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We present a sensitivity analysis of the optimization of the probe placement in radiofrequency (RF) ablation which

takes the uncertainty associated with biophysical tissue properties (electrical and thermal conductivity) into account.

Our forward simulation of RF ablation is based upon a system of partial differential equations (PDEs) that describe the

electric potential of the probe and the steady state of the induced heat. The probe placement is optimized by minimizing

a temperature-based objective function such that the volume of destroyed tumor tissue is maximized. The resulting

optimality system is solved with a multilevel gradient descent approach. By evaluating the corresponding optimality

system for certain realizations of tissue parameters (i.e., at certain, well-chosen points in the stochastic space) the

sensitivity of the system can be analyzed with respect to variations in the tissue parameters. For the interpolation in

the stochastic space we use an adaptive sparse grid collocation (ASGC) approach presented by Ma and Zabaras. We

underscore the significance of the approach by applying the optimization to CT data obtained from a real RF ablation

case.

KEY WORDS: stochastic sensitivity analysis, stochastic partial differential equations, adaptive sparse
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1. INTRODUCTION

The interstitial thermal destruction of lesions with radiofrequency (RF) ablation has become a widely used technique
for the treatment of tumor diseases in various organs. This work concentrates on the RF ablation of lesions in the
liver. In RF ablation, a probe containing some electrodes which is connected to an electric generator is placed in the
malignant tissue. Upon turning on the generator, the tissueis heated by an electric current due to its Ohm resistance.
The heat causes the coagulation of proteins and consequently tissue cells die. The treatment is considered successful
if all malignant cells are completely destroyed including asafety margin of about 0.5–1 cm (cf., e.g., [1]).

The success of an RF ablation treatment depends heavily on the anatomical configuration and on the experience of
the attending medical doctor. As blood vessels in the vicinity of the lesion transport away the heat which is generated
by the electric current, there is the risk that tumor cells close to blood vessels are not destroyed. As a consequence,
local recurrences may result, and indeed there are recurrence rates of up to 60% reported in the literature [2]. At
present, it mostly depends on the experience of the attending radiologist, surgeon, or gastroenterologist to select the
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therapy parameters, i.e., the placement of the probe and thesettings of the electric generator such that the local blood
flow does not hinder the success of the therapy.

These expositions motivated many medical scientists during the last decade to investigate RF ablation scenarios
using mathematical modeling, simulation, and optimization. The common goal is to understand the biophysical pro-
cesses involved in this treatment form and to allow for the planning of an optimal treatment for an individual patient
in advance which would yield the greatest therapy quality and success.

The mathematical/biophysical models of this scenario which have been developed so far result in systems of
partial differential equations (PDEs) [3–6]. These systems of PDEs allow for the numerical simulation of RF ablation
yielding a prediction of the outcome for a given placement ofthe probe and power of the generator. Clearly, these
models depend on the physical properties of the tissue, i.e., their electrical and thermal properties such as electrical
and thermal conductivity, heat capacity, density, and water content. The full complexity of the biophysical processes
leads to a fully nonlinearly coupled system of PDEs and further algebraic equations for the states of the system, which
is difficult to treat numerically [7].

The modeling of tissue properties poses a particular challenge because they depend on the current state of the tis-
sue, e.g., the electrical conductivity depends on the temperature, the water content, and also on the grade of destruction
of the tissue [3, 8, 9]. In the work presented here we considera simplified version of the model, thus restricting the
investigations to the steady state and tissue properties, which do not depend on temperature, water content, and coag-
ulation state of the tissue.

Moreover, the tissue properties vary interindividually, and in fact they are not exactly known. Values used in
simulations are, for example, often based onex vivoexperiments of animal tissue [3]. In addition, experimental
measurements are always accompanied with a certain range oferrors. Consequently, truly patient-specific models for
RF ablation are not currently feasible, and the question arises whether results obtained through simulations can be
used efficaciously in the clinical setting. In our view, the issue of patient specific models and simulations is in fact the
most challenging task for mathematical modeling and simulation in medicine.

For practical purposes, more relevant than the simulation of RF ablation is the inverse problem of finding an
optimal placement for the RF probe such that a given lesion iscompletely destroyed. This optimization problem has
been investigated by the authors with thorough mathematical approaches that minimize certain objective functions [10,
11]. The role of the objective function is to measure the “quality” of a given probe placement; a quantification of
quality provides insight into the deviation of the achievedtemperature from a desired temperature. Clearly this involves
the use of one of the aforementioned models for forward simulations of RF ablation.

We end up with a nonconvex PDE-constrained optimization problem for which we cannot expect the existence of a
unique global minimum. A mathematical analysis of this optimization problem is extremely challenging and probably
even unfeasible given its underlying complexity. Our numerical experiments show that the energy landscape has many
local minima and that a delicate tuning of the numerical algorithm and the parameters and stopping criteria involved
is necessary. From the perspective of the medical application, however, this is not a drawback: For the medical doctor
it is not relevant whether an optimal probe placement is unique or not. From their perspective, what is important is
whether a proposed optimal placement can be incorporated inpractice, whether it conflicts with other constraints of
the therapy or the patient’s case and—most importantly—howrobust the therapy success is with respect to variations
in the configuration and deviations in the actual practical probe placement.

In this paper we make first steps toward combining the optimization of the probe placement with the analysis of
the uncertainty that is associated with material parameters, i.e., we investigate the sensitivity of the optimal probe
placement with respect to variations in the material parameters. Thus, we do not consider the electric and thermal
conductivity to have fixed values, but to be probabilistically distributed. The ranges for these parameters can be taken
from experiments which are documented in the literature, orestimations of the measurement error can be taken into
account. Substituting the probabilistically distributedvalues into the PDE model for the simulation of RF ablation
yields a system of stochastic partial differential equations (SPDEs).

The goal of our investigations is to sensitize the attendingmedical doctor of the uncertainties associated with the
optimal probe placement and thus reveal the robustness of a therapy plan with respect to the intrinsic patient-specific
biological and anatomical variations, which cannot be quantified exactly. Using our results, it would be the task of
the medical doctor to adjust the therapy plan (use multiple probes, different generator settings, or even a different
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type of treatment) if the sensitivity analysis would show a possibly huge variation of the best probe placement, i.e., a
nonrobust optimal placement, and thus a low confidence that the therapy can be performed with greatest success.

There are several different methods to discretize the stochastic component of this system. Probably the most popu-
lar approach is the (rather slowly converging) Monte Carlo simulation, which is a nonintrusive sampling methodology
that requires a large number of randomly chosen sampling points to completely cover the stochastic space. We have
instead elected to follow in the footsteps of the stochasticfinite element framework advocated by Ghanem and Spanos
[12] and subsequent refinements and additions of this seminal work for the discretization of the stochastic system
arising in this problem. In the Related Work subsection below, we will situate the variants of the methodologies that
we have employed in the context of what has already been proposed theoretically and demonstrated in the context of
other uncertainty quantification problems. For the purposes of the current discussion, we merely note that we have
elected to employ the adaptive sparse grid collocation method [13] (a modification of the global spectral finite element
method that combines the power of collocating methods with the some of the theoretical properties of thegeneralized
polynomial chaosframework [14]).

By evaluating the SPDE system for certain realizations of the material parameters in a collocating sense, we can
analyze the sensitivity of the system with respect to variations in the coefficients of the PDE system, i.e., with respect
to variations in the material parameters. To compute this sensitivity analysis we use the above mentioned adaptive
sparse grid collocation (ASGC) Method with piecewise multilinear ansatz functions for the adaptive interpolation of
the stochastic space. A mathematical analysis of the smoothness of our coupled SPDE system with respect to the
stochastic parametrization (in the manner as described, e.g., in [15]) is very difficult or rather impossible due to the
high complexity of our problem. Hence, although other methodologies that stem from the original work of Ghanen
and Spanos may provide superior convergence properties under the assumption of sufficient smoothness within the
stochastic space (e.g., polynomial collocation methods of[16]), we decided to employ the ASGC methodology with
the understanding that it provided reasonable convergencerates (superior to Monte Carlo) while providing relative
robustness in the presence of possible irregularities in the stochastic domain. In an empirical study of this sort with
realistic medical data, this trade-off between theoretical convergence and robustness is very important to the practi-
tioner.

1.1 Related Work

The numerical simulation of RF ablation (and related thermal therapies) has been considered by many authors
[3, 4, 6, 17, 18]. A particular focus has been emphasized concerning the modeling of blood flow and its effect on
the temperature distribution during RF ablation [5, 17, 19]. The optimization of the probe placement through a min-
imization of theL2 distance between the achieved temperature and a critical temperature inside the tumor was first
considered by the authors in [10]. A modification of our optimization that uses shape derivatives instead of central
differences for the calculation of the descent direction inorder to increase the robustness (i.e., the starting point inde-
pendency) of our optimization algorithm will be published in [11]. In [20] Villard et al. approximate the complicated
optimization with PDE constraints by a simple geometric optimization which uses templates for the elliptical shapes
of temperature isosurfaces generated by RF probes. Butz et al. [21], who focus on the optimization of cryotherapy,
but consider RF ablation as well, also use ellipsoidal approximations of the ablation zone, which they have obtained
from the literature and additional experiments. Moreover,a related form of therapy (interstitial ultrasound) has been
optimized in [22]. In [23] Seitel et al. present a trajectoryplanning system for percutaneous insertions that extends
the work of Villard and Baegert [1, 24] and determines rated possible insertion zones/trajectories via hard and soft
constraints using the concept of pareto optimality. However, here the ablated tissue region and its coverage of the
tumor seems not to be under consideration (i.e., part of the soft constraints) any more. Kapoor et al. [25] formulate the
task of optimizing the number and placement of multiple RF needle probes as mixed variable optimization problem
with hard and soft constraints, which they solve with a derivative-free class of algorithms called mixed variable mesh
adaptive direct search. In contrast to Seitel, et al. [23], they take into account the optimal thermal ablation coverage,
but again use ellipsoidal-shaped approximations of singleprobe ablation zones, which are then combined with the
resulting necrosis. In particular, they do not take into account the cooling effect of large blood vessels close by the
tumor. In [26] Chen et al. optimize the RF probe’s insertion depth and orientation under the assumption of a given,
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fixed entry point of the probe. They use an objective functionthat depends on the survival fraction, which is predicted
by a finite element computation of the Arrhenius formalism, but which is also approximated as a field that transforms
rigidly with the electrode during the optimization. To the best of our knowledge none of the above approaches consid-
ers the uncertainty that is associated with tissue parameters due to their patient- and state dependence, as well as due
to measurement errors.

The main stochastic theoretical underpinning of this work is generally referred to asgeneralized polynomial chaos.
Based upon the Wiener-Hermite polynomial chaos expansion [27] and combined with finite elements in the global
stochastic finite element method (GSFEM) of Ghanem and Spanos [12], generalized polynomial chaos seeks to ap-
proximate second-order random processes by a finite linear combination of stochastic basis functions which are global
in nature. Once one has chosen an approximation space of the random process of interest, a solution within that space
can be found by solving the stochastic partial differentialsystem of interest in the weak form. Because of its analogy
with the classic Galerkin method as employed in finite elements, this methodology is often referred to as the gener-
alized polynomial chaos-stochastic Galerkin method (gPC-SG) [14]. It has been applied as a method for uncertainty
quantification in the field of computational mechanics for a number of years and has recently seen a revival of inter-
est [28–35]. This approach has also been applied successfully within the biological modeling world. In [36], Geneser
et al. employed the gPC-SG approach to evaluate the effects of variations and uncertainty in the conductivity values
assigned to organs in a two-dimensional electrocardiograph simulation of the human thorax.

Although the stochastic Galerkin method provides a solid mathematical framework from which one can do analysis
and can derive algorithms, it is not always the most computationally efficient means of solving large problems. Nor
is it the case that one always has the freedom to rearchitect their currently available deterministic solver to employ
gPC-SG. To address these issues, nonintrusive combinations of stochastic Galerkin and Monte Carlo methods that
decouple computations through the choice of interpolatingbasis have been developed [14].

For the sensitivity analysis of our optimization with respect to changes in the tissue parameters, we use a stochastic
(collocating) finite element approach advocated by Ma and Zabaras called the adaptive sparse grid method (ASGM)
(see [13, 37–39]). Within the gPC literature, this is sometimes referred to as multielement generalized polynomial
chaos method (MEgPC) [40, 41]. In [13], a nice delineation and comparison of these methods in the historical context
is provided; we recommend that the reader the introduction of that work for a more complete exposition on the
interconnection between the various methods.

The optimization problem considered in this paper lies in the field of nonlinear optimization subject to infinite di-
mensional constraints given by a system of (stochastic) partial differential equations. For an overview of the methodol-
ogy we refer the reader to [42]. The consideration of uncertainty in inverse problems and optimization problems with
PDE constraints has not yet received much attention in the community. The estimation of parameters in the presence
of noisy measurements has been treated with the Bayesian inference approach, which uses known information about
the parameters to createa priori distribution [43–45]. A first approach to stochastic inverse problems is presented by
Narayanan and Zabaras in [46], where the solution of the stochastic inverse heat equation is obtained with the method
of polynomial chaos.

Gunzburger et al. analyze an SPDE-constrained stochastic Neumann boundary control problem in [47]. They
prove the existence of an optimal solution and of a corresponding Lagrange multiplier and estimate the error for
the finite element solution of the optimality system. Finally, Hou et al. [48] investigate an optimal control problem
constrained by elliptic SPDEs, where the expectation of a tracking cost functional is considered. Again, the existence
of an optimal solution and Lagrange multiplier is proven andmoreover error estimates for the discretization of the
probability space and for the finite element discretizationof the spatial space are derived. A stochastic collocation
approach to the solution of optimal control problems with stochastic PDE constraints is presented in [49]. In this
work the authors derive a gradient descent method as well as asequential quadratic program for the minimization of
objective functions of tracking type, which involve stochastic moments of the state variables.

1.2 Paper Organization

The paper is organized as follows: In Section 2.1 we review the deterministic model used for the simulation of the
electric potential and the temperature profile during RF ablation. We discuss the uncertainty of tissue properties, which
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come into the PDE model as parameters in Section 2.2. Consequently we extend the deterministic PDE model toward
a stochastic PDE (SPDE) model taking into account stochastically distributed parameters and states. In Section 2.3
a review of the optimization of the probe placement will be given including a description of the objective function,
a multiscale gradient descent approach for its minimization as well as our approach to the analysis of the sensitivity
of the optimal probe placement. Section 2.4 is devoted to thediscretization of the stochastic PDE model and the
optimization with a composite finite element (CFE) approachin the physical space and the adaptive sparse grid
collocation (ASGC) method in the stochastic dimensions. Weshow results and different sensitivity analyses based on
a true RF ablation case and corresponding segmented CT data in Section 3. Finally we draw conclusions in Section 4.

2. SIMULATION AND OPTIMIZATION OF RF ABLATION

In this section we present a PDE model for the simulation of the RF ablation and for the optimization of the probe
placement. The model is parametrized by a set of biophysicalparameters which characterize the electric and thermal
conductivity of the tissue under treatment. We will discussthe uncertainty associated with the values of these param-
eters and discuss how to incorporate them into an analogous system of stochastic PDEs. The actual optimization of
the probe placement is discussed as well as the analysis of the sensitivity of the optimal placement with respect to
variations in the material parameters.

We consider the computational domain to be a cuboidD ⊂ R
3 in the three-dimensional space with boundary

B = ∂D in which a tumorDt ⊂ D and vascular structuresDv ⊂ D are located. Furthermore, we assume that a
monopolar RF probe is applied inD, whose positionp ∈ D (of the active zone’s center) and directiona ∈ S2 =
{x ∈ R

3 : |x| = 1} are variables (over which we would like to optimize later). The subset ofD that is covered by
the probe is denoted byDpr, and the subset covered by the electrode is denoted byDel (cf. Fig. 1). Note that these
sets depend onp anda. In practical applications the setsDt andDv are determined from segmented image data in
advance, e.g., by the methods presented in [50]. Moreover, to achieve the desired safety margin we can considerDt

to be a dilated version of the original segmented tumor mask.

2.1 Deterministic Simulation of RF Ablation

Let us first describe how to compute the heat distribution in the tissueD for a fixed position and orientation of the
probe, that is, for fixedDpr andDel. Note that here we work with a reduced and simplified model; for details on the
full model of RF ablation we refer the reader to [7].

The forward simulation model consists of two parts. The firstcomponent is the electrostatic equation that describes
the electric potential of the tissue which is induced by the electric potential of the electrodes. The second component

a

p Del

Dpr

DB

Dt

Dv

FIG. 1: Schematic sketch of the considered configuration identifying the different geometric regions specified in the
text. Note thatDel ⊂ Dpr where both sets depend onp anda.

Volume 2, Number 3, 2012



300 Altrogge et al.

is the heat equation which models the distribution of temperature once the heat source from the electric potential is
known.

The electric potentialφ : D → R of the RF probe is modeled by theelectrostatic equation

−div[σ(x)∇φ(x)] = 0 in D \Del, (1)

with appropriate boundary conditions (see below). Here,σ : D → R is the electric conductivity of the tissue. It is
known that the electric conductivity also depends on the temperature, the water content, and the protein state of the
tissue. More refined models for the forward simulation take this behavior into account [7, 51]. However, since our
approach is a first step towards an optimization of the probe placement (i.e., the inverse problem), we do not consider
this dependence and merely investigate the spatial variation ofσ = σ(x). For the electrostatic equation (1) we consider
the inner boundary condition

φ = 1 on Del , (2a)

which fixes the potential on the electrode; below, we are going to scale the heat source resulting from the electric field
according to the actual voltage which is imposed by the generator. Furthermore, as outer boundary conditions for (1)
we consider the Dirichlet boundary condition

φ = 0 on B . (2b)

Due to the electric resistance of the tissue, the potentialφ induces a heat sourceQRF. However, the magnitude of
this heat source depends on the power of the generator and theimpedance (resistance) of the tissue, which leads to a
decreased energy input if the impedance increases. To modelthis dependence on the characteristics of the generator,
we take the equivalent circuit diagram shown in Fig. 2 into account [3]. This yields a characteristic curve of the
generator of the type presented in Fig. 2. The curve shows that depending on the resistance of the tissue the effective
power applied to the tissue is in general smaller than the maximum power of the generator.

To provide the reader with a better perspective on how this nonlinear relationship impacts the system, we provide
more details on the coupling: The impedanceR of the tissue is given by

R =
U2

Ptotal
with Ptotal =

∫

D

σ|∇φ|2 dx, (3)

whereU = 1 V is the potentialφ of the electrode [cf. (2a)]. According to the equivalent circuit diagram shown in
Fig. 2, the effective power of the generator is now given by

Peff =
4PsetupRRI

(R + RI)2
, (4)

∼

voltage U0

inner resistance RI

of the generator

impedance R (= resistance of
the tissue)

probe 0

50

100

150

Psetup

0 RI 200 400 600 800 1000
R [D]

Peff [W]

FIG. 2: Left: Equivalent circuit diagram for the calculation of thescaling factor which is needed to convert the
unscaled powerP into the effective heat sourceQRF. Right: The characteristic curve of the generator shows the
dependence of the effective powerPeff on the impedanceR of the tissue, whileRI andPsetup are fixed (here:RI =
80 Ω, Psetup = 200 W).
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whereRI is the inner resistance of the generator andPsetup is the value setup at the generator’s control unit. Finally,
the heat source is given by

QRF(x) =
Peff

Ptotal
σ(x)|∇φ(x)|2 in D, (5)

which is proportional to the square of the magnitude of the electric field∇φ imposed by the electric potentialφ.
The heat distributionT : D → R is modeled by the steady state of thebioheat-transfer equation

−div[λ(x)∇T (x)] = QRF(x) + Qperf(x) in D. (6)

Here,λ : D → R is the thermal conductivity of the tissue. Again in our first step toward optimization, we only take
spatial variation of the heat conductivity into account. More refined models also consider the dynamics of the heat
distribution and the dependence ofλ on other states (water content, protein state) of the system[7].

Known values of the electric conductivityσ and of the thermal conductivityλ for the above model are based
mostly on experiments performed on, e.g., animal tissue or cadaveric human tissue. The fact that this kind of tissue
has different electric and thermal properties than native liver tissue as well as the associated experimental measurement
errors are the sources for the parameter uncertainty that are investigated in this work.

The right-hand side of (6) consists of the source (heating)QRF due to the electric current and the sink (cooling)
Qperf due to the blood flow in the vascular structuresDv. We assume that there is no heating on the outer boundary of
D, i.e., we chooseD to be sufficiently large (cf. also Section 3). Thus, we consider the Dirichlet boundary condition

T = Tbody on B. (7)

To model the cooling effects of the blood perfusion, we use a weighted variant of the approach of Pennes [52]:

Qperf(x) = −ν(x) [T (x)− Tbody], ν(x) =

{

νvesselρblood cblood, if x ∈ Dv,

νcapρblood cblood, else.
(8)

Thus, the coefficientν : D → R depends on the relative blood circulation rateνvessel[s−1] of vessels andνcap [s−1] of
capillaries, respectively, as well as on the blood densityρblood [kg/m] and the heat capacitycblood [J/kg K] of blood.
Here, we assume that the whole tissue is pervaded by capillary vessels and thus is exposed to their cooling influence.
For simplicity, the coefficientνcap is also assumed on the probe, i.e., withinDpr andDel. We emphasize that for the
modeling of blood flow we have again purposely chosen a very simple approach.

Remark
The modeling of perfusion has been investigated by many authors [53–57]. Sheu et al. [58] investigate the influence
of different heat transfer coefficients between tissue and vessels. These authors conclude that with increasing ablation
time, the relative influence of cooling through blood advection decreases, whereas the capillary/diffusive cooling
increases. Obviously, the unknown heat transfer coefficients between tissue and blood flow pose another important
source of uncertainty in the simulation of RF ablation. We emphasize that the stochastic finite element method is
capable of handling these uncertain heat transfer coefficients in the bioheat transfer equation. However, in the present
work we did not investigate this uncertainty. We also note that taking into account uncertainty in flow simulations
with, e.g., the Navier-Stokes equations, is a more involvedtopic which has been investigated in, e.g., [35].

Remark
In the literature it is common to estimate the damage inflicted to the tissue through the temperature profile by the
Arrhenius formalism [59]. This formalism considers a history integral over a certain function of the temperature, thus
it takes into account that already at low temperatures (in the range of a high fever, i.e.,T & 43◦C) destruction of tumor
cells takes place. A different approach considers a critical temperature, i.e., the temperature at which (according to
the Arrhenius formalism) the tissue is destroyed after an exposure time of1 s. Clearly, using this approach is much
simpler; however the size of lesions is underestimated.

In summary, the statesφ : D → R andT : D → R are defined by the boundary value problems

−div[σ(x)∇φ(x)] = 0 in D \Del, (9a)
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−div[λ(x)∇T (x)]+ν(x)T (x) = QRF(x)+ν(x)Tbody in D, (9b)

with boundary conditions (2) and (7). Note that the two equations are coupled through the termQRF.

2.2 Parameter Uncertainty

The PDE model for the simulation of the heat distribution described in the last section involves the electric and
thermal conductivity of the corresponding tissue. As we have discussed in the Introduction, these quantities cannot
be determined exactly. The material properties depend on the physical state of the tissue, and moreover they vary
interindividually (i.e., from patient to patient) and in fact they also vary from day to day depending on the patient’s
physical constitution. The range of values, which is given in the literature, underlines this uncertainty, e.g., from
[3, 4, 6, 9] we learn that even in native liver tissue we have

σ = 0.17 S/m—0.60 S/m, λ = 0.47 W/Km—0.64 W/Km. (10)

These values have mostly been obtained fromin vitro experiments on cadaveric human tissue or animals, and they are
certainly furthermore associated with realistic measurement errors of10% or more.

Taking the uncertainty of the values of material parametersinto account leads to the question about the dependence
of the forward simulation of RF ablation and also about the sensitivity of the optimal probe placement (see Section 2.3)
with respect to variations (either due to uncertainty or errors) in the material parameters. Discussing this question does
not improve the accuracy of the simulation or the optimization (as numerical verification is a matter divorced from the
answer to this question); rather, it enables us to quantify how the uncertainty of the electric and thermal conductivities
affects (or propagates through) the numerical results. Based on the results obtained by our sensitivity analysis, a future
goal is in the direction of patient-specific modeling and simulation whereby we will (hopefully) be able to optimize
the confidence of the success of the therapy.

In the following, we extend the model for the simulation of RFablation presented in Section 2.1 such that it
incorporates the uncertainty in the material properties. We present a review of the optimization of the probe placement
and discuss different variants to analyze the sensitivity of the optimal probe placement in Section 2.3. In Section 2.4
we review the adaptive sparse grid collocation method, which we use in this work.

Let (Ω,A,µ) be a probability space expressing the behavior of the thermal conductivity and electric conductivity
whereΩ is the event space,A ⊂ 2Ω theσ-algebra, andµ the probability measure. In the following we consider the
case that the tissue parametersσ andλ are not fixed to particular (deterministic) values, but rather lie within a range
of possible values. Thus, an eventω in our probability space consists of a particular choice of the material properties
(σ, λ). The physical parameters can be considered as random fields expressible in terms of random variables and
characterizable by their probability density functions (PDFs).

For the medical problem of interest, let us assume that we have three main types of tissue present in our computa-
tional domain: native liver tissue (n), tumor tissue (t), and blood vessels (v). For each of these tissue types we assume
that the distributions ofσ andλ are controlled by uniformly distributed independent random variables.

Following [14], we know that we can represent any general second-orderrandom processg(ω),ω ∈ Ω in terms
of a collection of random variablesξ = (ξ1, . . .ξN ) with independent components up to some truncation error. For
certain processes and choices of basis functions, this truncation error can be shown to be zero given particular values
of N . In general, as with spectral methods, we rely on the fact that if the process is smooth, given sufficiently large
N the size of this truncation error will be small. Ideally, onewould attempt to provide bounds on the magnitude of
this term; for our optimization problem, the magnitude of this truncation error is very difficult to quantify and can
only indirectly be inferred by monitoring the convergence of our hierarchical collocated refinement scheme presented
subsequently.

Here, the stochastic process under investigation is the optimal probe placement̄u as it is obtained by the algorithm
that will be described in the next subsection. Since the optimal probe placement depends on the material parametersσ

andλ, any uncertainty associated with those parameters will induce uncertainty in the optimal probe placement. Note
that in the following we will also refer torandom fieldsas stochastic processes.
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Remark
Here and in the following we assume that the distributions for the three-different components of the material parame-
ters are independent. Note that from the mathematical viewpoint it is very convenient to assume independence since it
allows us to construct tensor-product Hilbert spaces on thestochastic domain. Note independence may not be justified
from the anatomical perspective, since, e.g., the different conductivities are correlated through the water content of
the tissue. However, there exists a mathematically rigorous (nonlinear) mapping which transforms a set of random
variables into a set of independent random variables. This research falls into the area of numerical representation of
non-Gaussian processes, which remains an active research field [16].

To describe the electric field emerging from the RF probe regarded as a random field, let us consider the vector
of random variablesξσ = (ξσ

n , ξσ

t , ξσ

v ) ∈ Γσ ⊂ R
3 (i.e.,N = 3) which describes the uncertainty in the electric

conductivity of the native tissue, the tumor, and the vessels. We model the stochastic fieldσ(x, ξσ) for the uncertain
electric conductivity by

σ(x, ξσ) =











σn(ξσ
n ) if x ∈ Dn,

σt(ξ
σ

t ) if x ∈ Dt,

σv(ξ
σ
v ) if x ∈ Dv.

(11)

To model the uncertain distribution of heat we proceed similarly by consideringξλ = (ξλ
n , ξλ

t , ξλ
v) ∈ Γλ ⊂ R

3.
The three components ofξλ represent the heat conductivity in the native and malignanttissue as well as in the
vascular structures. As in (11) we define the overall heat conductivityλ(x, ξλ). We will henceforth consider our input
parameters to be of the formσ(x, ξσ) andλ(x, ξλ) given byξ = (ξσ, ξλ) ∈ Γ distributed over the ranges as,
e.g., given in (10), whereΓ := Γσ × Γλ ⊂ R

3 × R
3 .

Having introduced the uncertain electric conductivity, wecan formulate astochastic electrostatic equationsimilar
to (1) and (2): Find a stochastic fieldφ(x, ξσ) such that

−div[σ(x, ξσ)∇φ(x, ξσ)] = 0 a.e. in D \Del × Γσ ,

φ(x, ξσ) = 1 a.e. onDel × Γσ ,

φ(x, ξσ) = 0 a.e. on∂D × Γσ .

(12)

Straightforwardly, we can proceed to incorporate the uncertainty into the remaining components of the model that
have been presented in Section 2.1. This yields a stochasticfield for the heat source and stochastic processes for the
total and the effective power, i.e.,

QRF(x, ξσ) =
Peff(ξσ)

Ptotal(ξ
σ)
σ(x, ξσ)|∇φ(x, ξσ)|2 , (13)

Peff(ξσ) =
4PsetupR(ξσ)RI

[R(ξσ) + RI]2
, R(ξσ) =

U2

Ptotal(ξ
σ)

, Ptotal(ξ
σ) =

∫

D

σ(x, ξσ)|∇φ(x, ξσ)|2 dx . (14)

We may also define thestochastic heat equationby analogy to (6) and (7). Since the source term on the right
hand side depends on the solution of the stochastic electrostatic equation, the temperature distribution is going to bea
random field that depends on bothξ

σ andξ
λ, i.e.,

−div[λ(x, ξλ)∇T (x, ξ)] = QRF(x, ξσ) + Qperf(x, ξ) a.e. in D × Γ,

T (x, ξ) = Tbody a.e. on∂D × Γ,
(15)

whereξ = (ξσ, ξλ). The sink termQperf in (15) is modeled as in Section 2.1

Qperf(x, ξ) = −ν(x) [T (x, ξ)− Tbody], ν(x) =

{

νvesselρblood cblood for x ∈ Dv,

νcapρblood cblood else.
(16)
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2.3 Optimizing the Probe Placement

The aim of the RF ablation therapy is the complete destruction of the lesion including a sufficiently large safety
margin. Thus, for a given lesion it must be decided by the attending doctor how to place the RF probe such that this
goal is achieved. In this section we review and extend an earlier work [10, 11], which uses mathematical optimization
to find the best probe placement. Our exposition in this section is the basis for an analysis of the sensitivity of the
optimization with respect to the uncertainty related to thematerial parameters.

2.3.1 Objective Function

In the following, we focus on an objective function which measures the “quality” of a given temperature distribution,
i.e., which estimates the success that would be obtained with a given probe placement. For reasons of stability and
robustness of the optimizer, we base our objective functional directly on the temperature profile. Thus, we relate
our approach to the notion of critical temperature, having in mind that we (systematically) underestimate the size of
lesions (see our remark above).

For the optimization we consider an optimal ablation resultto be a maximum volume of destroyed tissue, which
is obtained by high temperatures inside the lesionDt. Thus, to maximize the volume of ablated tissue we would
therefore want to maximize the lowest temperature inside the lesion including a safety margin. Since we do not aim
at an optimization of the generator powerPsetup, it does not make sense to directly consider the deviations from a
critical temperature. In fact, the critical temperature would only change our chosen objective function by a constant
term (see [11]).

To be more precise, let us remember that admissible probe parameters lie in the spaceU := D × S2. Thus, we
aim at finding the optimal probe placement(p̄, ā) such that

(p̄, ā) = argmax
(p,a)∈U

min
x∈Dt

T (x) = argmin
(p,a)∈U

(

− min
x∈Dt

T (x)

)

,

whereT depends on the probe placement(p, a). This objective is designed such that the smallest temperature that is
attained inside the lesion is maximized. Since themin-function is not differentiable it is popular to approximate it by
a smooth function. In the following we use the approximation

f̃(T ) :=
1

α
log

(

1

|Dt|

∫

Dt

exp
[

− αT (x)
]

dx

)

(17)

for someα > 0. Note that forα → ∞, the integrandexp[−αT (x)] converges to zero slowest for the smallest value
of T (x). Thus, for largeα the integrand can be approximated by the constant valueexp(−αminDt

T ). Consequently
for largeα the integral reduces toα−1 log[|Dt|−1

∫

Dt

exp(−αminDt
T ) dx], andf̃(T ) simplifies to−minDt

T .
With our choice of approximation (17), which uses the exponential function, we seek an equal heat distribution

inside the tumor, since therewith the lowest temperature inside the tumor is penalized most. The factorα > 0 models
the grade of penalization of a nonuniform temperature distribution inside the tumor.

We can writef̃(T ) = K + α−1f(T ) with K = α−1 log(1/|Dt|) and thus arrive at

f(T ) := log

(
∫

Dt

exp
[

− αT (x)
]

dx

)

, (18)

which is a simpler objective function thañf . Consequently our optimization problem becomes

(p̄, ā) = argmin
(p,a)∈U

f(T ) = argmin
(p,a)∈U

log

(
∫

Dt

exp
[

− αT (x)
]

dx

)

. (19)

Formally, our objective functionf defined above is a function of the temperature distributionT . But T depends
on the heat sourceQRF, andQRF depends on the optimization parameter(p, a) =: u ∈ U . We can handle these
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dependencies by expressing our optimization problem as follows: we seek a positioningu such that the cost function
given in terms of the positioningF (u) = f ◦ T ◦ Q(u) is minimized, where

Q(u) = QRF, T = T (QRF).

Obviously, in certain situations the uniqueness of a minimizing configuration is not guaranteed, e.g., for spherical
tumors. This situation may also occur in practice for hepatic tumors, which in general have a spherical-like shape.
However, such a symmetry is broken by the consideration of surrounding blood vessels and their cooling effects.
Moreover, for practical reasons the uniqueness of a solution is not needed and even local minima give important
information about good probe and generator configurations.In a future model we will incorporate constraints for the
optimization parameters which break any existing symmetryeven further. Such constraints are given by anatomical
structures (bones, colon, diaphragm) that must not be punctured during the ablation.

2.3.2 Multiscale Gradient Descent

For the minimization of the objective functionalF , we use a gradient descent method. Since the orientationa lies on
the two-dimensional sphereS2 and the computation of a gradient on the sphere would involvesome difficulties (in
particular because there is no basis of the tangent space ofS2 ata that depends continuously ona), we replaceU by
the open set

Ũ = D × (R3 \ {0}) ⊃ U,

and use in each step of the gradient descent method the projection

PD×S2 : Ũ → U, (p, a) 7→ (p, a/|a|).
We also define a continuation of our solution operatorQ ontoŨ that does not depend on the length ofa via

Q(p, a) = (Q ◦ PD×S2)(p, a) = Q(p, a/|a|).
Letting the superscriptn ∈ N denote the iteration count, we can describe the particular ingredients of our gradient

descent method as follows:

• Initial value. Setn = 0, and choose an arbitrary probe positioningu0 ∈ U as an initial guess.

• Descent direction. Then, in each iteration stepn ≥ 1, calculate the descent directionwn ∈ Ũ from the current
iterateun as an approximation of−DuF (un) = −Du[f ◦ T ◦QRF(un)] = −DT f ·DQRF

T ·DuQRF(un) (see
Algorithm 1).

• Step size. Determine the step sizesn > 0, such that the resulting new iterateun+1 = PD×S2(un + snwn) is
admissible, i.e., fulfillsun+1 ∈ U and reduces the value of the objective functionF (un+1) < F (un). Using
the projectionPD×S2 , we assert that the new orientation lies on the sphere.

• Stopping criterion. The iteration continues until the difference|un+1 − un| falls below a given thresholdθ.

To accelerate the gradient descent algorithm, we use a multiscale approach, i.e., we start with the optimization on
a coarse grid and use the solution as the initial guess on a finer grid. In Algorithm 1 we show the complete multiscale
optimization algorithm in pseudo-code. For each levell (see lines 3–25 of Algorithm 1) of the computational grid the
optimization is performed as described above. The descent directionwn in line 7 of Algorithm 1 is computed with
help of a conjugate gradient calculation of the corresponding adjoint equation (see [10, 11]) and a determination of the
derivative of the heat sourceQRF with respect to the probe positioningu via shape derivatives (see [11]). Specifically,
we interpret the probe placementu ∈ Ũ as a vector of shape parametersp ∈ R

6 such that the computational domain
D depends onp, i.e.,D = D(p) and in particularDel = Del(p). Then we can calculate∂pi

QRF as

∂pi
QRF = ∂pi

(

Peff

Ptotal
σ|∇φ|2

)

= σ

[

−2

∫

D

σ∇φ∇(∂pi
φ)dx

(

Peff + Peff
RI −R

R(R + RI)

U2

Ptotal

) |∇φ|2
P 2

total

+ 2
Peff

Ptotal
∇φ∇(∂pi

φ)

]

.
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Algorithm 1 Multiscale gradient descent for the optimization of the probe placement

1: l ← l0 . Start with levell0
2: Initialize ū.
3: while l ≤ L do
4: u0 ← ū . Initialization
5: n← 0

6: repeat
7: wn ← −∇uF (un) = −Duf{T [QRF(un)]} . Compute descent direction
8: if n = 0 then . Initialize step size
9: s0 ← (2|w0|)−1diam(D)

10: else
11: sn ← 2|wn−1|(|wn|)−1sn−1

12: end if
13: m← 0 . Reset counter
14: un+1 ← P (un + snwn) . Determine step size
15: while F (un+1) > F (un) or un+1 6∈ U do
16: m← m + 1 . Increase counter
17: if m = mmax then
18: STOP
19: end if
20: sn ← sn/2 . Bisect step size
21: un+1 ← P (un + snwn)

22: end while
23: until |un+1 − un| ≤ θ
24: ū← un+1

25: l ← l + 1 . Proceed to next level
26:end while

Here, the derivative∂pi
φ of the potentialφ with respect to the shape parameterpi is calculated by the following PDE

system obtained by a transformation of the potential equation (1) with boundary conditions (2):

∫

D\Del

σ〈∇∂pi
φ,∇v〉dx = 0

∂pi
φ = −〈∇φ, xpi

〉 ∀ x ∈ ∂Del.

For the integration in the objective function we use a tensor-product trapezoidal rule. The search for the optimal
step size is performed with a variant of Armijo’s rule (cf., e.g., [42]) (lines 8–22 of Algorithm 1). Note that for each
test in the while-condition (see Algorithm 1, line 15), an evaluation of the complete system of PDEs (9), and the
objective function are needed. To obtain representations of the vascular structureDv and of the lesionDt on coarse
grids we use a bilinear restriction frequently used in multigrid methods [60] with an additional threshold for the tumor
and the vessels to obtain sharp boundaries.

For more details of the multiscale gradient descent approach we refer the reader to [10]. There, we have also
verified the multiscale optimization process on the basis ofan artificial example where the optimal probe placement
is qualitatively known.
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2.3.3 Sensitivity Analysis

From an appropriate approximation of the stochastic process describing the optimal probe placement (see Section 2.4),
we can analyze the sensitivity of the system to perturbations in the material parameters.

An indicator for the robustness (or more precisely the global behavior) of the optimal probe placement with respect
to variations in the material parameters is obtained by a direct analysis of the probability density function of the probe
placement. For the sensitivity analysis of the optimal probe orientation (which has values on the two-dimensional
sphere) we perform a visualization of the PDF by a color coding of the sphere (see Section 3.3). The PDF of the
optimal probe position is a mappingR3 → R which could be visualized through volume rendering. However, a deep
understanding and analysis of the respective three-dimensional PDF could be obtained only by an interactive three-
dimensional display of the data. Moreover, in general, the PDF is not calculable analytically; one has to evaluate the
stochastic process or its approximation at a large number ofsampling points to get an appropriate approximation of
the PDF. For more details we refer the reader to [61] and in particular to [62].

An analysis of the stochastic moments is more accessible, asit can be obtained more easily from the discrete
representation of the stochastic process bypassing the construction of the PDF. Thus, for the sensitivity analysis of the
optimal probe position, we consider the covariance matrix of the joint distribution of the probe position’s components.
For the joint distribution of the coordinates of the optimalprobe position̄p(ξ) = [p̄x(ξ), p̄y(ξ), p̄z(ξ)] we have

Cov[p̄] =
(

Cov[p̄c, p̄d]
)

c,d∈{x,y,z}
, where Cov[p̄c, p̄d] = E

[

(p̄c − E[p̄c])(p̄d − E[p̄d])
]

(20)

for all pairs of coordinatesc, d ∈ {x, y, z}. The covariance matrix is a symmetric (in this case3 × 3) matrix that
quantifies how the coordinates of the optimal probe positionare coupled through the random variableξ. If this matrix
were diagonal, the coordinates would be independent. The covariance matrix can be visualized as an ellipsoid, whose
principal axes are aligned with the matrix’s eigenvectors and whose extension is scaled with the square root of the
corresponding eigenvalues. In Section 3 we will use exactlythis way of visualizing the sensitivity of the probe position.
In fact, this approach can be interpreted as a principal component analysis of the PDF: large ellipsoids imply that the
distribution is wide (has a high variance) in the corresponding direction; small ellipsoids indicate narrow distributions;
cigar-shaped ellipsoids indicate (approximate) independence of two components; etc.

Remark
We emphasize that special care must be taken concerning the accuracy of the numerical solvers involved. In [63] Kai-
pio and Somersalo discuss that limited numerical accuracies (i.e., discretization errors) can sometimes (effectively or
ineffectively) be interpreted as the behavior of a random process and thus as sensitivity of our problem. Consequently,
in our numerical experiments shown in Section 3 we have set the stopping criteria of the iterative solvers as well as
for the optimization loops appropriately.

2.4 Discretization

We now discuss our approach for both the spatial discretization of the problem and the stochastic discretization of
the problem. For the spatial discretization we will use a composite finite element approach and for the stochastic
dimensions an adaptive sparse grid collocation method willbe applied. As collocation methods are nonintrusive
discretization variants for stochastic problems, we can easily estimate the effort needed for our computations as
the number of collocation points times the effort for one deterministic optimization. In the setting described below,
the computational effort for one deterministic optimization is about 2 h on a standard contemporary PC. For the
sensitivity analyses shown in Section 3 we needed several hundred hours of computational time; however, as the
adaptive collocation approach can be parallelized, straightforwardly computed clusters can accelerate the analysis
enormously.

2.4.1 Spatial Discretization

For the discretization of the elliptic boundary value problems (9a) and (9b) with boundary conditions (2) and (7)
we use a composite finite element (CFE) approach on the three-dimensional uniform Cartesian grids induced by
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the underlying medical image data. Composite finite elementfunctions are characterized by an enriched set of basis
functions, which take into account particular properties of the solution that are consequences of interfaces or domain
boundaries. In fact, the CFE basis functions allow one to resolve kinks of basis functions or supports of basis functions
which are not resolved by the computational grid. Thus, CFE can be seen as a kind of adaptivity which is built into
the set of shape functions in contrast to the classical grid adaptivity with local mesh refinement.

In the simulation and optimization of RF ablation, discussed here, the main advantage of CFEs over the classical
finite element approach is a better resolution of the RF probe’s geometry. In fact, with CFEs the geometry of the RF
probe is built into the shape of the basis functions, which yields high resolution of the probe even on structured grids,
allowing for a combination of the adaptivity and the efficiency of structured hexahedral grids. Furthermore, in our
numerical experiments we determined that good resolution of the RF probe has a significant impact on the robustness
of the optimization of the RF probe placement, which will be described later. For details on the CFE method we refer
the reader to [64–66].

For reasons of analogy we restrict the following description to the problem (9b) which we assume to be adjusted
to homogeneous boundary conditions in the usual way. We obtain the weak form by multiplying the corresponding
PDE with a test functionv. Integration by parts leads to

(λ∇T,∇v)2,D + (νT, v)2,D = (QRF + νTbody, v)2,D (21)

for all test functionsv, where(·, ·)2,D denotes theL2 scalar product overD.
In a second step we discretize this variational problem by restricting (21) to a finite dimensional spaceV h con-

sisting of piecewise trilinear, globally continuous shapefunctions of our finite element space. Note that our CFE basis
functions are adapted on the boundary of the RF probe, such that the probe’s geometry is approximated sufficiently
well on the grid.

Denoting the vector of nodal valuesti of the temperature with~t = (t1, . . . , tn)T and the vector of nodal valuesri

of the right-hand side with~r = (r1, . . . , rn)T , we finally have to solve

(L[λ] + M[ν])~t = ~r ,

where thestiffness matrixL[λ] and themass matrixM[ν] are given by

Lij [λ] = (λ∇ψi,∇ψj)2,D and Mij [ν] = (νψi,ψj)2,D .

Since the matrix(L[λ] + M[ν]) is symmetric and positive definite, this system can be solvedby, e.g., a conjugate
gradient (CG) method.

2.4.2 Stochastic Discretization

For the sensitivity analysis as discussed in the previous paragraphs, we have to traverse through the stochastic space
and evaluate the optimal probe location for various realizations of the uncertain material parameters. Roughly speak-
ing, we are thus analyzing the response surface of the optimal probe location as a function of the uncertain material
parameters.

As briefly described in the Introduction, a multitude of approaches has been developed for the discretization of
SPDEs. Here, we follow the adaptive sparse grid collocationapproach by Ma and Zabaras [13]. This approach com-
bines the sampling character of collocation methods with adaptivity in the stochastic space, thus imposing low regu-
larity assumptions on the underlying stochastic process. Due to the sampling nature we can easily use the optimization
algorithm presented above.

A classical and very popular sampling approach is the Monte Carlo (MC) method. TherebyM realizationsξj ,
j = 1, . . . , M of the vector of random variablesξ are generated. Consequently,M deterministic problems are solved,
which are obtained from the deterministic optimization problem (19) by considering the realizations of the electric and
thermal conductivityσ andλ corresponding toξj . Finally, the statistics of the corresponding samples of the optimal
probe placement̄u(ξj) = [p̄(ξj), ā(ξj)] is analyzed to yield the desired sensitivity analysis. The MC approach is
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known to be extremely robust and requires no assumptions on the smoothness of the underlying stochastic processes.
However, the convergence is very slow and goes asymptotically with 1/

√
M .

Other sampling approaches for the solution of SPDEs are based on the construction of interpolating functions.
Analogous to classical interpolation and quadrature, suchmethods are either used to perform the integration over the
stochastic space in order to evaluate the stochastic moments of the process under investigation, or they are simply
used to construct an approximation of the stochastic process.

It is popular to use a set of quadrature points{ξj}Qj=1 which lie on a sparse grid in the stochastic space (see Fig. 3,
left) generated by Smolyak’s algorithm [67]. In Smolyak’s algorithm a one-dimensional interpolation rule is extended
to multiple dimensions with a special tensor-product construction. For the choice of the one-dimensional collocation
points there are several other options, among them equidistant points (Newton-Cotes formula), or the extrema of the
Chebyshev polynomials (Clenshaw-Curtis formula). For theadaptive collocation approach followed here (cf. [13]),
the use of equidistant points is more convenient as it allowsfor easier local refinement of the stochastic grid (see
Fig. 3, right).

In the following we will explain the adaptive sparse grid collocation approach in one dimension. For the ease of the
presentation we will treat the actual pair of random variables[σ(ξ), λ(ξ)] used in our application as an element of a
one-dimensional stochastic space, accepting the resulting misuse of notation. Let us assume that Smolyak’s algorithm
yields an interpolant for the optimal probe locationū

ũi(ξ) =

Qi
∑

j=1

ū(ξi
j)h

i
j(ξ) =

Qi
∑

j=1

S[σ(ξi
j), λ(ξ

i
j)]h

i
j(ξ) (22)

on a set of collocation points{ξi
j}Qi

j=1. Herehi
j(ξ

i
k) = δjk denotes the corresponding set of nodal basis functions and

S denotes the solution operator for the deterministic optimization problem from the previous sections, i.e.,ū(ξ) =
S[σ(ξi

j), λ(ξ
i
j)]. The indexi refers to the level of refinement of the sparse Smolyak grid, i.e., we have a sequence of

interpolations̃ui, which are constructed with varying numbersQi of collocation pointsX i := {ξi
j}Qi

j=1, i ∈ N. Due
to the construction of the sparse grids the sets of collocation points are nested, i.e.,X i ⊂ X i+1.

The key to the adaptive sparse grid collocation lies in the analysis of the incremental interpolant

∆i(ū) = ũi − ũi−1.

Using the nestedness of the collocation points and (22) we arrive at

FIG. 3: Two-dimensional sketch of a distribution of grid nodes obtained with Smolyak’s algorithm (left) and of a
uniform, adaptive distribution of nodes for the two-dimensional stochastic interpolation with piecewise multilinear,
hierarchical ansatz functions (right).
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∆i(ū) =
∑

ξi
j∈Xi\Xi−1

(

S[σ(ξi
j), λ(ξ

i
j)]− ũi−1(ξi

j)
)

hi
j =:

∑

ξi
j∈Xi\Xi−1

ωi
j hi

j, (23)

whereωi
j := S[σ(ξi

j), λ(ξ
i
j)] − ũi−1(ξi

j) is the hierarchical surplus. Starting with̃u0 = 0, we can construct the
interpolantũi at leveli from the interpolant at leveli − 1 using the hierarchical surpluses and the associated basis
functions. Due to the enumeration of the collocation pointsin the sum of (23) the basis functions will be visited in a
hierarchical way (cf. Fig. 4) and we arrive at a hierarchicalrepresentation of the interpolant in the form

ũi(ξ) =
∑

k≤i

∑

ξk
j ∈Xk\Xk−1

ωk
j hk

j (ξ). (24)

With this representation we can straightforwardly evaluate the moments needed for the sensitivity analysis as discussed
in Section 2.3.3. For the expectation we get

E[ũi] =
∑

k≤i

∑

ξk
j ∈Xk\Xk−1

ωk
j

∫

Ω

hk
j (ξ) dµ, (25)

where the integrals of the basis functionshk
j can be computed in advance, such that the evaluation of the expectation

can be accelerated toward a simple weighted sum of the hierarchical surpluses. To obtain higher order moments or the
covariance from (20) we first need to express the product [i.e. (ũi − E[ũi])2], respectively,(p̄c − E[p̄c])(p̄d − E[p̄d])]
in the hierarchical representation (24) and then evaluate its expectation with (25).

In the case of interpolation in a multidimensional stochastic space, hierarchical difference spaces must be con-
structed, which lead to the analog definition of the hierarchical surpluses. We refer the reader to [13] for details on the
multidimensional adaptive sparse grid collocation approach. In Fig. 3 (right) we show an adaptive hierarchical sparse
grid resulting from the construction described above.

For the construction of an adaptive sparse grid, the hierarchical surpluses are used as indicators for the smoothness
of the interpolation. Given a thresholdε, hierarchical basis functionshi

j are refined (i.e., the corresponding collocation
points in the sparse Smolyak grid are added) if the corresponding hierarchical surplusωi

j fulfills ‖ωi
j‖ ≥ ε. According

to [13] the hierarchical surpluses tend to zero with increasing leveli if the processu is smooth. At discontinuities the
magnitude of the hierarchical surpluses will not decrease but roughly speaking indicate the size of the jump.

Note that in the application of the adaptive sparse grid collocation method to the optimal probe placement problem
we are working with two different thresholds,θ andε. As described above,θ is the criterion steering the stopping of the
optimization algorithm, thus it can be interpreted as an accuracy associated with the optimal probe locations obtained
by the algorithm. We also have the smoothness indicatorε, which steers the refinement of the adaptive stochastic grid.
We emphasize that these criteria cannot be chosen independently, but we need to respect a compatibility condition. In
fact, as the stopping criterionθ can be seen as an indicator of uncertainty or error for the values ofu at the collocation
pointsξ

i
j , we needε > 2θ in order to avoid meaningless refinement of the adaptive stochastic grid.

hj

FIG. 4: A set of piecewise multilinear, hierarchical ansatz functions in one dimension is shown.
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3. RESULTS

In the following we will evaluate the concepts presented in the preceding sections on the basis of a real RF ablation
case. From CT data, which have been segmented with the methodology from [50], we obtain the geometrical descrip-
tion of the computational domain. This includes the representation of the tumor as well as the vascular system in the
vicinity of the tumor. The tumor has main axes of approximatelength 45.9, 41.9, and 36.2 mm. We place it into a com-
putational domainD of extent60×60×60 mm3, which is discretized with a fine grid of643 cells. For the multiscale
optimization we consider one coarser grid having323 cells. Our grid width is thush = 60/64mm = 0.9375 mm.

We consider the material parameters to be uniformly distributed based upon values found in the literature [3, 4, 6].
In our computations the thermal conductivityλ = (λn, λt, λv) is distributed uniformly in [0.47,0.64]× [0.51,0.77]
× [0.51,0.54] [W/Km] and the electric conductivityσ = (σn,σt,σv) is distributed uniformly in [0.17, 0.60]×
[0.64, 0.96]× [0.67, 0.86][S/m]. For the perfusion term (8) we takeνcap = 0.006067 s−1 andνvessel= 0.05 s−1. The
value for the blood density isρblood = 1059.0 kg/m3, and the heat capacity of blood is set tocblood = 3850.0 J/kgK
(cf. Section 2 and [3, 6]). In our study, all these latter values are taken to be deterministic, although they are clearly
associated with measurement errors and uncertainty as well.

A monopolar probe with radius1.2 mm and with an electrode length of20 mm is applied. The electric generator
has an inner resistance of80 Ω, and it is set up to a power of30 W.

For the ASGC discretization of the vector-valued position and orientation of the probe positioning, we need two
stopping criteria for the placementp̄, as well as for the direction̄a. In our computations we setεp = 1 mm and
εa = 5◦, which means that the refinement continues until the hierarchical surpluses of position and orientation are
less than1 mm and5◦.

As settings for the deterministic optimization, which is performed at each collocation point, we useα = 0.5
to regularize the objective functionf in (18). The stopping criteria in the optimizer are set toθp = 10−6 h =
9.375 × 10−7 mm andθa = 0.057◦ for the probe location and the probe orientation, respectively. For the iterative
solvers used in the computation of the forward problem, i.e., the deterministic PDE, we use an accuracy of machine
zero10−15 for the decrease of the residual. For the optimization, the initial probe position is always located at a
distance of11.25 mm in each coordinate direction from the center ofD. The initial orientation isa = (5, 2, 3),
projected on the sphere (i.e., normalized to length1). With these settings the optimization of the probe location for
one sampling point in the stochastic space typically takes about2 h on a standard desktop PC with an IntelR© Core 2
DuoTM 2.93 GHz processor and4 GB RAM. For the computations shown here we have used parallelized code on 48
processors. Thereby the collocation samples have been computed by different nodes running the original deterministic
code with the respective material parameter values. The collection of the individual results and the computation of the
hierarchical surpluses has been managed by a master process.

Remark
To guarantee that the size of our computational domain does not influence the result of the optimizer, we have per-
formed a comparison between forward simulations using Dirichlet or Neumann boundary conditions at∂D. Both
temperature profiles differ at most by0.45 K [Kelvin] in the interior of D, i.e., at locations which are more than
10 mm apart from∂D. Closer to the boundary, i.e., for locations which lie in a ring with radius10 mm around∂D,
the temperatures differ more. In particular, the largest deviation of 4.93 K appears at the outer boundary∂D. We
conclude that in the vicinity of the lesion the particular choice of boundary condition does not influence the result
significantly.

3.1 Sensitivity of the Temperature

To start with the sensitivity analysis we investigate the influence of the uncertain material parameters on temperature,
which is determined by the forward model (see Section 2.1). Here we do not take the ASGC discretization into account
but perform a simple uniform sampling of the six-dimensional stochastic space for stochasticσ andλ by 36 = 729
grid points, such that all36 combinations ofσ andλ at the interval boundaries and at the middle of the intervalsare
considered. We then determine the values ofσ andλ for which theL∞-norm (maximum values) of the temperatures
differs most.

Volume 2, Number 3, 2012



312 Altrogge et al.

We find that we get the largest difference between the temperatures for the parameters(σn,σt,σv, λn, λt, λv) =
(0.17, 0.64, 0.67, 0.64, 0.51, 0.54) and (σn,σt,σv, λn, λt, λv) = (0.60, 0.64, 0.86, 0.47, 0.77, 0.51). In Fig. 5 we
show the50◦C isosurface of those temperature realizations (left and middle) as well as the30 K [Kelvin] isosur-
face of the difference of these temperature profiles (right).

The results match our intuition, since for a large value of the thermal conductivityλt within the tumor region
(Fig. 5, middle) the high temperature around the probe diffuses faster away than for a small value ofλt. From the
results we see a significant difference in the shape of the50◦C temperature profiles, in particular close by the vessels
(see left and middle image of Fig. 5). Moreover, we see that the largest temperature difference appears around the end
of the probe’s electrode which lies close by the vascular system (see right image of Fig. 5). Further, we notice that
obviously there exist material parameter settings for which a complete ablation of the tumor is not achieved (Fig. 5,
middle). This further motivates the consideration of the material parameter uncertainty for the planning of RF ablation.

3.2 Sensitivity of the Optimal Probe Location

In the following three subsections we will focus on the actual sensitivity analysis of the optimal probe location and
optimal probe orientation. If we consider the full complexity of the underlying material parameter uncertainty, we have
to analyze and visualize a six-dimensional stochastic space (three dimensions each forσ andλ), which is mapped to
the five-dimensional spaceU of admissible probe placements. Thus the visualization andanalysis of PDFs of the
probe placement is not straightforward, as they are mappingsR

5 ⊃ U → R.
Moreover, we need to be aware that in the optimization we are dealing with a very complex nonconvex energy

landscape, which is characterized by local optima and possibly nonexisting and nonunique global optima (see also the
discussion in Section 2.3). In our numerical experiments, we found that the optimization of the probe’s position only
(keeping its orientation fixed), and the optimization of theprobe’s orientation only (keeping its position fixed) have
fewer local optima than the optimization of both quantitiesat the same time. Thus, in the following we first analyze
the sensitivity of the optimal probe position and orientation separately (i.e., independent of each other) (see Figs. 6
and 7) and in a further step then consider the sensitivity of the combined optimization of both quantities (see Figs. 8
and 9).

So let us first keep the probe’s orientation fixed at the starting value and just optimize for the location. From
the hierarchical representation (24) we compute the first moment and the covariance matrix using (25) and (20). As
described in Section 2.3.3 we compute its eigenvalues and eigenvectors yielding an ellipsoidal representation. In the

FIG. 5: Left and middle: We show the50◦C isosurface of two different temperatures obtained for different realiza-
tions ofσ andλ. Right: Visualization of the30 K isosurface of the difference of the two temperatures, whose50◦C
isosurfaces are presented on the left. In all images the vascular systemDv is displayed in beige-brown and the tumor
lesionDt is displayed in a transparent gray color. Moreover, all isosurfaces of temperatures are displayed in trans-
parent yellow. Hence, the superposition of the gray tumor and the yellow isosurface of the temperature appears in a
greenish color.
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FIG. 6: Visualization of the sensitivity of the optimal probe position through an ellipsoidal representation of the
covariance matrix. The sensitivity with respect to variations in the electric conductivityσ (left, blue ellipsoid) and
thermal conductivityλ (left, pink ellipsoid) are shown. In addition, we show the RFprobe drawn at the mean of the
corresponding placement’s distribution for stochasticσ andλ, respectively (middle). Moreover, the sensitivity with
respect to a larger variation ofσ (i.e.,σ ∈ [0.1, 3.0]3 [S/m]) is visualized (right). As before, the vascular systemDv

is displayed in beige-brown and the tumor lesionDt is displayed in a transparent gray color.

FIG. 7: Visualization of the sensitivity (i.e., the PDF) of the optimal probe orientation through a color coding of
the sphere. As shown by the color ramp on the right, green colors indicate unlikely orientations, whereas red colors
show likely orientations. On the left we see the sensitivitywith respect to variations inσ within the rather small
ranges presented at the beginning of Section 3. In the left middle image we additionally draw the RF probe at the
mean of the placement’s distribution. On the right images wesee the sensitivity with respect to larger variations ofσ

(i.e.,σ ∈ [0.1, 3.0]3 [S/m]) for level 10 (middle, right) and for the previous refinementlevel 9 (right) again with the
RF probe drawn at the mean of the placement’s distribution. As in the previous figures, the vesselsDv are displayed
in beige-brown and the tumorDt is displayed in transparent gray.

visualization shown here we draw the ellipsoid centered at the expected probe location; the principal axes are aligned
with the eigenvectors; and the radii are scaled with the square root of the eigenvalues.

In Fig. 6 we embed the ellipsoid in the surrounding anatomy ofthe CT data set of a real RF ablation case. We
visualize the sensitivity of the probe position (with fixed orientation) with respect to variations inσ (left, blue ellipsoid)
andλ (left, pink ellipsoid). The RF probe is drawn at the expectation of the corresponding placement’s distribution
for stochasticσ andλ, respectively (middle).

We see that our model (i.e., our optimal probe position) shows no significant sensitivity with respect to variations
in σ orλ, since the corresponding ellipsoids are very small (see Fig. 6, left). Moreover the expectation of the placement
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FIG. 8: Visualization of the sensitivity of the optimal probe position (left, representation of the covariance matrix
via blue ellipsoid) and orientation (middle right, coloring of the sphere) with respect to variations ofσ in the ranges
described at the beginning of Section 3 and obtained for the combined optimization of the probe’s position and
orientation up to level9. In the left middle image we see the corresponding sensitivity results for the optimal probe
position and for the last three refinement levels (level7, 8, and9) of the stochastic grid. In the right image we see
the sensitivity result for the optimal probe orientation and for the previous refinement level (level8). Again as in the
previous images, the segmented vascular systemDv (if shown) is displayed in beige-brown and the segmented lesion
Dt is displayed in transparent gray.

FIG. 9: Visualization of the sensitivity of the optimal probe position (right) for the combined optimization of position
and orientation and with respect to variations inσ andλ at stochastic refinement level6. On the left we show the
corresponding result for the combined optimization with only variations inσ, again at refinement level6.

for stochasticσ differs from the expectation for stochasticλ by only 0.2 mm (see Fig. 6, middle). Also, for simulta-
neous variations inσ andλ we did not obtain a significant sensitivity in our numerical experiments. Consequently the
results are not shown here.

In a second step of this numerical experiment we assume that the ranges for our material parameters are further
accompanied by measurement errors and carry additional uncertainty because they are taken from animals or cadaveric
tissue. Thus, we considerσ = (σn,σt,σv) ∈ [0.1, 3.0]3 [S/m]. From these calculations we see a slightly larger
sensitivity of the optimal probe position (see Fig. 6, right).

In summary, our results show that the sensitivity of the optimal probe position with respect to uncertainties in the
electric and/or thermal conductivity is small when analyzing an optimization of only the probe position with fixed
orientation. However, the sensitivity of the optimal probeposition with respect to tissue parameters increases for a
combined optimization of position and orientation (see Section 3.4). Moreover, we have to keep in mind that results
may change for different patient data, the analysis of whichis an important future task.
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3.3 Sensitivity of the Optimal Probe Orientation

In the second numerical experiment, we consider the sensitivity of the optimal probe orientation̄a, keeping the probe’s
position fixed. As we are again expecting the greater sensitivity with respect to the electric conductivity here, we
investigate variations inσ only. We are now dealing with a stochastic process, which hasvalues on the two-dimensional
sphereS2 (as we identify orientations with unit vectors). On the sphere we can easily visualize a PDF, e.g., by a color
coding as shown in Fig. 7. In this figure we see the resulting PDF of the optimal probe orientation̄a for σ varying
within the ranges presented at the beginning of Section 3 (Fig. 7, left and middle left) as well as for the extended range
σ ∈ [0.1, 3.0]3 [S/m] (Fig.7, middle right[level10] and right[previous level9 for comparison]).

In the computation with the extended range ofσ we found that until a refinement level ofi = 10 the hierarchical
surpluses had not fallen below the prescribed threshold ofεa = 5◦. According to [13] the hierarchical surpluses would
decrease to zero, i.e., the refinement would stop, if the process were smooth. So, our observation could be an indication
of a discontinuous or possibly oscillatory response surface or an even more delicate interplay between the various
parameters of our algorithms and the stopping criteria involved. In fact, more detailed and thorough mathematical
and numerical analysis would be needed, which is not furtherdiscussed here. However, from the viewpoint of the
practical problem of providing important information to the attending radiologist, we note that the accuracy achieved
is sufficient. We refer to the next section in which we will discuss this aspect in more detail. The results shown here
used about 480 h of wall time for the parallel code.

The results shown in Fig. 7 confirm our observation from the analysis of the optimal probe location: We have a
weak dependence onσ for variations within the rather small ranges presented at the beginning of Section 3 and a more
significant dependence onσ for large variations of this three-dimensional tissue parameter.

Again, we analyzed the sensitivity of the optimal probe orientation with fixed position with respect to variations
in the thermal conductivityλ within the rather small ranges presented at the beginning ofSection 3. As before, the
results do not differ much from the corresponding results for a stochastic electric conductivityσ (i.e., they reveal no
significant sensitivity), thus we do not show them here.

3.4 Sensitivity of Joint Optimization of Position and Orientation

Our final experiments consider the sensitivity analysis of the simultaneous optimization of the probe’s position and
orientation with respect to variations in the electric conductivity σ only (see Fig. 8 and Fig. 9, left) and with respect
to variations in both the electric and thermal conductivityσ andλ (see Fig. 9, right).

For the first experiment (onlyσ uncertain), the electric conductivity varies within the ranges presented at the
beginning of Section 3. The results are reported in Fig. 8, where we see a much larger sensitivity of the optimal probe
position than for the separate optimization of only the probe’s position from Fig. 6.

Again we found that up to refinement leveli = 9 (and up to a wall time of about 520 h for the parallel code)
the hierarchical surpluses did not decrease below the prescribed thresholdsεp = 1 mm andεa = 5◦. In the figure
we visualize the corresponding ellipsoid for the last threerefinement levels7, 8, and9 (Fig. 8, middle left). On the
right images of Fig. 8 we show the sensitivity of the optimal probe orientation, which we obtained for this combined
optimization for refinement levels9 (middle right) and8 (right).

As described in Section 2.3.3 we can analyze the covariance matrix by evaluating its eigenvaluesβj , j = 1, 2, 3,
which are reported in Table 1 for the case considered here. Wealso see from the eigenvalues that the refinement has
not stopped and thus the eigenvalues have not converged withincreasing refinement leveli. As stated in the previous
subsection a more detailed mathematical and numerical analysis would be needed to understand the results we see
here.

However, the pictures shown in Figs. 7 and 8 show almost no visual difference between the last refinement lev-
els. In fact, if we would use these pictures to communicate the result of the analysis to the attending radiologist,
he/she would not be able to see a significant difference, respectively, make different decisions, based on either image.
Furthermore, taking into account that our computations arebased on units of millimeters, the eigenvalues shown in
Table 1 have sufficient accuracy: A radiologist will not be able to place a probe, which has a diameter of 1 mm, with
an accuracy of fractions of millimeters.

Volume 2, Number 3, 2012



316 Altrogge et al.

TABLE 1: Eigenvaluesβj , j = 1, 2, 3 of the covariance ma-
trix and number of used collocation points for the sensitivity
analysis of the combined optimization of the probe’s position
and orientation with respect to uncertain electric conductivity σ
(see also Fig. 8) for the stated refinement levels.

Refinement Number of
Level i colloc. pts.

β1 β2 β3

4 162 3.25665 1.55417 1.33213

5 392 5.39707 2.6754 1.45017

6 942 4.89901 2.85342 1.6954

7 2156 5.90408 3.74795 2.13096

8 4412 5.91824 3.30217 2.23831

9 8470 5.5201 2.84418 2.53418

Finally, we evaluate the sensitivity of the combined optimization of position and orientation for uncertainty in
bothσ andλ. This is the most complex configuration treated with the approach discussed in this work: We are now
analyzing the sensitivity of the mapping fromR6 3 (σ, λ) to R

5 3 ū = (p̄, ā). The collocation in the six-dimensional
stochastic space is of enormous numerical complexity. The results shown here used about 720 h of wall time.

In Fig. 9 (right) we show the sensitivity of the optimal probeposition for this combined optimization and forσ and
λ varying within the ranges presented at the beginning of Section 3. Also for this last experiment, we found that up to
refinement leveli = 6 the hierarchical surpluses did not decrease below the prescribed thresholds forεp andεa. On
the left of Fig. 9 we display the resulting ellispoid for the previous experiment (combined optimization with onlyσ
uncertain) at refinement level6 to allow for a comparison with the result on the right of Fig. 9(combined optimization
with bothσ andλ uncertain) which is obtained for the same refinement level.

We finally conclude that for the combined optimization of theprobe’s position and orientation and/or for large
variations in the electric and/or thermal conductivity theuncertainty of the tissue properties can have a significant
influence on the optimal probe placement for RF ablation. However, this sensitivity seems dominantly to be influenced
by the electric conductivityσ rather than by the thermal conductivityλ.

4. DISCUSSION AND CONCLUSIONS

We have discussed a model for the optimization of the placement of a monopolar probe in radiofrequency ablation
that depends on the electric and thermal conductivity of native liver tissue, tumor tissue, and vessels. The deterministic
forward model for the simulation of the temperature distribution of the RF ablation, which is used within our opti-
mization, has been extended to a stochastic PDE model with stochastically distributed material parameters, taking into
account the uncertainty associated with electric and thermal conductivities of the tissue. Together with an adaptive
sparse grid collocation method, we have evaluated the sensitivity of the optimization results with respect to variations
in the material parameters.

We have presented numerical results which are based on a segmented lesion and vascular structures from a real
CT scan. Because vector-valued data are optimized (probe location and/or probe orientation) a visualization of the
resulting distributions is not straightforward. For the visualization of the distribution of the optimal probe location we
presented different approaches. Since a three-dimensional volume rendering of the histograms is difficult to interpret,
we use an ellipsoidal representation, which easily revealsthe mean and the covariance of the distribution. A visualiza-
tion of the distribution of the optimal probe orientation ismuch simpler. Here we showed a color coding of the sphere
according to the corresponding PDF.

Our numerical experiments show a significant sensitivity ofthe temperature profiles resulting from the forward
problem with respect to variations in the tissue properties. For the optimization, however, the separate consideration
of only the probe position or only the probe orientation doesnot show any significant sensitivity for realistic variations
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in the electric conductivityσ and/or the thermal conductivityλ which are given in the literature for cadaveric animal
tissue. If we enlarge the variations in order to account for measurement errors and differences between animal and
human tissue we see a slightly more significant sensitivity especially for the optimization of only the probe orientation.
If we analyze the combined optimization of the probe’s position and orientation, we obtain significant sensitivities,
also for the smaller variations ofσ.

The optimization of the placement of one monopolar probe presented in this work easily generalizes to an opti-
mization of the placement of a cluster of probes. Also, the study of treatment by bipolar probes, multipolar probes,
or umbrella-type probes is possible with the framework presented herein. Our investigations in these fields are still in
progress. In addition, the approach presented in this papercan be used for many other models in medical simulation
including cryosurgery or irreversible electroporation aswell.

With our investigations we have performed a step toward patient-specific modeling in the field of medical simula-
tion—here applied to the optimization of RF ablation. We do not tackle the problem of patient-specific parameters by
trying to obtain more accurate material parameters. Instead we consider uncertainty to be an intrinsic attribute of the
modeling process. The numerical experiments considered here demonstrate that our approach allows one to quantify
the robustness of predictions and optimal probe placementswith respect to the uncertainty involved in the model
parameters. In this sense our investigations can sensitizethe practitioner to problematic cases in which further steps
need to be taken to be confident of therapy success. However, the sensitivity analyses are obtained at an extremely high
computational cost resulting from the highly complex optimization problem and the enormous number of collocation
points that needed to be taken into account.

The acceleration of the sensitivity analysis is an important aspect of our future investigations. This will involve
further model reductions and possible simplifications which allow one to more easily traverse the response surface
and thus analyze its shape.

In some numerical experiments discussed in this paper, we have not been able to fulfill the stopping criteria of
the adaptive refinement in the stochastic space. We will further analyze this effect and expect to gain more insight
and understanding of the complex interplay between algorithm and parameters of this extremely complex real world
stochastic PDE constrained optimization problem. In the course of these investigations we will study further the sen-
sitivity of the combined optimization of probe position andorientation with respect to uncertainty in several different
tissue properties (e.g., electric and thermal conductivity) at the same time.

Further future research directions deal with the optimization of the RF ablation under a refined and time-dependent
model for the simulation. Thus, we can take into account the nonlinear dependence of the material parameters on the
state of the system as well. Also, the consideration of the perfusion coefficients as sources of uncertainty will be a
further direction of research. Figure 10 shows an outlook inthis direction. Here, we see the50◦C isosurface of the
resulting temperatures of our forward simulation calculated for different values of the relative perfusion rateνvessel

FIG. 10: 50◦C isosurface of the temperatures calculated with our forwardsimulation forνvessel= 0.006067 s−1 (left)
andνvessel= 0.5 s−1 (right). In both calculations the values ofσ andλ have been set to the mean values of the intervals
presented at the beginning of Section 3.
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(see Section 2.1), i.e., forνvessel = 0.006067 s−1 (capillary perfusion) and forνvessel = 0.5 s−1 (strong perfusion
for which the temperature within the vascular system approximately remains body temperature). All other tissue
parameters (i.e., the conductivity values) have been set tothe mean values of the intervals presented at the beginning
of Section 3. We see that we get a significant difference in theshape of the corresponding temperature profiles, which
motivates a deeper analysis of uncertain perfusion coefficients.
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