpolated.

The linear evolution of a perturbation under Eqs. (4) can be
expressed as

u′(t) = A(t)u′(0),

for some initial state u′(0), and we seek, for some arbitrary time T ,
the dominant eigenvalues and eigenmodes of the operator A(T),
which are solutions to the equation

A(T)ũj = λjũj.

The sign of the leading eigenvalues λj are used to establish the
global stability of the flow. An iterative Arnoldi method [33] is ap-
plied to a discretisation M of A(T). Repeated actions of M are ap-
plied to the discrete initial stateu0 using the same time-integration
code as for the non-linear equations [21]. The resulting sequence
of vectors spans a Krylov subspace ofM and, through a partial Hes-
senberg reduction, the leading eigenvalues and eigenvectors can
be efficiently determined. The same approach can be applied to
the adjoint formof the linearisedNavier–Stokes evolution operator
A∗(T) to examine the receptivity of the flow and, in combination
with the direct mode, identify the sensitivity to base flow mod-
ification and local feedback. The direct and adjoint methods can
also be combined to identify convective instabilities over different
time horizons τ in a flow by computing the leading eigenmodes of
(A∗A)(τ). This is referred to as transient growth analysis.

To illustrate the linear analysis capabilities of Nektar++, we use
the example of two-dimensional flow past a circular cylinder at
Re = 42, just below the critical Reynolds number for the onset
of the Bénard–von Kármán vortex street. This is a well-established
test case for which significant analysis is available in the literature.
We show in Fig. 6 the leading eigenmodes for the direct (A) and
adjoint (A∗) linear operators for both the streamwise and cross-
stream components of velocity. The modes are characterised by
the asymmetry in the streamwise component and symmetry in
the cross-stream component. We also note the spatial distribution

214 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
of the modes with the leading direct modes extending far down-
stream of the cylinder, while the adjoint modes are predominantly
localised upstream but close to the cylinder. This separation is a
result of the non-normality of the A operator. We also show the
structural sensitivity of the flow to base flow modification and lo-
cal feedback. The latter highlights regions where localised forcing
would have greatest impact on the flow.

4.4. Shallow water modelling

The ShallowWaterSolver simulates depth-averaged wave
equations, often referred to as ‘‘long-wave’’ approximations. These
equations are often used for engineering applications where the
vertical dimension of the flow is small compared to the horizontal.
Examples of applications include tidal flow, river flooding and
nearshore phenomena such as wave-induced circulation andwave
disturbances in ports.

The governing equations are derived from potential flow: the
Laplace equation inside the flowdomain and appropriate boundary
conditions at the free surface and bottom. The two key steps are
(i) the expansion of the velocity potential with respect to the
vertical coordinate and (ii) the integration of the Laplace equation
over the fluid depth. This results in sets of equations expressed in
horizontal dimensions only. Depending on the order of truncation
in nonlinearity and dispersion, numerous long-wave equations
with different kinematic behaviour have been derived over the
years [34–36].

Many depth-averaged equations can be written in a generic
form as

∂U
∂t

+ ∇ · F(U)+ D(U) = S(U) , (5)

where U = [H ,Hu ,Hv]T is the vector of conserved variables. The
horizontal velocity is denoted by u = [u(x, t) , v(x, t)]T ,H(x, t) =

η(x, t)+d(x) is the totalwater depth, η is the free surface elevation
and d the still water depth. The flux vector F(U) is given as

F(U) =

 Hu Hv
Hu2

+ gH2/2 Huv
Huv Hv2 + gH2/2

 , (6)

in which g is the acceleration due to gravity. The source term S(U)
contains forcing due to, for example, Coriolis effects, bed-slopes
and bottom friction. Importantly, D(U) contains all the dispersive
terms. The actual form of the dispersive terms differs between
different wave equations and the term can be highly complex with
many high-order mixed and spatial derivatives.

At present, the ShallowWaterSolver supports the non-
dispersive shallow-water equations (SWE) and the weakly disper-
sive Boussinesq equations of Peregrine [34]. The SWEare recovered
if D(U) ≡ 0 while for the Peregrine equation the expression is:

D(U) = ∂t

 0
(d3/6)∂x (∇ · (Hu/d))− (d2/2)∂x (∇ · (Hu))
(d3/6)∂y (∇ · (Hu/d))− (d2/2)∂y (∇ · (Hu))

 . (7)

The Boussinesq equations are solved using the wave continuity
approach [37]. The momentum equations are first recast into
a scalar Helmholtz type equation and solved for the auxiliary
variable z = ∇ · ∂t (Hu). The conservative variables are recovered
in a subsequent step.

A frequently used test-case for Boussinesqmodels is the scatter-
ing of a solitary wave impinging a vertical cylinder. Here a solitary
wave with nonlinearity ϵ = 0.1 is propagating over a still water
depth of 1 m (ϵ = A/d, where A is the wave amplitude). The initial
solitary wave condition is given by Laitone’s first order solution.
The cylinder has a diameter of 4 m, giving a Keulegan–Carpenter
Fig. 7. Solitary wave impinging a stationary cylinder. The colours and surface
deformation illustrate the height of the surface at times (a) t = 4.5 s; (b) t = 5.5 s;
(c) t = 8.5 s; and (d) t = 12.5 s. Simulation input files are provided in Appendix
A.20.

number well below unity and diffraction number on the order of 2.
Hence, the viscous effects are small while the diffraction and scat-
tering are significant.

We compute the solution in the domain x ∈ [−25 , 50] metres
and y ∈ [−19.2 , 19.2] metres, discretised into 552 triangles using
P = 5. Snapshots of the free surface elevation at four different
times are shown in Fig. 7. In Fig. 7(a) the solitary wave reaches
its maximum run-up on the cylinder, while in Fig. 7(b) the peak
of solitary wave has reached the centre of the cylinder and a
depression in the free surface around the cylinder is clearly visible.
The propagation of the scattered waves, and those later reflected
from the side walls, are seen in Figs. 7(c) and (d).

4.5. Cardiac electrophysiology

The cardiac electrical system in the heart is the signallingmech-
anism used to ensure coordinated contraction and efficient pump-
ing of blood. Conduction occurs due to a complex sequence of
active ion exchanges between intracellular and extracellular
spaces, initiated due to a potential difference between the inside
and outside of the cell exceeding a threshold, producing an action
potential. This causes a potential difference across boundarieswith
adjacent cells, resulting in a flow of ions between cells and trigger-
ing an action potential in the adjacent cell. Disease, age and infarc-
tion lead to interruption of this signalling process andmay produce
abnormal conduction patterns known as arrhythmias. Clinically,

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 215
Fig. 8. Illustrative simulation of a depolarising electrochemical wavefront on
a two-dimensional manifold representation of a human left atrium. Blue areas
denote regions of unexcited (polarised) tissue, while green denotes areas of excited
(depolarised) cells. The red areas highlight the wavefront. Simulation input files are
provided in Appendix A.21. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

these can be treated using catheter ablation, however accurately
selecting the most effective substrate modification to restore nor-
mal rhythm is often particularly challenging and may benefit from
insight derived from computer modelling.

The CardiacEPSolver models the conduction process using
the monodomain equations

β


Cm
∂u
∂t

+ Iion


= ∇ · σ∇u,

where the Iion term captures the complex movement of ions in and
out of cells and is itself modelled as a set of ordinary differential
equations. Additionally, σ captures the potentially heterogeneous
and anisotropic nature of the tissue which governs the speed of
electrical propagation. While full 3D simulations of myocardium
are traditionally performed, the left atrium is sufficiently thin that
it can be reasonably represented as a two-dimensional manifold
embedded in three dimensions and solved at significantly reduced
computational cost [38].

An example of conduction propagation over the left atrium us-
ing the monodomain equations is illustrated in Fig. 8. Electrophys-
iological characteristics vary spatially, with regions of scar and
fibrosismore resistive to activation, resulting in activation patterns
of greater complexity. The geometry is derived from segmented
magnetic resonance imaging (MRI) data, while tissue heterogene-
ity is prescribed based on late gadolinium-enhancedMRI. A human
atrial ionic model [39] is used to compute the Iion term and repre-
sents the exchanges of ions between the interior and exterior of
the cell, along with other cellular biophysics.

4.6. Arterial pulse-wave propagation

1D modelling of the vasculature (arterial network) represents
an insightful and efficient tool for tackling problems encountered
in arterial biomechanics as well as other engineering problems. In
particular, 3D modelling of the vasculature is relatively expensive.
1D modelling provides an alternative in which the modelling as-
sumptions provide a good balance between physiological accuracy
and computational efficiency. To describe the flow and pressure in
this network we consider the conservation of mass and momen-
tum applied to an impermeable, deformable tube filled with an
incompressible fluid, the nonlinear system of partial differential
equations presented in non-conservative form is given by

∂U
∂t

+ H
∂U
∂x

= S, (8)

U =


U
A


, H =


U A

ρ
∂p
∂A

U


, S =

 0
1
ρ


f
A

− s
 ,
Fig. 9. Geometry used for the simulation. Insets show how flow and pressure
vary with time and different locations in the geometry. Simulation input files are
provided in Appendix A.22.

in which A is the Area (related to pressure), x is the axial coordinate
along the vessel, U(x, t) the axial velocity, P(x, t) is the pressure in
the tube, ρ is the density and finally f the frictional force per unit
length. The unknowns in Eq. (8) are u, A and p; hence, we must
provide an explicit algebraic relationship to close this system. Typ-
ically, closure is provided by an algebraic relationship between A
and p.

For a thin elastic tube this is given by

p = p0 + β
√

A −


A0


, β =

√
πhE

(1 − ν2)A0
, (9)

where p0 is the external pressure, A0 is the initial cross-sectional
area, E is the Young’s modulus, h is the vessel wall thickness and ν
is the Poisson’s ratio. Othermore elaborate pressure–area relation-
ships are currently being implemented into the framework. Appli-
cation of Riemann’s method of characteristics to Eqs. (8) and (9)
indicates that velocity and area are propagated through the sys-
tem by forward and backward travelling waves. These waves are
reflected within the network by appropriate treatment of inter-
faces and boundaries (see for example [40,41]). The final system of
equations are discretised in the Nektar++ framework using a dis-
continuous Galerkin projection.

To illustrate the capabilities of the PulseWaveSolver, a 1D
geometry is created by extracting the centreline directly from a
3D segmentation of a carotid bifurcation. The extracted centre-
line with the segmented geometry overlaid is shown in Fig. 9. At
the inlet a half-sinusoidal flow profile is applied during the sys-
tolic phase, whist during the diastolic phase a no-flow condition is
applied. Although this profile is not representative of the carotid
wave, it is useful for demonstrating essential dynamics of the sys-
tem e.g. reflection of backward travellingwaves only during the di-
astolic phase. At the outflow RCR boundary conditions are utilised
[41]. The RCRmodel is an electrical analogy consisting of two resis-
tors (total peripheral resistance) and a capacitor (peripheral com-
pliance). This boundary condition takes into account the effects of
the peripheral vessels (e.g. small arteries, arterioles and capillar-
ies) on pulse wave propagation. The pressure and flow results are
shown in Fig. 9. The insets demonstrate that the pressure needs
about 4 cycles to reach a periodic state. The boundary condition is
responsible for establishing the correct pressure–flow relationship
on the outflow and throughout the domain.

4.7. Vascular mass transport

To conclude this section, we illustrate the flexibility of the soft-
ware in combining two solvers to understand mass transport in

216 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
Fig. 10. Calculation of mass transport in an intercostal pair. (a) Inflow boundary condition for fluid simulation computed by solving a Poisson problem on the inflow surface.
(b) Flow computed using the incompressible Navier–Stokes equations. (c) Mass transport of low diffusion coefficient species simulated using the advection–diffusion solver
with Pe = 7.5 × 105 . Non-dimensional gradient of concentration (Sherwood number) at the wall is shown. (d) Detailed view of non-dimensional concentration gradient at
intercostal branches. Simulation input files are provided in Appendix A.21.
the aorta. We consider the simulation of blood-flow through a
pair of intercostal branches in the descending aorta. The three-
dimensional geometry is derived from CT scans and is meshed us-
ing a combination of tetrahedral and prismatic elements. Prisms
are used to better capture the boundary layer close to the wall,
while tetrahedra fill the remaining interior of the domain. The
embedded manifold discretisation code can be used to compute
boundary conditions for three-dimensional simulations where the
complexity of the geometry precludes the use of analytic condi-
tions. The resulting inflow condition is shown in Fig. 10(a).

The flow is modelled using the incompressible Navier–Stokes
equations (see Eqs. (3) in Section 4.1). In this case, the inlet
flow-profile f in Eq. (3)(e) is the solution of the Poisson problem,
computed using the ADRSolver, on the two-dimensional inlet
boundary surface for a prescribed body force. The resulting pro-
file is imposed on the three-dimensional flow problem as illus-
trated and the steady-state velocity field from the flow simulation
at Reynolds number Re = 300 is shown in Fig. 10(b). A single
boundary layer of prismatic elements is used for this simulation
and both the prismatic and tetrahedral elements use a polynomial
expansion order of P = 4. This is sufficient to capture the boundary
layer at the walls.

We next solve the advection–diffusion equation,

∇ · (−D∇c + cu) = 0,

to model transport of oxygen along the arterial wall, again using
the ADRSolver. Here, c is the concentration and u is the steady-
state flow solution obtained previously. D = 1/Pe is the diffusivity
of the species considered where we use Pe = 7.5 × 105 for
oxygen. This value corresponds to a Schmidt number (relative size
of mass transfer and momentum boundary layers) of 3000, which
is typical of species such as free oxygen or adenosine triphosphate
(ATP). For most of the domain, the non-dimensional concentration
remains constant at c = 1. However, a particularly high gradient
in concentration forms at the wall. Biologically, it is this non-
dimensional concentration gradient, the Sherwood number (Sh),
in the vicinity of the cells that line the arterial wall which is of
particular interest. This is given by

Sh = 2∇c · n,

where c is the non-dimensional concentration and n is the local
wall normal.

The existing mesh used for the flow simulation is unable to
resolve the concentration gradients close to the wall. We there-
fore refine the boundary layer in the wall-normal direction, with
element heights following a geometric progression, using an
isoparametric refinement technique [42,43] to naturally curve the
resulting subelements in such a way as to guarantee their validity.
This technique is implemented in the MeshConvert utility, which
acts as both a way to convert meshes from other formats such as
Gmsh [44] and Star-CCM+, but also to apply a variety of process-
ing steps to the mesh in order to make it suitable for high-order
computation.

To minimise computational cost, we reduce the polynomial or-
der of the prisms in the directions parallel to the wall, since the
concentration shows negligible variation in these directions. This
exploits the rich nature of the spectral/hp discretisation and re-
moves the need for a potentially expensive remeshing and interpo-
lation step. Furthermore, the domain-interior tetrahedra may also
be discarded and a Dirichlet c = 1 condition imposed on the re-
sulting interior prism boundary.

Fig. 10(c) shows the resulting Sherwood number distribution
on the surface of the arterial wall. Regions of reduced mass flux
are observed upstream of the intercostal branches, while elevated
mass flux are observed downstream. Fig. 10(d) shows close-ups of
the branches to illustrate this. These patterns are driven directly by
the blood flow mechanics in these regions. In particular, upstream
of the intercostal branch the mass transfer boundary layer grows
due to a growth of the momentum boundary layer as it negotiates
the sharp bend into the branch, forcing flow away from the apex of
the bend; the bulk of the flow continues down the aortawith only a
small proportion entering the branch. Progressing into the branch,
as shown in the top inset of Fig. 10(d), the mass flux is slightly
elevated as the boundary layer shrinks and the flow is directed
towards thewall of the branch, causing themass transfer boundary

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 217
layer to shrink. In the main aorta, distal to the intercostal branch,
mass flux to the arterial wall is elevated. This is associated with a
flow stagnation region that forms due to the impingement of flow
crossing the branchmouth onto thewall, as illustrated in Fig. 10(b).
Below the impingement zone the boundary layer grows, leading to
a reduction in the mass flux.

5. Discussion & future directions

The Nektar++ framework provides a feature-rich platform with
which to develop numerical methods and solvers in the context
of spectral/hp element methods. It has been designed in such a
way that the libraries reflect the mathematical abstractions of the
method, to simplify uptake for new users, as well as being written
in a modular manner to improve the robustness of the code,
minimise duplication of functionality and promote sustainability.

Development & tools

The development of a complex and extensive software project
such as Nektar++ necessitates the adoption of certain develop-
ment practices to enable developers to easilywrite new codewith-
out breaking the existing code for other users of the framework.
The code is managed using the git distributed version control sys-
tem [45] due to its performance, enhanced support for branching,
as well as allowing off-line development. All development is per-
formed in branches and only after rigorousmulti-architecture test-
ing and internal peer-review is new code merged into the main
codebase, thereby always maintaining a stable distribution. New
bugs and feature requests are recorded using the Trac [46] issue-
management system. To enable cross-platform compatibility Nek-
tar++ uses CMake [47] to manage the creation of build scripts,
which also allows the automatic download and compilation of ad-
ditional third-party libraries and simplifies the configuration and
installation for the end-user. Boost [48] data structures and al-
gorithms are used throughout the code to simplify complex data
management, improve codemodularity and avoid the introduction
of memory leaks. While the templated nature of many of the Boost
libraries significantly adds to compilation times, we consider the
benefits to code robustness justify its use.

Testing is a critical part of the development cycle for any soft-
ware project and regression tests ensure new features do not break
existing functionality, ensuring the code base remains stable when
new features are implemented. Continuous integration using a
publicly accessible buildbot service [49], builds and executes these
tests after each update to the master branch of the code, across
a range of operating systems, architectures and configuration op-
tions. The system may also be used by developers to test other
branches prior to inclusion in the main codebase.

Nektar++ makes extensive use of C++ programming patterns to
decouple and manage components of the code and the creation
of objects at runtime. As well as limiting inter-dependencies
within the source code, it improves compilation times, enforces
modularity and simplifies compile-time selection of features and
functionality. Design patterns formalise many aspects of writing
high-quality, robust code and we briefly outline some of the key
patterns used within Nektar++.

The Template method pattern provides separation between al-
gorithms and specific implementation. A general algorithm is im-
plemented in a C++ base class, while particular aspects of the
algorithm implementation are overridden in derived classes
through the use of protected virtual functions. These derived
classes could correspond to specific element shapes or Galerkin
projections, for example. The Factory method pattern allows dy-
namic key-based object creation at runtime, without prescribing
the particular implementation choice a priori within the code at
Fig. 11. Strong scaling of the Nektar++ diffusion solver on an intercostal pair
simulation similar to the one presented in Section 4.7. (a) Performance scaling on
HECToR where each node has 32 cores and (b) performance scaling on ARCHER
where each node has 24 cores. In both cases, results are normalised by the
performance on a single node.

compilation time. The technique is used extensively within the li-
braries as ameans to decouple components of the code andmanage
multiple implementations of an algorithm. Additional implemen-
tation modules can be added to the code at a later date without
needing to modify those routines which instantiate the objects. Fi-
nally, Managers provide a templated mechanism to keep track of
large numbers of similarly-typed objects during program execu-
tion and avoid duplication where possible and so minimise mem-
ory usage. Their underlying data structure is a static map. For each
manager, a functor is held which can be used to instantiate objects
which have not previously been allocated.

Performance

Modern high-performance computing has transformed in
recent years as processor clock speeds have reached practical
limitations and vendors have been forced to increase parallelism
in order to support greater computation. This has resulted in an
increase in the number of cores per processor die and subsequently
an effective reduction in available cache per core. It is becoming
ever more expensive to move data within a computer and modern
software must therefore be engineered to optimise algorithms
to make the most of data while it is on the CPU. High-order
methods naturally increase data locality by producing tightly
coupled blocks of data. This enables greater cache coherency and
therefore supports a larger number of floating point operations to
be achieved per cache line than conventional linear finite element
methods, when using high polynomial orders.

For each of the key finite element operators, theNektar++ archi-
tecture supports multiple implementations. This allows the code

218 C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219
to be targeted at a variety of architectures in an efficient manner
based on the choice of input parameters, such as polynomial or-
ders andmesh configuration. Althoughmathematically equivalent,
these implementationsmay lead to slight differences in thenumer-
ical result due to the order of floating-point operation evaluation.
However, for most applications, double-precision arithmetic pro-
videsmore than sufficient precision to ensure this is not a practical
problem.

Nektar++ is designed to work on a wide range of computer
systems from laptops to large high-performance compute clusters.
The code has been tested on large clusters such as HECToR and
ARCHER, the UK National High Performance Computing Facilities,
and shows excellent scaling for both two-dimensional and three-
dimensional problems. Fig. 11 shows strong scaling for the implicit
diffusion solve for an intercostal flow simulation similar to that
presented in Section 4.7. Thismesh contained approximately 8,000
tetrahedral elements, resulting in only 2 or 3 elements per core in
the most parallel case, which accounts for the reduced efficiency
at higher core counts.

Future work

Although the current version of Nektar++ supports variable
and heterogeneous choices of polynomial order, it does not yet
support adaptive polynomial order during time advancement
(p-adaptivity). This is one of the next features to be implemented
in the code. Mesh refinement (h-adaptivity) is a well-established
technique in many other finite element research codes, and
we believe hp-adaptivity will provide substantial performance
benefits in a wide range of application areas.

Finally, it is becoming increasingly costly for individual insti-
tutions to purchase and maintain the necessary large-scale HPC
infrastructures to support cutting-edge research. In recent years
cloud computing has become increasingly prevalent and is poten-
tially the approach by which extensive computational resources
may be obtained for simulation in the future. Nektar++ is embrac-
ing this infrastructure shift through the development of Nekkloud
[50]which removes the complexities ofmaintaining and deploying
numerical code onto cloud platforms.

6. Availability

Nektar++ is open-source software, released under the MIT
license, and is freely available from the project website (http:
//www.nektar.info). While the git repository is freely accessible,
discrete releases are made at milestones in the project and are
available to download as compressed tar archives, or as binary
packages for a range of operating systems. These releases are
considered to contain relatively complete functionality compared
to the repository master branch.

Acknowledgements

Nektar++ has been developed over a number of years and we
would like to thank themany peoplewho havemade contributions
to the specific application codes distributed with the libraries.
In particular, we would like to acknowledge the contribution of
Christian Roth for initial developments on the pulse-wave solver,
Kilian Lackhove for work on extending the acoustic perturbation
equations solver and Rheeda Ali, Eugene Chang and Caroline Roney
for contributing to the cardiac electrophysiology solver.

The development of Nektar++ has been supported by a
number of funding agencies including Engineering and Physical
Sciences Research Council (grants EP/L000407/1, EP/K037536/1,
EP/K038788/1, EP/L000261/1, EP/I037946/1, EP/H000208/1, EP/
I030239/1, EP/H050507/1, EP/D044073/1, EP/C539834/1), the
British Heart Foundation (grants FS/11/22/28745 and RG/10/
11/28457), the Royal Society of Engineering, McLaren Racing, the
National Science Foundation (grants IIS-1212806, OCI-1148291),
the Army Research Office (grant W911NF121037), the Air Force
Office of Scientific Research (grant FA9550-08-1-0156) and the
Department of Energy (grant DE-EE0004449).

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2015.02.008.

References

[1] A.T. Patera, J. Comput. Phys. 54 (3) (1984) 468–488.
[2] I. Babuska, B.A. Szabo, I.N. Katz, SIAM J. Numer. Anal. 18 (3) (1981) 515–545.
[3] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for CFD, Oxford

University Press, 2005.
[4] H.M. Blackburn, S. Sherwin, J. Comput. Phys. 197 (2) (2004) 759–778.
[5] P. Fischer, J. Kruse, J. Mullen, H. Tufo, J. Lottes, S. Kerkemeier, Nek5000–

open source spectral element CFD solver, Argonne National Laboratory,
Mathematics and Computer Science Division, Argonne, IL, see
https://nek5000.mcs.anl.gov/index.php/MainPage.

[6] T. Vejchodskỳ, P. Šolín, M. Zítka, Math. Comput. Simul. 76 (1) (2007) 223–228.
[7] A. Dedner, R. Klöfkorn, M. Nolte, M. Ohlberger, Computing 90 (3–4) (2010)

165–196.
[8] W. Bangerth, R. Hartmann, G. Kanschat, ACM Trans. Math. Softw. 33 (4) (2007)

24.
[9] J.S. Hesthaven, T. Warburton, Nodal Discontinuous Galerkin Methods:

Algorithms, Analysis, and Applications, Vol. 54, Springer, 2007.
[10] F. Witherden, A. Farrington, P. Vincent, Comput. Phys. Comm. 185 (2014)

3028–3040. http://dx.doi.org/10.1016/j.cpc.2014.07.011.
[11] M. Dubiner, J. Sci. Comput. 6 (4) (1991) 345–390.
[12] S.J. Sherwin, G.E. Karniadakis, Comput. Methods Appl. Mech. Engrg. 123 (1–4)

(1995) 189–229.
[13] M.G. Duffy, SIAM J. Numer. Anal. 19 (6) (1982) 1260–1262.
[14] H.M. Tufo, P.F. Fischer, J. Parallel Distrib. Comput. 61 (2) (2001) 151–177.
[15] S.J. Sherwin, M. Casarin, J. Comput. Phys. 171 (1) (2001) 394–417.
[16] P.E. Vos, S.J. Sherwin, R.M. Kirby, J. Comput. Phys. 229 (13) (2010) 5161–5181.
[17] C.D. Cantwell, S.J. Sherwin, R.M. Kirby, P.H.J. Kelly, Comput. & Fluids 43 (2011)

23–28.
[18] C.D. Cantwell, S.J. Sherwin, R.M. Kirby, P.H.J. Kelly, Math. Mod. Nat. Phenom. 6

(2011) 84–96.
[19] P. Fischer, J. Lottes, D. Pointer, A. Siegel, Petascale Algorithms for Reactor

Hydrodynamics, in: Journal of Physics: Conference Series, vol. 125, IOP
Publishing, 2008, p. 012076.

[20] P.E. Vos, C. Eskilsson, A. Bolis, S. Chun, R.M. Kirby, S.J. Sherwin, Int. J. Comput.
Fluid Dyn. 25 (3) (2011) 107–125.

[21] D. Barkley, H. Blackburn, S.J. Sherwin, Internat. J. Numer.Methods Fluids 57 (9)
(2008) 1435–1458.

[22] S. Dong, G.E. Karniadakis, C. Chryssostomidis, J. Comput. Phys. 261 (2014)
83–105.

[23] R.M. Kirby, S.J. Sherwin, Comput. Methods Appl. Mech. Eng. 195 (23) (2006)
3128–3144.

[24] G.E. Karniadakis,M. Israeli, S.A. Orszag, J. Comput. Phys. 97 (2) (1991) 414–443.
[25] S.A. Orszag, M. Israeli, M.O. Deville, J. Sci. Comput. 1 (1) (1986) 75–111.
[26] E. Ferrer, D. Moxey, S.J. Sherwin, R.H.J. Willden, Commun. Comput. Phys. 16 (3)

(2014) 817–840. http://dx.doi.org/10.4208/cicp.290114.170414a.
[27] D. de Grazia, G. Mengaldo, D. Moxey, P.E. Vincent, S.J. Sherwin, Interna-

tional journal for numerical methods in fluids 75 (12) (2014) 860–877.
http://dx.doi.org/10.1002/fld.3915.

[28] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A
Practical Introduction, third ed., Springer, Berlin, New York, 2009.

[29] G. Mengaldo, D. De Grazia, J. Peiro, A. Farrington, F. Witherden, P.E. Vincent,
S.J. Sherwin, 7th AIAA Theoretical Fluid Mechanics Conference, AIAA Aviation,
American Institute of Aeronautics and Astronautics, 2014.

[30] P.-O. Persson, J. Peraire, Sub-cell shock capturing for discontinuous Galerkin
methods, AIAA 112.

[31] M. Breuer, N. Peller, C. Rapp, M. Manhart, Comput. & Fluids 38 (2) (2009)
433–457.

[32] ERCOFTAC QNET-CFD Database for test case UFR 3-30, 2D Periodic Hill
Flow: database of numerical and experimental results 2014. URL http://qnet-
ercoftac.cfms.org.uk/w/index.php/UFR_3-30_References.

[33] W.E. Arnoldi, Quart. Appl. Math. 9 (1) (1951) 17–29.
[34] D.H. Peregrine, J. Fluid Mech. 27 (1967) 815–827.
[35] P.Madsen, H. Schäffer, Philos. Trans. R. Soc. Lond. Ser. A 356 (1998) 3123–3184.
[36] M. Brocchini, Philos. Trans. R. Soc. Lond. Ser. A 469.
[37] C. Eskilsson, S. Sherwin, J. Comput. Phys. 212 (2006) 566–589.
[38] C.D. Cantwell, S. Yakovlev, R.M. Kirby, N.S. Peters, S.J. Sherwin, J. Comput. Phys.

257 (2014) 813–829.
[39] M. Courtemanche, R.J. Ramirez, S. Nattel, Amer. J. Physiol. Heart Circul. Physiol.

44 (1) (1998) H301.
[40] S. Sherwin, L. Formaggia, J. Peiro, V. Franke, Internat. J. Numer. Methods Fluids

43 (6–7) (2003) 673–700.

http://www.nektar.info
http://www.nektar.info
http://www.nektar.info
http://www.nektar.info
http://www.nektar.info
http://dx.doi.org/10.1016/j.cpc.2015.02.008
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref1
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref2
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref3
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref4
https://nek5000.mcs.anl.gov/index.php/MainPage
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref6
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref7
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref8
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref9
http://dx.doi.org/10.1016/j.cpc.2014.07.011
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref11
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref12
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref13
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref14
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref15
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref16
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref17
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref18
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref19
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref20
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref21
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref22
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref23
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref24
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref25
http://dx.doi.org/10.4208/cicp.290114.170414a
http://dx.doi.org/10.1002/fld.3915
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref28
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref29
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref31
http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_References
http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_3-30_References
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref33
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref34
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref35
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref37
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref38
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref39
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref40

C.D. Cantwell et al. / Computer Physics Communications 192 (2015) 205–219 219
[41] J. Alastruey, K. Parker, J. Peiró, S. Sherwin, Commun. Comput. Phys. 4 (2) (2008)
317–336.

[42] D. Moxey, M.D. Green, S.J. Sherwin, J. Peiró, Comput. Methods Appl. Mech.
Engrg. 283 (2015) 636–650. http://dx.doi.org/10.1016/j.cma.2014.09.019.

[43] D. Moxey, M. Hazan, S.J. Sherwin, J. Peiró, On the generation of curvilinear
meshes through subdivision of isoparametric elements, in: New Challenges
in Grid Generation and Adaptivity for Scientific Computing, in: SEMA SIMAI
Springer Series, Vol. 5, 2015.

[44] C. Geuzaine, J.-F. Remacle, Int. J. Numer. Methods Eng. 79 (11) (2009)
1309–1331. http://dx.doi.org/10.1002/nme.2579.
[45] L. Torvalds, J. Hamano, GIT: Fast version control system 2014. URL http://git-
scm.com.

[46] Trac integrated SCM & project management 2014.
URL http://trac.edgewall.org.

[47] CMake 2014. URL http://cmake.org.
[48] Boost C++ libraries 2014. URL http://www.boost.org.
[49] Buildbot 2014. URL http://www.buildbot.net.
[50] J. Cohen, D.Moxey, C. Cantwell, P. Burovskiy, J. Darlington, S.J. Sherwin, Cluster

Computing (CLUSTER), 2013 IEEE International Conference on, IEEE, 2013,
pp. 1–5.

http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref41
http://dx.doi.org/10.1016/j.cma.2014.09.019
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref43
http://dx.doi.org/10.1002/nme.2579
http://git-scm.com
http://git-scm.com
http://trac.edgewall.org
http://cmake.org
http://www.boost.org
http://www.buildbot.net
http://refhub.elsevier.com/S0010-4655(15)00053-3/sbref50

	Nektar++: An open-source spectral/ h p element framework
	Introduction
	Methods
	Implementation
	Input format
	LibUtilities library
	StdRegions library
	SpatialDomains library
	LocalRegions library
	MultiRegions library
	Boundary conditions
	SolverUtils library
	Solvers
	Implementing solvers using Nektar++

	Applications
	External aerodynamics
	Transitional turbulent flow dynamics
	Flow stability
	Shallow water modelling
	Cardiac electrophysiology
	Arterial pulse-wave propagation
	Vascular mass transport

	Discussion & future directions
	Availability
	Acknowledgements
	Supplementary data
	References

