
GPU-Based Volume Visualization
from High-Order Finite Element Fields

Blake Nelson, Robert M. Kirby, Member, IEEE, and Robert Haimes

Abstract—This paper describes a new volume rendering system for spectral/hp finite-element methods that has as its goal to be both

accurate and interactive. Even though high-order finite element methods are commonly used by scientists and engineers, there are

few visualization methods designed to display this data directly. Consequently, visualizations of high-order data are generally created

by first sampling the high-order field onto a regular grid and then generating the visualization via traditional methods based on linear

interpolation. This approach, however, introduces error into the visualization pipeline and requires the user to balance image quality,

interactivity, and resource consumption. We first show that evaluation of the volume rendering integral, when applied to the

composition of piecewise-smooth transfer functions with the high-order scalar field, typically exhibits second-order convergence for a

wide range of high-order quadrature schemes, and has worst case first-order convergence. This result provides bounds on the ability

to achieve high-order convergence to the volume rendering integral. We then develop an algorithm for optimized evaluation of the

volume rendering integral, based on the categorization of each ray according to the local behavior of the field and transfer function. We

demonstrate the effectiveness of our system by running performance benchmarks on several high-order fluid-flow simulations.

Index Terms—Volume visualization, high-order finite element methods, spectral/hp elements, GPU ray-tracing

Ç

1 INTRODUCTION

HIGH-ORDER finite element methods (a variant of which
are the spectral/hp element methods considered in

this work [1]) have reached a level of sophistication that
they are now commonly applied to many real-life engineer-
ing problems, such as those found in fluid mechanics, solid
mechanics, and electromagnetics [2], [3]. An attractive
feature of these methods is that convergence can be
obtained by reducing the mesh size (h adaptivity), increas-
ing the polynomial order within an element (p adaptivity),
or using a combination of both approaches. This leads to
meshes that, while consisting of fewer and larger elements,
have levels of accuracy that are comparable to more
traditional finite element methods based on low-order
elemental expansions.

The direct visualization of the high-order fields pro-
duced by spectral/hp finite element methods using linear
primitives (e.g., those used by existing volume rendering
packages such as Voreen [4], ImageVis3D [5], and VTK [6])
is not possible since these primitives are unable to directly
represent the high-order field. To use these systems,
engineers must first create compatible linear approxima-
tions of the high-order data. Since linear approximations
do not, in general, faithfully represent high-order data, this

approximation step introduces error into the visualization
pipeline. This error can be reduced by creating linear
approximations with smaller spacing between samples, but
this comes at the expense of increased computation time to
sample the high-order data and increased memory usage
to store the resulting data set. In practice, it is difficult to
eliminate the error introduced by linear approximations
through the use of increased sampling.

In this work, we propose a new direct volume rendering
method that uses the properties of spectral/hp finite
element fields with the goal of producing images that are
both accurate and interactive. We obtain accuracy by using
the properties of spectral/hp elements to categorize each ray
based upon the properties of the transfer function com-
posed with the scalar field. We prove that, in the optimal
case of fields that are smooth along the ray, the evaluation
of the volume rendering integral will generally exhibit
second-order convergence, with a worst case of first-order
convergence. We use these properties to develop an
optimized high-order volume rendering algorithm, in
which we first categorize each ray based on the local
properties of the transfer function and scalar field, then
evaluate the volume-rendering integral with a quadrature
method optimized for the category. While our primary
motivation is the desire to generate pixel-exact images,
which we define as an image which does not change with
additional refinement of the volume rendering integral,
performance is also an important consideration for a usable
system. We have, therefore, implemented our system on
the GPU, using a combination of NVIDIA’s OptiX [7] ray-
tracing framework and Cuda.

2 RELATED WORK

While direct volume rendering of low-order data is treated
extensively in the literature [8], [10], there are relatively few

70 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

. B. Nelson is with Space Dynamics Laboratory, Utah State University
Research Foundation, Logan, UT 84341.
E-mail: Blake.Nelson@sdl.usu.edu.

. R.M. Kirby is with the School of Computing, Scientific Computing and
Imaging Institute, University of Utah, Salt Lake City, UT 84112.
E-mail: kirby@cs.utah.edu.

. R. Haimes is with the Department of Aeronautics and Astronautics, MIT,
Cambridge, MA 02139. E-mail: haimes@mit.edu.

Manuscript received 15 Aug. 2012; revised 10 Jan. 2013; accepted 17 June
2013; published online 1 July 2013.
Recommended for acceptance by P. Cignoni.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2012-08-0160.
Digital Object Identifier no. 10.1109/TVCG.2013.96.

1077-2626/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

methods designed specifically for high-order data. In this
section, we provide a brief overview of existing high-order
visualization methods.

Since the solution to the volume rendering equation does
not, in general, have an analytic solution, it is not sufficient
to use the high-order data directly to guarantee pixel-exact
images. This is because the volume rendering integral will
be approximated with numerical quadrature, which will
introduce error into the visualization. An exception to this is
when rendering linear tetrahedra [11], for which the volume
rendering integral can be solved analytically. While highly
accurate results can be obtained for quadratic tetrahedra
[12] and hexahedra [11], other element types and poly-
nomial orders cannot be solved analytically and require
numerical quadrature. More recently, direct volume render-
ing of arbitrary elements and polynomial order was
introduced [13], where GPU clusters are able to produce
interactive results. In the special case of volume rendering
fields with no transfer function and no emissive component,
high-order quadrature techniques can be used to evaluate
the attenuation portion of the volume rendering integral
without error, resulting in pixel-exact images [14]. Another
approach uses point-based samples to approximate the
volume rendering integral [15], but sacrifices accuracy for
execution speed.

Higher order integration methods have been investi-
gated in an attempt to achieve faster convergence of the
volume rendering integral and to provide better error
bounds on the resulting calculation. Conservative bounds
on the number of samples required for a given level
of accuracy have been developed for trapezoidal and
Simpson’s rule, as well as for a power series approach
[16]. An investigation of Simpson’s rule applied to voxel-
based data [17] showed improved accuracy at the expense
of increased memory usage in the preintegration table. Our
system is designed for high-order (spectral/hp) finite
elements, which range in polynomial order from degree
one to degree 14 (approximately). Assuming a preintegra-
tion sampling of 256 samples for each degree of freedom,
this would result in tables as large as 25615, which, while is
theoretically possible, is not practical at this time. For lower
order data and integration methods, however, preintegra-
tion requires modestly sized tables, and is, therefore, a
popular choice for interactive volume rendering.

In addition to volume rendering, other types of
visualization techniques have also been created directly
for high-order data. These include cut-surfaces and contour
line generation [18], [19] and the generation of isosurfaces
using ray-tracing [20], particles [21], and combined parti-
cle/ray-tracing [22].

To avoid the computational and storage penalties
associated with the straightforward linear tessellations
mentioned in the introduction, several adaptive subdivision
schemes have been developed [23], [24] to reduce the
number of linear primitives required. Subdivision is guided
through the use of error estimates, which results in few
subdivisions for elements well represented by linear
approximation, and many subdivisions for elements that
are not. Adaptive subdivision does not eliminate the error
introduced into the simulation pipeline, and reducing the
error to arbitrary levels can still produce unacceptably large
data sets and long execution times.

3 BACKGROUND AND OVERVIEW

Our method is designed for the direct volume rendering of
spectral/hp finite element fields that are produced by the
continuous Galerkin (CG) or discontinuous Galerkin (DG)
methods. For these methods, the domain � over which the
partial differential equations of interest are being solved is
tessellated. This tessellation frequently consists of hexahe-
dra, tetrahedra, prisms, and pyramids.

Each element is associated with a reference element on
which the high-order scalar field is defined. A mapping
function x ¼ ��ð��Þ is defined for each element that maps
points from a “reference” space (��) to world space (x).
In our work, the final “reference” space is the tensor
(Cartesian) space as used in [1] and discussed in the next
section. Since we are interested in evaluating the scalar field
fð��Þ defined over the reference space at arbitrary points in
world space, we must find the element containing x and
invert the mapping before evaluating the high-order FEM
function fð���1ðxÞÞ. While this mapping does exist for each
element, it is not, in general, a linear transformation.
Consequently, the field along the ray may not be a
polynomial (and, in general, is not). This field is, however,
guaranteed to be smooth along the interior of an element.

We use the emission-absorption optical model [25] for
direct volume rendering, in which the irradiance along a
ray segment is given by

Iða; bÞ ¼
Z b

a

��ðfðtÞÞ ��ðfðtÞÞ e�
R t

a
�ðfðuÞÞ du

dt; ð1Þ

where a and b are the segment endpoints, � and � are the
user-defined emissive (color) and density transfer func-
tions, respectively, and fðtÞ is the scalar field at a point t
along the segment. We refer to the integral �

R t
a�ðfðuÞÞ du as

the inner integral and I as the outer integral.
While there are no theoretical constraints on a transfer

function’s form, we assume that transfer functions are
piecewise-linear functions. While transfer functions using
different bases exist (e.g., Gaussian basis functions [26]),
piecewise-linear transfer functions are consistent with the
transfer function interfaces provided by many existing
volume rendering systems [27], [4], [5]. We limit our
attention to the case of 1D transfer functions.

Piecewise-linear transfer functions are specified in
terms of a finite number of points ðc0; T0Þ; ðc1; T1Þ; . . . ;
ðcn; TnÞ, where ci is called a breakpoint and Ti is the
corresponding value of the transfer function at that point.
Breakpoints correspond to the transitions between linear
pieces in the transfer function. While the transfer function
is continuous at the breakpoints, the derivative is un-
defined at these points.

Because the transfer function has breakpoints where the
derivative is undefined, so does the composition of the
transfer function with the scalar field along the ray, �ðfðtÞÞ
and �ðfðtÞÞ. Given a smooth function f , the result of
composing the transfer function with f is a piecewise-
smooth function which is only C0 at a finite number of
breakpoints. This is applicable to both CG and DG methods
because, as will be discussed in Section 5, we evaluate the
volume rendering integral on a per-element basis.

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 71

Effective evaluation of the volume rendering integral
requires proper accounting of the breakpoints. Ideally, if the
breakpoints can be found [11], we could then evaluate the
volume rendering integral as follows (with ti being the ith
breakpoint):

I ¼
Xn
i¼0

Z tiþ1

ti

�ðfðtÞÞ�ðfðtÞÞe
�
Pi�1

j¼0

R tjþ1

tj
�ðfðuÞÞ du�

R t

ti
�ðfðuÞÞ du

dt;

ð2Þ

where the integral could then be evaluated using high-order
methods such as Gaussian quadrature [28]. While this
approach is conceptually appealing, the high-order nature
of the field makes it inefficient in practice. Finding n
breakpoints along the ray is equivalent to finding the
isosurfaces associated with each breakpoint. While this can
be done, it is too computationally expensive for our
system’s interactivity requirements [20].

Since we do not know the location of each breakpoint,
we cannot assume that the use of high-order quadrature
methods will automatically lead to high-order conver-
gence. The convergence properties of high-order quad-
rature methods assume smooth functions, which is an
assumption that is violated by the breakpoints.

4 HIGH-ORDER FINITE ELEMENTS

A finite element volume is represented by the decomposi-
tion of a domain � into a mesh of n smaller, nonoverlapping
elements �i such that � ¼

S
i�n �i. The four basic element

types that are used in this work are the hexahedron, prism,
tetrahedron, and pyramid. Each element is associated with
three different spaces: world, reference, and tensor. The
world space represents the element in its physical position
and orientation. In reference space, each element is
transformed to a common, element-specific representation.
The reference space element is related to the world space
element through the bijective mapping � : IR3 ! IR3. The
tensor space element is the cube ½�1; 1�3 for all elements,
and has a mapping to the reference element T : IR3 ! IR3.
The mapping between tensor space and world space, which
is a bijection a.e., is given by � ¼ �ðT ð�ÞÞ. Given that the
composition of the mappings is a bijection a.e. allows us to
convert points between spaces as needed during visualiza-
tion. An diagrammatic example of these mappings for a
tetrahedron is shown in Fig. 1.

For the remainder of this paper, we will use the
following notation to help distinguish between points in
tensor space and points in world space: points in the world
Cartesian space will be indicated by x, with individual
directions will be specified by x1; x2; x3. Similarly, in the
local Cartesian space associated with the element’s tensor
representation, points will be specified with ��, and
individual components as ��1; ��2; ��3.

The solution to a high-order finite element simulation is
a polynomial function F ð��Þ 2 PN1;N2;N3 with respect to the
tensor element, where N1; N2; N3 denote (possibly) different
polynomial orders in the three principle directions. Since �
is a bijection a.e. (with special care being needed only at
collapsed vertices), we can invert it to calculate the tensor
point for a given world point, and then use the tensor point
to calculate the field value. While ��1 exists for each
element, it is, in general, not known analytically and must
be calculated numerically when needed. It is also usually a
nonlinear transformation that, when applied to the poly-
nomial field in tensor space, produces a function in world
space that, while smooth, is not necessarily a polynomial.

This work deals with continuous Galerkin (CG) formula-
tions of the finite element method, which require that the
fields are continuous across element boundaries, but
impose no restrictions on the continuity of any derivatives.
Therefore, while the field is Cp on the interior of each
element (with p � 1 indicating higher levels of smoothness
depending on the element’s approximating polynomial
order and its mapping to world space), the field over the
domain � is C0.

5 HIGH-ORDER VOLUME RENDERING

We begin our discussion of our high-order volume
rendering system by providing an overview of the resulting
algorithm (see Algorithm 1), followed by our analysis of the
volume rendering integral for piecewise-smooth functions
that has motivated it.

Steps 1 and 2 represent traversal of the finite element
grid and is standard for ray-tracing methods for finite
element meshes [29], [12]. Since the element geometry

72 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

Fig. 1. Illustration of the mapping between tensor (left), reference
(middle), and world space (right) for a tetrahedron. Tensor points are
denoted by ��, reference points by ��, and world space points by xx.

(represented by �) can be nonlinear in high-order fields,
rays can enter and exit the same element multiple times.

The contribution of this work begins on Step 4. In this
step, we classify the transfer functions over ½ta; tb� into one
of three categories based on the structure of the field over
the segment: empty space segments (E), where the transfer
function is zero along the entire segment; piecewise-smooth
segments (PS), where the segment contains one or more
breakpoints; and smooth segments (S), where the segments
contain no breakpoints. We discuss how we use these
categories to choose an appropriate quadrature method for
the volume rendering integral in Section 5.2.

Categorization of a ray segment requires the range of the
scalar field along the ray, from which we can determine if
the transfer function is zero along the entire segment or if it
contains any breakpoints. One approach we can use is to
calculate the global min and max using standard optimiza-
tion techniques. While this approach will work, and will
produce accurate segment categorization, it is a computa-
tionally expensive operation that does not facilitate inter-
activity. Instead, we generate fast and conservative
estimates of the range through the use of interval arithmetic
[30]. The implication of this choice is that we may perform
more work than needed during integration, but save the
time computing the exact range of the function. As we
discuss in further detail below, this is a reasonable tradeoff
for current GPU architectures.

Using interval arithmetic, we replace operations on real
numbers with operations on intervals. An interval X is
defined as

X ¼ ½X;X� ¼ fx 2 IR : X � x � Xg: ð3Þ

The set image of a function g is defined as

gðXÞ ¼ fgðxÞ : x 2 Xg; ð4Þ

and represents the true range of g. Since g is often not easily
computable, we use the interval extension G of g to represent
the range. G is formed by evaluating g with interval
numbers as arguments rather than floating point numbers
[30], and has the following useful property:

GðXÞ � gðXÞ ¼ fgðxÞ : ðxÞ 2 Xg: ð5Þ

In other words, if g is evaluated using interval arithmetic on
an input interval X, the result is an interval extension that is
guaranteed to contain the true range of g on that interval.

We now discuss how we use interval extensions to
categorize rays. Let fðtÞ be the field along a ray segment on
the interval X ¼ ½ta; tb�. We first construct the interval
extension F ðXÞ (giving us an estimate of f’s true range)
using interval arithmetic as described above. Let ci; i � n be
the n breakpoints associated with the density transfer
function � . We categorize � as follows:

Cð�Þ ¼
E; if F ðXÞ ¼ ½0; 0�;
PS; if 9i : ci 2 F ðXÞ;
S; if 8i : ci 62 F ðXÞ:

8<
: ð6Þ

The categorization for each of the color channels proceeds
in an analogous fashion. It is important to note that this
categorization is not precise, meaning that a ray can be

categorized as a piecewise-smooth segment when it is
actually smooth. This is because the true range is a subset of
the estimated range, so a breakpoint can be in the estimated
range while falling outside the actual range. The implication
of this is that we may handle some rays suboptimally by
using the rules developed below for piecewise-smooth
functions, rather than the more optimal approach for
smooth functions. In this context, suboptimal means that,
by classifying a smooth function as piecewise-smooth, we
will use a lower order quadrature scheme and, therefore,
will require more samples to achieve a given level of
accuracy. If tighter bounds on the range estimate are
desired, the ray segment can be broken into subsegments
to produce a tighter bound [18].

5.1 Integration Techniques

In this section, we provide the motivation for the integration
methods we use to evaluate the volume rendering integral.
As we mentioned in Section 3, the field along the ray is a
smooth function, and seems to be a perfect candidate for the
use of high-order quadrature rules. However, as we show
below, the existence of breakpoints along the ray, which are
introduced through the composition of the field with the
transfer function, limits us to linear or quadratic conver-
gence, even when using high-order quadrature rules such
as Gaussian quadrature.

As indicated in Section 3, one way to address the
presence of breakpoints along the ray is to use a root-
finding procedure to find the location of each breakpoint,
then to use high-order quadrature on the smooth segments
between breakpoints. While this approach is appealing in
theory, it is not useful in practice due to both the number of
breakpoints found in typical transfer functions (increasing
the number of root-finding calls needed) and the high-order
field along the ray (increasing the time and complexity of
the root-finding routine). Therefore, in the sections that
follow, we focus our attention on the case where the
location of each breakpoint is unknown, and only coincides
with the location of a sample point through chance.

5.1.1 Quadrature of Piecewise-Smooth Segments

When the transfer function along a ray segment is
piecewise-smooth (i.e., the segment contains at least one
breakpoint), we cannot use high-order quadrature routines
and expect high-order convergence. This is because the
convergence analysis for these methods assumes continuity
in the function’s derivatives. As we noted in Section 3, we
could evaluate these types of ray segments by locating the
world space position of each breakpoint, then applying
high-order quadrature to the smooth segments between
breakpoints. This approach is not feasible due to the
computational requirements of finding the location of the
breakpoints. We now discuss the convergence behavior of
an arbitrary n-point quadrature rule when used to estimate
the integral of a piecewise-smooth function. We note that
we use as our guide the classic quadrature book by Davis
and Rabinowitz [28] and employ Big-Oh Notation from the
perspective of “asymptotics of the infinitesimal” as used in
mathematical real analysis. Formal descriptions and dis-
cussion of usage can be found in [31].

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 73

Let fðtÞ be piecewise-smooth in ½a; b� with a single
breakpoint at c 2 ða; bÞ:

fðtÞ ¼ eðtÞ; t � c;
gðtÞ; t > c;

�
ð7Þ

where eðcÞ ¼ gðcÞ, e0ðcÞ 6¼ g0ðcÞ, e 2 C1½a; b�, and g 2 C1½a; b�.
We consider n-point quadrature methods of the formZ b

a

fðtÞ dt �
Xn
i¼1

wifðtiÞ; ð8Þ

where a � ti � b, and
Pn

i¼1 wi ¼ b� a. The abscissas can be
evenly spaced (corresponding to Newton-Cotes quadra-
ture) or nonequally spaced (such as the case of Gaussian
quadrature). The error between the integral’s true value and
this approximation is given by

E ¼
Z b

a

fðtÞ dt�
Xn
i¼1

wifðtiÞ: ð9Þ

To determine the utility of high-order quadrature for
piecewise-smooth functions, we wish to determine how
this error behaves as the interval h ¼ b� a becomes smaller.
We proceed in a manner similar to that described in Davis
and Rabinowitz ([28, Eqs. (4.3.8)-(4.3.14)]) by rewriting each
term in (9) using Taylor’s theorem with exact remainder,
expanding e and g around the breakpoint c, which gives

fðtÞ ¼

eðtÞ ¼ TeðtÞ ¼ eðcÞ þ e0ðcÞðt� cÞ

þ
Z t

c

e00ðxÞðt� xÞdx t � c;
gðtÞ ¼ TgðtÞ ¼ gðcÞ þ g0ðcÞðt� cÞ

þ
Z t

c

g00ðxÞðt� xÞdx t > c:

8>>>>>><
>>>>>>:

ð10Þ

Using these series to rewrite the integral givesZ b

a

fðtÞ dt ¼
Z c

a

TeðtÞ dtþ
Z b

c

TgðtÞ dt

¼ ðc� aÞeðcÞ � ða� cÞ
2

2
e0ðcÞ

þ
Z c

a

Z t

c

e00ðxÞðt� xÞ dx dt

þ ðb� cÞgðcÞ þ ðb� cÞ
2

2
g0ðcÞ

þ
Z b

c

Z t

c

g00ðxÞðt� xÞ dx dt:

ð11Þ

The remainders take the form of an iterated integralZ c

a

Z t

c

e00ðxÞðt� xÞ dx dt; ð12Þ

where the limits of integration are bounded. Since the field
along the ray is a smooth function (see Section 3) with
finite curvature, the integrand is bounded. We can,
therefore, use Fubini’s theorem [32] to swap the order of
integration yieldingZ c

a

Z t

c

e00ðxÞðt� xÞ dx dt ¼
Z c

a

Z a

x

e00ðxÞðt� xÞ dt dx: ð13Þ

After integrating the inner integral, we obtain

Z c

a

e00ðxÞ ða� xÞ
2

2
dx: ð14Þ

By the integral mean value theorem [33]

Z c

a

e00ðxÞ ða� xÞ
2

2
dx ¼ e00ð�eÞ

Z c

a

ða� xÞ2

2
dx

¼ e00ð�eÞ
ðc� aÞ3

6
;

ð15Þ

for some �e 2 ða; cÞ and under the assumption that the
second derivative of the function is bounded on ða; cÞ. A
similar derivation shows the remainder term for g is given by

g00ð�gÞ
ðb� cÞ3

6
: ð16Þ

Substituting the error terms from (15) and (16) into (11), and
noting that eðcÞ ¼ gðcÞ, we obtain the following:

Z b

a

fðtÞ dt ¼ heðcÞ � ða� cÞ
2

2
e0ðcÞ þ ðb� cÞ

2

2
g0ðcÞ

þ e00ð�eÞ
ðc� aÞ3

6
þ g00ð�gÞ

ðb� cÞ3

6
:

ð17Þ

Since both ðc� aÞ3 and ðb� cÞ3 are Oðh3Þ, this simplifies to

Z b

a

fðtÞ dt ¼ heðcÞ � ða� cÞ
2

2
e0ðcÞ þ ðb� cÞ

2

2
g0ðcÞ þOðh3Þ:

ð18Þ

To approximate the integral, assume we use an n-point
quadrature formula spanning the entire domain of integra-
tion where n � 2 and where we are guaranteed that the
breakpoint c lies between two sample points, c 2 ðtk; tk þ 1Þ.
The quadrature approximation of the integral can then be
written as

Qn ¼
Xk
i¼1

wiTeðtiÞ þ
Xn
i¼kþ1

wiTgðtiÞ

¼
Xk
i¼1

wi

eðcÞ þ e0ðcÞðti � cÞ þ

Z ti

c

e00ðxÞðti � xÞ dx
!

þ
Xn
i¼kþ1

wi

gðcÞ þ g0ðcÞðti � cÞ þ

Z ti

c

g00ðxÞðti � xÞ dx
!
:

ð19Þ

This equation is not useful in its current form, as we would
like to understand how this approximation behaves in
terms of h. Using the assumption that h ¼ b� a ¼

Pn
j¼1 wj

and the definition that eðcÞ ¼ gðcÞ, the terms not involving
derivatives (denoted with the superscript zero) can be
rewritten as

Q0
n ¼

Xk
i¼1

wieðcÞ þ
Xn
i¼kþ1

wigðcÞ ¼
Xn
i¼1

wieðcÞ ¼ heðcÞ: ð20Þ

The terms involving first derivatives (denoted by the
superscript one) are given by

74 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

Q1
n ¼ e0ðcÞ

Xk
i¼1

wiðti � cÞ þ g0ðcÞ
Xn
i¼kþ1

wiðti � cÞ: ð21Þ

To represent this equation in terms of h (i.e., the spacing

between a and b), we note that

ti ¼ aþ �ih;
c ¼ aþ �ch;

ti � c ¼ aþ �ih� ðaþ �chÞ ¼ hð�i � �cÞ;
ð22Þ

where 0 � �i � 1. Substituting these relations into (21), we get

Q1
n ¼ e0ðcÞ

Xk
i¼1

wihð�i � �cÞ þ g0ðcÞ
Xn
i¼kþ1

wihð�i � �cÞ: ð23Þ

Expanding and rearranging the summation yields:

Q1
n ¼ he0ðcÞ

Xk
i¼1

wi�i þ hg0ðcÞ
Xn
i¼kþ1

wi�i

� h�ce0ðcÞ
Xk
i¼1

wi � h�cg0ðcÞ
Xn
i¼kþ1

wi:

ð24Þ

It is not immediately apparent how the individual weights

are related to the interval spacing h. To elucidate the

relationship, we first rescale the weights from ½a; b� to ½0; 1�

wi ¼ ŵiðb� aÞ ¼ hŵi; ð25Þ

where ŵi is the rescaled weight. Substituting this relation

into (24) and simplifying the expression in terms of h yields

Q1
n ¼ h2

e0ðcÞ

Xk
i¼1

ŵi�i þ g0ðcÞ
Xn
i¼kþ1

ŵi�i

� �ce0ðcÞ
Xk
i¼1

ŵi � �cg0ðcÞ
Xn
i¼kþ1

ŵi

!
:

ð26Þ

The remainder terms are represented as

Q2
n ¼

Xk
i¼1

wi

Z ti

c

e00ðxÞðti � xÞ dx

þ
Xn
i¼kþ1

wi

Z ti

c

g00ðxÞðti � xÞ dx:
ð27Þ

Using the integral mean value theorem

Q2
n ¼

Xk
i¼1

wie
00��ie�

Z ti

c

ðti � xÞ dx

þ
Xn
i¼kþ1

wig
00��i�kg

� Z ti

c

ðti � xÞ dx;
ð28Þ

for values �ie 2 ða; tiÞ; 1 � i � k and �i�kg 2 ðc; tiÞ; kþ 1 �
i � n. Integrating leads to

Q2
n ¼

Xk
i¼1

wie
00��ie� ðti � cÞ22

þ
Xn
i¼kþ1

wig
00��i�kg

� ðti � cÞ2
2

: ð29Þ

Substituting the relation from (25) gives

Q2
n ¼ h

Xk
i¼1

ŵie
00��ie� ðti � cÞ22

þ h
Xn
i¼kþ1

ŵig
00ð�i�kg Þ

ðti � cÞ2

2
:

ð30Þ

We note that ðti � cÞ2 is Oðh2Þ, which leads to Q2
n ¼ Oðh3Þ.

Equation (19) can now be rewritten as

Qn ¼ heðcÞ þ h2

e0ðcÞ

Xk
i¼1

ŵi�i þ g0ðcÞ
Xn
i¼kþ1

ŵi�i

� �ce0ðcÞ
Xk
i¼1

ŵi � �cg0ðcÞ
Xn
i¼kþ1

ŵi

!
þOðh3Þ:

ð31Þ

The error is then found by subtracting (31) from (18), which
gives the following expression for the remainder term:

E ¼ ðb� cÞ
2

2
g0ðcÞ � ða� cÞ

2

2
e0ðcÞ �Q1

n þOðh3Þ: ð32Þ

Since both ðb� cÞ2 and ða� cÞ2 are Oðh2Þ, the error of an n-
point quadrature rule, given our two aforementioned
assumptions (i.e., the quadrature rule consists of n � 2

samples and the breakpoint occurs between sample points),
exhibits worst case second-order convergence.

If there are two breakpoints in the interval, a similar
analysis indicates that an n-point quadrature rule, where
n � 3 and in which the breakpoints lie intertwined between
quadrature points, will exhibit worst case linear conver-
gence. For two breakpoints c0; c1 2 ða; bÞ:

fðtÞ ¼
f0ðtÞ; a � t � c0;
f1ðtÞ; c0 < t � c1;
f2ðtÞ; c1 < t � b:

8<
: ð33Þ

Using Taylor’s theorem as we did in (10), we can rewrite
fðtÞ as

fðtÞ ¼

T0ðtÞ ¼ f0ðc0Þ þ f 00ðc0Þðt� c0Þ

þ
Z t

c0

f 000 ðxÞðt� xÞ dx a � t � c0;

T1ðtÞ ¼ f1ðc0Þ þ f 01ðc0Þðt� c0Þ

þ
Z t

c0

f 001 ðxÞðt� xÞ dx c0 < t � c1;

T2ðtÞ ¼ f2ðc1Þ þ f 02ðc1Þðt� c1Þ

þ
Z t

c1

f 002 ðxÞðt� xÞ dx c1 < t � b;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð34Þ

and can then evaluate the integral asZ b

a

fðtÞ dt ¼
Z c0

a

T0ðtÞ dtþ
Z c1

c0

T1ðtÞ dtþ
Z b

c1

T2ðtÞ dt

¼ ðc0 � aÞf0ðc0Þ þ ðc1 � c0Þf1ðc0Þ

þ ðb� c1Þf2ðc1Þ �
ða� c0Þ2

2
f 00ðc0Þ

þ ðc1 � c0Þ2

2
f 01ðc0Þ þ

ðb� c1Þ2

2
f 02ðc1Þ þOðh3Þ:

ð35Þ

In the expression above and with what is to follow, we
acknowledge that we are being mathematically loose in the

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 75

use of asymptotic notation. Given the way we have set up
this mathematical problem, we cannot study the integration
error behavior in the limit as h decreases to zero due to the
fact that one of the breakpoints will eventually leave an
interval of size h as there is a fixed distance between the
breakpoints. Making this analysis rigorous is beyond the
scope of this work. Its utility, however, is in helping to
provide an intuition as to a possible estimation of the
integration error as h decreases.

If we then consider (in this loose sense) that both ða�
c0Þ2 and ðb� c1Þ2 are both Oðh2Þ, and ðc1 � c0Þ2 is also Oðh2Þ
due to the two breakpoints lying between a and b, this can
be simplified toZ b

a

fðtÞ dt ¼ ðc0 � aÞf0ðc0Þ þ ðc1 � c0Þf1ðc0Þ

þ ðb� c1Þf2ðc1Þ þOðh2Þ:
ð36Þ

We next rewrite the quadrature formula, assuming that
the breakpoints are between two sample points, c0 2
ðtj; tjþ1Þ and c1 2 ðtk; tkþ1Þ, yielding:

Qn ¼
Xj
i¼1

wiT0ðtiÞ þ
Xk
i¼jþ1

wiT1ðtiÞ þ
Xn
i¼kþ1

wiT2ðtiÞ: ð37Þ

The terms not involving derivatives are given by

Q0
n ¼

Xj
i¼1

wif0ðtiÞ þ
Xk
i¼jþ1

wif1ðtiÞ þ
Xn
i¼kþ1

wif2ðtiÞ: ð38Þ

We can then use the relation in (25) to express this in terms
of h

Q0
n ¼ h

Xj
i¼1

ŵif0ðtiÞ þ h
Xk
i¼jþ1

ŵif1ðtiÞ þ h
Xn
i¼kþ1

ŵif2ðtiÞ: ð39Þ

Subtracting (38) from (36), and using the fact that
f0ðc0Þ ¼ f1ðc0Þ, we get

E ¼ f0ðc0Þðc1 � aÞ � hf0ðc0Þ
Xk
i¼1

ŵi

þ f2ðc1Þðb� c1Þ � hf2ðc1Þ
Xn
i¼kþ1

ŵi þOðh2Þ:
ð40Þ

Since ðc1 � aÞ and ðb� c1Þ are OðhÞ, we expect that the error
of an n-point quadrature rule when there are two break-
points in the domain will decrease linearly upon refinement
as long as there are two breakpoints in the interval ða; bÞ.
Eventually, when the interval becomes small enough that
only one breakpoint exists in the interval, the error
decreases quadratically upon refinement; hence, the asymp-
totic convergence rate becomes second order, as shown in
(32). In Fig. 2, we show the convergence of the volume
rendering integral over a synthetic field (described in
Section 7) where each ray consists of a transfer function
with two breakpoints with a spacing of w ¼ 0:2; 0:02; 0:002
between them. What we see is that the image converges
linearly while the sample spacing is large enough to contain
at least two breakpoints. Once the sampling falls below that
threshold, the anticipated second-order convergence is
observed. Similar analysis indicates that this result holds
for n > 2 breakpoints as well.

We can see from the results in (32) and (40) that the

quadrature error exhibits worst case quadratic and linear

convergence, respectively, under the assumption that the

locations of the breakpoints do not coincide with any of the

sample points, and that the quadrature rule uses two or

more samples. While the assumption of two or more sample

points covers many popular types of quadrature schemes

(e.g., Newton-Cotes, Gaussian), it does not apply to two

commonly used methods based on a single sample:

Riemann quadrature and the midpoint rule. Neither of

these rules will enable faster convergence; however, since,

in the best case as applied to smooth functions, Riemann

quadrature exhibits worst case linear convergence and the

midpoint rule exhibits worst case quadratic convergence.

5.1.2 Composite Quadrature of Piecewise-Smooth

Segments

In practice, the volume rendering integral along a ray is

evaluated by breaking up the domain intoN subintervals and

then applying ann-point quadrature rule to each subinterval.

Consider the quadrature of a smooth function (i.e., there are

no breakpoints) on ½A;B�where the size of each subinterval is

specified as h ¼ ðB�AÞ=N . If we use a quadrature rule with

a local truncation error of OðhnÞ for each interval, then the

overall error of this composite rule is given by

E ¼
XN
i¼1

OiðhnÞ ¼ NOðhnÞ ¼ Oðhn�1Þ; ð41Þ

where Oi represents the order of the error in the ith

subinterval. In contrast, consider a function that is not

smooth and consists of N1 intervals containing no break-

points and N2 intervals containing a single breakpoint.

From the analysis above, we can see that the composite

error will be

E ¼
XN1

i¼1

OiðhnÞ þ
XN2

i¼1

OiðhmÞ; ð42Þ

76 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

Fig. 2. Convergence rates for transfer functions with closely spaced
breakpoints (spacing indicated by w). Second-order convergence is only
possible when every quadrature interval contains at most one break-
point. The closer the breakpoints, the longer it takes to converge to a
pixel-exact image.

where m ¼ 2 if the interval contains a single breakpoint,
and m ¼ 1 if it contains two or more. Therefore, the
convergence of the entire integral is of order m.

The practical meaning of this result is that, when
evaluating the volume rendering integral, if we can detect
that a breakpoint exists along the ray, then it is sufficient to
use the trapezoidal rule to evaluate the integral. Using
methods designed for higher order convergence of the form
given by (8) will not produce faster convergence and may
introduce additional error due to unnecessary floating point
calculations.

To illustrate, we present two examples. In Fig. 3, we
show the convergence of several quadrature methods when
applied to the function

fðtÞ ¼ �2t3 þ 4t2 � tþ :688528; t � 0:54;
2t3 � 4t2 þ tþ 1:311472; t > 0:54;

�
ð43Þ

which contains a single breakpoint at t ¼ 0:54. Notice that
Simpson’s rule and Gauss-Legendre quadrature both
exhibit second-order convergence, even though, in all
intervals except the interval with the breakpoint, they
approximate the integral exactly.

5.1.3 Quadrature of Smooth Segments

When the transfer function along a ray is smooth (i.e., does
not contain any breakpoints), we can take advantage of the
structure of the high-order field to use high-order quad-
rature to evaluate the volume rendering integral. Since the
field is defined by high-order polynomials in reference
space, a natural choice of integration method is Gaussian
quadrature, which can exactly integrate a 2n� 1 order
polynomial with n function evaluations. Since the field
along the ray is only guaranteed to be smooth, Gaussian
quadrature will be unable to evaluate the integral exactly.
The resulting error can be reduced by subdividing the ray
and using Gaussian quadrature on each subinterval. The
disadvantage of this approach is that the points from the
subintervals do not coincide with the original evaluation
points, requiring additional samples at all points each time
a subdivision is performed.

Since we would like high-order convergence combined
with the reuse of sample points, we turn to Gauss-Kronrod
quadrature [34]. This method consists of an n point

Gaussian quadrature estimate, followed by an nþ 1 point
Kronrod extension, for a total of 2nþ 1 function evalua-
tions. This rule is exact for polynomials up to degree 3nþ 1.
Since the field along the ray is smooth, we can obtain an
error estimate by looking at the difference between the n
point Gaussian rule and the 2nþ 1 Kronrod extension.

5.2 Evaluation of the Volume Rendering Integral

We now discuss how we apply the concepts from the
previous section to evaluate the volume rendering integral
along a ray.

5.2.1 Empty Space Skipping

Empty space skipping is an important acceleration
technique that has shown considerable performance
improvements on data sets where sampling is cheap, such
as voxel-based volumes where sampling involves trilinear
interpolation. Space skipping is even more important in
the context of high-order volume rendering because
sampling the field is considerably more expensive. Recall
from Section 3 that sampling a point requires the
numerical inversion of the mapping function � as well
as the evaluation of a high-order polynomial. Therefore,
performance improvements can be realized by accurately
detecting segments along the ray that do not contribute to
the volume rendering integral.

Empty space skipping is performed on a ray segment in
which � is zero along the entire segment, which indicates
that the segment does not contribute to the volume
rendering integral. The performance implications of this
optimization are dependent on the nature of the high-order
field and of the transfer function. Transfer functions that
classify large portions of the range of the scalar field will not
need to skip many sections, while transfer functions that
classify only targeted segments of the field will see
performance improvements.

5.2.2 Occlusion Only

We evaluate occlusion only when the density transfer
function has a value (� 2 PS _ � 2 S) and the color transfer
function is zero along the ray (� 2 E). In this case, we do
not need to evaluate the outer integral, as there is no
emissive component to the volume rendering integral. We
do, however, need to evaluate the accumulated opacity
along this segment. We do this by using the trapezoidal
rule if the transfer function is piecewise-smooth, and
Gauss-Kronrod quadrature if it is smooth, as discussed in
Sections 5.1.2 and 5.1.3.

5.2.3 Evaluating the Outer Integral

For all remaining cases, we must evaluate both the inner
and outer integrals, as both the density and color transfer
functions contribute to the final color. The convergence rate
of the outer integral depends on the type of quadrature
chosen for the outer and inner integrals. To see why this is
the case, let Qn be the quadrature rule used for the outer
integral with error OðhnÞ, and Im be the quadrature rule
used for the inner integral, with error OðhmÞ. Evaluating the
outer integral using Qn givesZ b

a

fðtÞ dt ¼
X
i

�
wifðtiÞ þOðhmÞ

�
þOðhnÞ: ð44Þ

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 77

Fig. 3. Convergence of composite quadrature methods when applied to
a function containing a single breakpoint, using error as defined in (9).
Ideal quadratic and linear convergence rates are provided to give a
baseline, as well as a cut-off point where the error has achieved pixel-
exact status.

The term OðhmÞ in the summation comes from evaluating
the inner integral on ½a; ti� using quadrature rule Im. This
constrains the convergence of the outer integral to be no
greater than the convergence of the inner integral.

If either � or � are piecewise-smooth, then the entire
outer integral will have either second- or first-order
convergence, depending on the location of the breakpoints.
Therefore, even if one of � or � is smooth, we use the
trapezoidal rule to evaluate both the outer and inner
integrals. This has the added benefit of using the same set
of sampling points for both integrals, reducing the overall
number of computations required.

If � and � are both smooth, then we can obtain high-
order convergence by applying Gaussian quadrature to
both the outer and inner integrals. In practice, however, this
does not work very well, since the evaluation points of the
outer integral do not, in general, correspond to the points
required to evaluate the inner integral. So, for each sample
ti in the outer integral, we would need to resample all
points to evaluate the inner integral, which negates the
anticipated performance improvements of high-order quad-
rature. We, therefore, evaluate the outer integral using
Gaussian quadrature, but evaluate the inner integral using
the trapezoidal rule. While this limits us to first- or second-
order convergence, we show in Section 7.1 that it does give
us better accuracy for a given number of samples.

5.2.4 Adaptive Quadrature

From the analysis presented above, we cannot expect to
achieve better than second-order convergence when eval-
uating the volume rendering integral when using approx-
imation methods of the form given by (8). A natural next
step is to consider using adaptive quadrature to both
reduce the number of samples required to evaluate the
integral, and to generate pixel-exact images through the use
of error estimators. This approach is especially appealing
considering that transfer functions are often designed to
ignore portions of the scalar field to allow the user to focus
on features of interest. Transfer functions that do this
contain one or more segments, �ðsÞ ¼ 0; s 2 ½smin; smax�,
where the transfer function does not contribute to the
integral’s result. By using adaptive quadrature, we hope to
avoid sampling these areas, and instead concentrate our
samples on the portions of the transfer function that do
contribute to the result.

Using adaptive quadrature, pixel-exact images are gen-
erated by refining the integral until the error estimate falls
below the tolerance required for pixel-exact images. Since
there are 255 different color levels for each channel in a
standard 24-bit color image, we consider each color channel
to be pixel-exact once the estimated error in the channel’s
integration falls below 1=255 ¼ 0:0039. To provide a buffer
against underestimation of the error, we use 0.001 as our
threshold for a pixel-exact image. Therefore, when an
adaptive volume rendering has been performed, the result-
ing image can be known to be pixel-exact and, because we
were able to sample adaptively, we are also able to reduce
the number of samples required to generate the image.

We attempted several implementations of adaptive
trapezoidal quadrature on the GPU, and in each case we
found that we were able to reduce the number of samples
required to evaluate the integral and generate pixel-exact
images. This came, however, at the cost of an overall

increase in image generation time. In some cases, execution
time doubled when using adaptive quadrature compared
to nonadaptive quadrature, even though adaptive quad-
rature reduced the number of samples required. This
performance result can be attributed to the GPU architec-
ture we are using. When using Cuda for sampling the field,
the simple trapezoidal rule with constant spacing h between
samples can be implemented efficiently by first loading
the basis functions into memory, then evaluating each of the
samples in parallel. With adaptive quadrature, however, we
interfere with the GPUs ability to evaluate the samples in
parallel. At each step in an adaptive quadrature algorithm,
we must determine if the current segment of the ray meets
our predetermined accuracy requirements and, if it does
not, subdivide the segment in a recursive manner until it
does. In this manner, even though we may be evaluating
fewer samples overall, our GPU is not working as efficiently
as it could, and the overall execution time is slower.

At this time we have not found a way to perform
adaptive quadrature on the GPU in a way that improves
performance. The methods we have tried are able to reduce
the number of samples taken at the expense of increased
execution time, which defeats the purpose of reducing the
number of samples required. So while adaptive quadrature
is an attractive approach in principle, we have not yet found
a feasible implementation.

6 IMPLEMENTATION

The implementation of the algorithm shown in Algorithm 1 is
done using a combination of OptiX and Cuda. We use OptiX
to perform the ray-tracing in Step 2. The ray-tracer is
responsible for traversing the volume on an element
by element basis. During each iteration, it stores the current
element and the entrance and exit points ½ta; tb� for the element
along the ray. Our initial implementations evaluated the
volume rendering integral in OptiX as well. This was
problematic for two reasons. First, the code necessary to
perform the ray-tracing is compiled by the OptiX engine at
runtime. The code for evaluating the volume rendering
integral resulted in runtime initialization times on the order
of 10 to 20 minutes. Second, and more importantly, evaluating
the volume rendering integral in OptiX prevented us from
using the GPU to its fullest extent. In particular, we have been
able to achieve better performance by using shared memory,
which is unavailable for use within an OptiX kernel.

Once the ray-tracer has completed, a Cuda kernel is
launched to evaluate the volume rendering integral on each
ray segment. The kernel needs to be able to access the data
stored by the OptiX program, but the current Cuda
implementations do not allow for the direct sharing of
memory between Cuda contexts (OptiX is built on a Cuda
context). While memory can be copied from OptiX to main
memory, and then from main memory to the Cuda
integration context, this is far too expensive for our
interactivity requirements. Therefore, to share data between
the OptiX and Cuda contexts, we create OpenGL pixel
buffer objects to store the intersection points and element
information. This approach requires the active GPU to be
connected to a display to achieve best performance. If the
active GPU is not connected to a display, such as is the case
for GPUs used primarily for their computational capabil-
ities, then the pixel buffer object will be allocated on a GPU

78 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

connected to a display. When the pixel buffer is used in
either the OptiX or Cuda context, it is first copied to the
active GPU, resulting in a significant performance loss.

The Cuda module then evaluates the volume rendering
integral as described in Section 5. The loop continues until
all rays exit the volume.

7 RESULTS

We illustrate the utility of our system, both in terms of the
accuracy of the generated images and its performance
characteristics, by using our system on three different data
sets. The first data set consists of a single, axis-aligned
hexahedron with extents ½�1;�1;�2� � ½1; 1; 4� and sphe-
rical field fðx; y; zÞ ¼ x2 þ y2 þ z2. This data set provides a
good baseline upon which we can evaluate the accuracy
of our implementation and verify that our implementation
is correct.

The second data set consists of a rotating canister
traveling through an incompressible fluid. A schematic of
the flow scenario under consideration is presented in
Fig. 4(left). The 3D mesh consists of 5,040 hexahedra and
696 prisms, with the computational problem being solved
using third-order polynomials (in each direction, with ninth
total order) within each element. The solutions presented
herein were computed at Reynolds number of Re ¼ 1,000
and with a nondimentionalized angular velocity of � ¼ 0:2.

The third data set consists of flow past a block with an
array of splitter plates placed downstream of the block. A
schematic of the flow scenario under consideration is
presented in Fig. 4(right). As the fluid impinges upon the
block, it is diverted around the structure, generating
vorticity along the surface. The 3D computational mesh
consists of 3,360 hexahedra and 7,644 prisms, with the
computational fluid mechanics problem being solved with
sixth-order polynomials (in each direction) per element. All
computations were accomplished at Re ¼ 200.

All tests were performed on a desktop workstation
equipped with an NVIDIA Tesla C2050 GPU and Intel Xeon
W3520 quad-core processor running at 2.6 GHz. We used
OptiX Version 2.1.1 and Cuda Version 4.0, using 32-bit
floating point precision for all code executed on the GPU.
Performance when using 64-bit precision varies depending
on the card.

7.1 Convergence Results

The goal of our system is the generation of pixel-exact
images. The convergence graphs shown in this section were
obtained by first generating a pixel-exact image then

comparing this image to the images created with varying
values of sample spacing. The error metric we used is the
largest difference between pixel values over the image:
MaxjIrðx; yÞ � Ihðx; yÞj, where Irðx; yÞ is the pixel in the
pixel-exact image at position ðx; yÞ, and Ihðx; yÞ is the pixel
in the image generated with sample spacing h. We compare
this overall image error to the total number of samples
required to generate the image.

We start by verifying the theoretical convergence of our
method by using the spherical synthetic data. We use this
data set because we can evaluate the volume rendering
integral accurately enough to guarantee a pixel-exact image,
which we can then use as a “gold-standard” against which
to verify our method. Even for a field as simple as this one
we are unable to create an analytic expression for the
volume rendering integral. However, by placing the field in
an axis-aligned hexahedron, we know that the mapping
function � from Section 3 is a linear transformation, which
means that the field along the ray will be quadratic.

Generation of the pixel-exact image proceeds as follows:
We start by generating a ray for each pixel. In this special
case where we know the field along the ray is quadratic, we
can numerically find the location of each breakpoint along
the ray to obtain a list of ray segments with no disconti-
nuities (similar to what is done by Williams et al. [11]). We
then evaluate the outer integral using Gauss-Kronrod
quadrature. At each of the sample points in the outer
integral, we use Simpson’s rule to evaluate the inner
integral exactly. After evaluating all of the points in the
outer integral, we use the Gauss-Kronrod error estimator to
determine if we have achieved a pixel-exact image. We have
found that for this simple data set, the 15-point Gauss-
Kronrod rule approximated the volume rendering integral
well below the pixel-exact error threshold.

We then generated visualizations using Riemann inte-
gration (which is representative of the types of integration
performed by most existing volume rendering systems)
and our system to verify the expected convergence rates.
To ensure that this test provides a valid comparison of
convergence rates, empty-space skipping was enabled for
all tests.

Results are shown in Fig. 5. As expected, Riemann
quadrature converges linearly, while our method exhibits
second-order convergence. Not only does our method
exhibit higher order convergence than Riemann quadrature,
the resulting image is also more accurate for a given
number of samples.

We next test our convergence on the canister data set for
which we cannot calculate the volume rendering integral
exactly. Since we do not have an analytic solution, we
create the pixel image by refining the sampling size until
the resulting image no longer changes. We show conver-
gence results for both Riemann quadrature and our method
in Fig. 5. We can see that we achieved the expected second-
order convergence, and that our method always returns an
image with less error than the image produced using
Riemann integration.

Finally, we illustrate the benefit of using high-order
quadrature for the outer integral when possible. We applied
a transfer function to the sphere data set in which neither
the density function nor the color transfer function

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 79

Fig. 4. Schematic overview of the fluid flow data sets considered. Left:
Rotating canister traveling through an incompressible fluid. Right: Fluid
flow past a block and an array of splitter plates.

contained breakpoints. As discussed in Section 5.2.3,
we expect second-order convergence in this case. In Fig. 6,
we compare evaluating the volume rendering integral using
Gauss-Kronrod quadrature and the trapezoidal rule for the
outer integral. As expected, both methods converge quad-
ratically, but by using Gauss-Kronrod quadrature for the
outer integral, we are able to obtain a more accurate image
for a given number of samples. In fact, for a given level of
accuracy, we see that the Gauss-Kronrod approach uses an
order of magnitude fewer samples.

7.2 Accuracy

In this section, we compare the images generated by our
method to those generated by the vtkGPUVolumeRayCast-
Mapper class in VTK. This system is similar to many
existing volume rendering algorithms in that it operates on
a collection of samples on a linear grid, where the values
between samples are obtained via linear interpolation. This

test corresponds to how most volume visualization is
performed for high-order data sets. In Fig. 7a, we show a
view of block and splitter data set generated by our
algorithm. In Figs. 7b, 7c, and 7d, we show this same view,
generated with VTK, for data sets with samples spacing of
0.074, 0.071, and 0.068, respectively. Each of these images
was generated by increasing the sample spacing of the
volume rendering algorithm (not the data set) until the
resulting image no longer changed with additional refine-
ment. What we can see from this example is that the image
generated with a data set sampling of 0.071 is obviously
incorrect, while images performed with data sets sampled
both more coarsely and more finely produce images that are
closer to the true result. This illustrates a significant
problem with volume rendering approaches based on
sampling high-order volumes; namely, that it is impossible
to determine, by an evaluation of the resulting image, if the
image contains significant error.

7.3 Performance

While the primary focus of our system is on accuracy, we

posit that it must also be interactive to be useful. We define

interactivity as achieving rendering speeds of at least one

80 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

Fig. 6. Comparison of using Gauss-Kronrod quadrature to evaluate the
outer integral of the sphere data set versus trapezoidal rule.

Fig. 7. In this figure, we illustrate how features can be lost in the sampling process, by showing the feature as rendered by our algorithm compared
with image rendered using the GPU-based volume rendering system in VTK for a variety of sample spacings.

Fig. 5. Comparison of convergence rates between Riemann integration
and our high-order method. Our method converges to the pixel-exact
image an order of magnitude faster than simple Riemann integration.
Ideal quadratic and linear convergence rates are provided to give a
baseline, as well as a cut-off point where the error has achieved pixel-
exact status.

frame per second. Overall, our system is capable of
achieving these interactive frame rates for images of up to
512� 512 pixels. For images larger than this, our system
reduces the sampling rate during user interaction to
maintain interactivity, and then generates the full, accurate
image when user interaction has stopped.

The execution speed of our system is influenced by
several factors: the sample spacing h along a ray, the overall
image size, the polynomial order of the high-order data set,
and the number of elements in the data set. To investigate
the impact of each of these factors, we have performed
experiments where we varied one of these parameters while
holding the others constant. The results of these tests are
shown in Fig. 8.

In Fig. 8a, we show the performance of our system
based on the number of samples used to evaluate the
volume rendering integral. Performance scales linearly
with the number of samples. Combined with the conver-
gence analysis from Section 7.1, we see that we can
generally expect to double execution time to reduce the
error by four. In Fig. 8b, we show performance as a
function of image size. Finally, in Fig. 8c, we show
performance based on the polynomial order associated

with each direction. While the time required does grow
quickly with order, in practice volumes are rarely higher
than sixth and eighth order per direction.

Of these parameters, we have control over h and the
image size, but we do not have control over the number of
elements or their order, as these are established by the
engineer creating the simulation and are domain specific.

In Fig. 9, we present the times required to render a
1,900� 950 image of the view shown in Fig. 7 using our
method and VTK. As above, for VTK we first generated a
regular grid by sampling the high-order data set, then used
VTK’s vtkGPUVolumeRayCastMapper class to generate the
images. While this class does not implement empty-space
skipping, it generated images faster than those VTK classes
that did. In Fig. 9, we show both the time to perform the
rendering and the time required to perform the sampling
compared to the time required to generate the accurate
image using our method. This graph shows that, while we
have met our goal of generating accurate images of high-
order data, additional work is needed to obtain interactivity
across all data sets and image sizes.

We can see that VTK does produce its images faster than
our method; however, as shown in Fig. 10, the memory
required to store the regular grid limits how fine the

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 81

Fig. 8. Performance measures for our volume rendering algorithm. The factors with the greatest influence over execution speed are image size and
number of samples.

Fig. 9. Performance of our method rendering the view shown in Fig. 7
(black) versus the time to render using VTK for a variety of sample
spacings (red). The blue line indicates the preprocessing time required
to generate the grid used by VTK.

Fig. 10. Memory required for the high-order volume versus sampled
regular grids. The memory required for the high-order volume is
25 megabytes.

spacing can be, which then limits the level of accuracy that
can be obtained. For example, in Fig. 11 we show a
comparison between our method and VTK for a sample
spacing of h ¼ 0:03 and total volume size of 2 gigabytes,
which was the largest volume we could render using VTK.
With this spacing, there are still noticeable errors in the
VTK image.

8 SUMMARY AND CONCLUSION

We have presented a new technique for evaluating the
volume rendering integral in high-order finite element fields
which attempts to address the often contradictory goals of
image accuracy and interactive performance. This system
uses the high-order data in its native form, thereby avoiding
the approximation errors that are present when sampling
onto voxel-based data structures. We have shown that, while
the worst case convergence of our system is the same as that of
simple Riemann integration, we generally achieve second-
order convergence and are capable of producing images with
less error for a given number of samples when compared to
existing methods. By reducing the number of samples used to
generate accurate images, we have been able to develop a
system that can produce volume rendering images of high-
order data efficiently on a desktop system.

We have shown that our algorithm is capable of
generating accurate images of high-order data with little
user interaction. This accuracy comes with a performance
penalty that makes our algorithm relatively slow for all but
smaller image sizes. Hence, although we have been
successful in meeting our goal of accuracy, further work
is needed to fully realize our goal of interactivity. This
work, however, provides the first strides towards attaining

both goals in reference to volume rendering of high-order
finite element fields. We are actively investigating new
approaches that can take advantage of the mathematical
insights gained in this work to produce interactive
renderings for more representative image sizes. One
promising avenue is through the use of adaptive integra-
tion. Although our system is capable of generating pixel-
exact images via adaptive integration, we found that
technical limitations made it far from interactive and
unsuitable for general use. We are currently investigating
new ways in which adaptive integration of the volume
rendering integral can be framed in the context of GPU
computation to restore the lost performance.

ACKNOWLEDGMENTS

The authors thank Tiago Etiene and Mathias Schott for useful
discussions about volume rendering and quadrature, and Dr.
Sergey Yakovlev for reading an early draft and providing
needed feedback and direction. The majority of this work was
completed while the first author was a member of the
Scientific Computing and Imaging Institute at the University
of Utah. This work was supported under ARO W911NF-08-1-
0517 and W911NF1210375 (Program Manager Dr. Mike
Coyle) and the Department of Energy (DOE NET DE-
EE0004449). Infrastructure support provided through NSF-
IIS-0751152.

REFERENCES

[1] G.E. Karniadakis and S.J. Sherwin, Spectral/hp Element Methods for
CFD. Oxford Univ. Press, 1999.

[2] A. Patera, “A Spectral Method for Fluid Dynamics: Laminar Flow
in a Channel Expansion,” J. Computational Physics, vol. 54, p. 468,
1984.

[3] G. Karniadakis, E. Bullister, and A. Patera, “A Spectral Element
Method for Solution of Two- and Three-Dimensional Time
Dependent Navier-Stokes Equations,” Finite Element Methods for
Nonlinear Problems, p. 803, Springer-Verlag, 1985.

[4] J. Meyer-Spradow, T. Ropinski, J. Mensmann, and K.H. Hinrichs,
“Voreen: A Rapid-Prototyping Environment for Ray-Casting-
Based Volume Visualizations,” IEEE Computer Graphics and
Applications, vol. 29, no. 6, pp. 6-13, http://viscg.uni-muenster.
de/publications/2009/MRMH09, Nov./Dec. 2009.

[5] “ImageVis3D: A Real-Time Volume Rendering Tool for Large
Data,”Scientific Computing and Imaging Inst. (SCI), http://
www.imagevis3d.org, 2013.

[6] W. Schroeder, K.M. Martin, and W.E. Lorensen, The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics, second ed.
Prentice-Hall, Inc., 1998.

[7] S.G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D.
Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and
M. Stich, “Optix: A General Purpose Ray Tracing Engine,” ACM
Trans. Graphics, vol. 29, Aug. 2010.

[8] G. Marmitt, H. Friedrich, and P. Slusallek, “Efficient CPU-Based
Volume Ray Tracing Techniques,” Computer Graphics Forum,
vol. 27, no. 6, pp. 1687-1709, http://dx.doi.org/10.1111/j.1467-
8659.2008.01179.x, 2008.

[9] G. Marmitt, H. Friedrich, and P. Slusallek, “Interactive Volume
Rendering with Ray Tracing,” Eurographics State of the Art Reports,
2006.

[10] K. Moreland and E. Angel, “A Fast High Accuracy Volume
Renderer for Unstructured Data,” Proc. IEEE Symp. Volume
Visualization and Graphics, pp. 9-16, http://dx.doi.org/10.1109/
VV.2004.2, 2004.

[11] P.L. Williams, N.L. Max, and C.M. Stein, “A High Accuracy
Volume Renderer for Unstructured Data,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 4, no. 1, pp. 37-54, http://
portal.acm.org/citation.cfm?id=614269.614391, Jan. 1998.

82 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1, JANUARY 2014

Fig. 11. Accuracy comparison between our method and the most
accurate image generated by VTK, given the memory constraints of our
desktop system. The boxed regions indicate areas where visible error is
still present in the VTK image.

[12] D.F. Wiley, H.R. Childs, B. Hamann, and K.I. Joy, “Ray Casting
Curved-Quadratic Elements,” Proc. Sixth Joint Eurographics-IEEE
TCVG Conf. Visualization (VISSYM ’04), pp. 201-210, http://dx.
doi.org/10.2312/VisSym/VisSym04/201-210, 2004.

[13] M. Üffinger, S. Frey, and T. Ertl, “Interactive High-Quality
Visualization of Higher-Order Finite Elements,” Computer Graphics
Forum, vol. 29, no. 2, pp. 337-346, http://dx.doi.org/10.1111/j.
1467-8659.2009.01603.x, 2010.

[14] C. Sadowsky, J. Cohen, and R. Taylor, “Rendering Tetrahedral
Meshes with Higher-Order Attenuation Functions for Digital
Radiograph Reconstruction,” Proc. IEEE Visualization (VIS ’05),
pp. 303-310, Oct. 2005.

[15] Y. Zhou and M. Garland, “Interactive Point-Based Rendering of
Higher-Order Tetrahedral Data,” IEEE Trans. Visualization and
Computer Graphics, vol. 12, no. 5, pp. 1229-1236, Sept./Oct. 2006.

[16] K. Novins and J. Arvo, “Controlled Precision Volume Integra-
tion,” Proc. Workshop Volume Visualization, pp. 83-89, http://
doi.acm.org/10.1145/147130.147154, 1992.

[17] J.-F. El Hajjar, S. Marchesin, J.-M. Dischler, and C. Mongenet,
“Second Order Pre-Integrated Volume Rendering,” Proc. IEEE
Pacific Visualization Symp. (PacificVIS ’08), pp. 9-16, Mar. 2008.

[18] B. Nelson, R. Haimes, and R.M. Kirby, “GPU-Based Interactive
Cut-Surface Extraction from High-Order Finite Element Fields,”
IEEE Trans. Visualization and Computer Graphics, vol. 17, no. 12,
pp. 1803-1811, Dec. 2011.

[19] M. Brasher and R. Haimes, “Rendering Planar Cuts through
Quadratic and Cubic Finite Elements,” Proc. IEEE Conf. Visualiza-
tion, pp. 409-416, http://dx.doi.org/10.1109/VISUAL.2004.91,
2004.

[20] B. Nelson and R.M. Kirby, “Ray-Tracing Polymorphic Multi-
domain Spectral/hp Elements for Isosurface Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 12, no. 1, pp. 114-
125, http://portal.acm.org/citation.cfm?id=1100864.1100967, Jan.
2006.

[21] M. Meyer, B. Nelson, R. Kirby, and R. Whitaker, “Particle Systems
for Efficient and Accurate High-Order Finite Element Visualiza-
tion,” IEEE Trans. Visualization and Computer Graphics, vol. 13,
no. 5, pp. 1015-1026, Sept. 2007.

[22] C. Pagot, J. Vollrath, F. Sadlo, D. Weiskopf, T. Ertl, and J.L.D.
Comba, “Interactive Isocontouring of High-Order Surfaces,”
Scientific Visualization: Interactions, Features, Metaphors, Dagstuhl
Follow-Ups, H. Hagen, ed., vol. 2, pp. 276-291, Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, http://drops.dagstuhl.de/
opus/volltexte/2011/3305, 2011.

[23] J.-F. Remacle, N. Chevaugeon, �E. Marchandise, and C. Geuzaine,
“Efficient Visualization of High-Order Finite Elements,” Int’l J. for
Numerical Methods in Eng., vol. 69, no. 4, pp. 750-771, http://
dx.doi.org/10.1002/nme.1787, 2007.

[24] W. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. Pebay, R.
O’Bara, and S. Tendulkar, “Methods and Framework for
Visualizing Higher-Order Finite Elements,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 12, no. 4, pp. 446-460, July/Aug.
2006.

[25] N. Max, “Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-108,
http://dx.doi.org/10.1109/2945.468400, June 1995.

[26] J. Kniss, S. Premoze, M. Ikits, A. Lefohn, C. Hansen, and E. Praun,
“Gaussian Transfer Functions for Multi-Field Volume Visualiza-
tion,” Proc. IEEE 14th Visualization (VIS ’03), pp. 497-504, http://
dx.doi.org/10.1109/VISUAL.2003.1250412, 2003.

[27] M. Hadwiger, J.M. Kniss, C. Rezk-Salama, D. Weiskopf, and K.
Engel, Real-Time Volume Graphics. A.K. Peters, Ltd., 2006.

[28] P.J. Davis and P. Rabinowitz, Methods of Numerical Integration,
Computer Science and Applied Mathematics, second ed. Aca-
demic Press Inc., 1984.

[29] M.P. Garrity, “Raytracing Irregular Volume Data,” Proc. Workshop
Volume Visualization, pp. 35-40, http://doi.acm.org/10.1145/
99307.99316, 1990.

[30] R.E. Moore, R.B. Kearfott, and M.J. Cloud, Introduction to Interval
Analysis. Soc. for Industrial and Applied Math., 2009.

[31] H.H. Sohrab, Basic Real Analysis. Birkhäuser, 2003.
[32] W. Rudin, Real and Complex Analysis, third ed. McGraw-Hill, Inc.,

1987.
[33] T.M. Apostol, Calculus, vol. 1, second ed. Wiley, 1967.
[34] A. Kronrod, Nodes and Weights of Quadrature Formulas, Sixteen-Place

Tables: Authorized Translation from the Russian. Consultants Bureau,
1965.

Blake Nelson received the BS and MS degrees
in computer science from the University of Utah,
and the PhD degree in scientific computing from
the University of Utah, where he was a member
of the Scientific Computing and Imaging Insti-
tute. He is currently a research scientist and
software engineer with Space Dynamics La-
boratory at the Utah State University Research
Foundation. His research interests include gra-
phics, high-performance computing, scientific

visualization, algorithms, and software architecture.

Robert M. Kirby (M’04) received the MS degree
in applied mathematics, the MS degree in
computer science, and the PhD degree in
applied mathematics from Brown University,
Providence, Rhode Island, in 1999, 2001, and
2002, respectively. He is currently an associate
professor of computer science with the School of
Computing, University of Utah, Salt Lake City,
where he is also an adjunct associate professor
in the Departments of Bioengineering and

Mathematics and a member of the Scientific Computing and Imaging
Institute. His current research interests include scientific computing and
visualization. He is a member of the IEEE.

Robert Haimes is a principal research engineer
in the Aerospace Computational Design Labora-
tory of the Department of Aeronautics and
Astronautics at the Massachusetts Institute of
Technology. His major research focuses have
been computational fluid dynamics (CFD) scien-
tific visualization for the results from CFD
simulations, distributed and high-performance
computing, applied computational geometry
(analytic and discrete) and the use of geometry

in conceptual through final design. He has had a number of projects in
these areas funded by NASA, DoD, and industry. The research is
usually expressed by publication and software (made generally
available) that expresses the ideas articulated in the papers.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

NELSON ET AL.: GPU-BASED VOLUME VISUALIZATION FROM HIGH-ORDER FINITE ELEMENT FIELDS 83

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

