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Abstract—In this paper, we present a novel isosurface visualization technique that guarantees the accurate visualization of

isosurfaces with complex attribute data defined on (un)structured (curvi)linear hexahedral grids. Isosurfaces of high-order hexahedral-

based finite element solutions on both uniform grids (including MRI and CT scans) and more complex geometry representing a domain

of interest that can be rendered using our algorithm. Additionally, our technique can be used to directly visualize solutions and

attributes in isogeometric analysis, an area based on trivariate high-order NURBS (Non-Uniform Rational B-splines) geometry and

attribute representations for the analysis. Furthermore, our technique can be used to visualize isosurfaces of algebraic functions. Our

approach combines subdivision and numerical root finding to form a robust and efficient isosurface visualization algorithm that does not

miss surface features, while finding all intersections between a view frustum and desired isosurfaces. This allows the use of view-

independent transparency in the rendering process. We demonstrate our technique through a straightforward CPU implementation on

both complex-structured and complex-unstructured geometries with high-order simulation solutions, isosurfaces of medical data sets,

and isosurfaces of algebraic functions.

Index Terms—Isosurface visualization of hex-based high-order geometry and attribute representations, numerical analysis, roots of

nonlinear equations, spline and piecewise polynomial interpolation.

Ç

1 INTRODUCTION

THE demand for isosurface visualization techniques
arises in many fields within science and engineering.

For example, it may be necessary to visualize isosurfaces of
data from CT or MRI scans on structured grids or
numerical simulation solutions generated over approxi-
mated geometric representations, such as deformed curvi-
linear high-order (un)structured grids representing an
object of interest. In this context, high-order means that
polynomials with degree > 1 are used as the basis to
represent either the geometry or the solution of a Partial
Differential Equation (PDE). High-order data are the set of
coefficients for these solutions.

Given one of these representations, a visualization
technique such as the Marching Cube (MC) technique
[28], direct isosurface visualization [37], or surface recon-
struction applied to a sampling of the isosurface is
frequently used to extract the isosurface. However, given
high-order data representations, we seek visualization
algorithms that act natively on different representations of
the data with quantifiable error.

In this paper, we present a novel and robust ray frustum-
based direct isosurface visualization algorithm. The method
is exact to pixel accuracy, a guarantee which is formally

shown, and it can be applied to complex attribute data

embedded in complex geometry. In particular, the method

can be applied to the following representations:

1. Structured hexahedral (hex) geometry grids with
discrete data (e.g., CT or MRI scans). The proposed
method filters the discrete data with an interpolating
or approximating high-order B-spline filter [29] to
create a high-order representation of the function
that was sampled by the grid.

2. Structured hex-based representations with high-
order attribute data, where the geometry can be
represented using trilinear or higher order basis.

3. Structured and unstructured hex meshes, each of
which element’s shape may be deformed by a
mapping (curvilinear shape elements) and with
simulation data (higher polynomial order).

4. Algebraic functions. The representation is exact.

We demonstrate that our method is up to three times

faster and requires fewer subdivisions and, therefore, less

memory than related techniques on related problems.
An added motivation to this work is the fact that

trivariate NURBS [7] have been proposed for use in

Isogeometric Analysis (IA) [18] to represent both geometry

and simulation solutions [18], [8], [46]. Simulation para-

meters are specified through attribute data, and the analysis

result is represented in a trivariate NURBS representation

linked to the shape representation. This is the first algorithm

that can produce accurate visualizations of isogeometric

analysis results.
With degree >1 in each parametric direction and varying

Jacobians (i.e., nonlinear mappings), trivariate NURBS that
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represent an object of interest (see Fig. 1) have no closed-
form inverse. Existing visualization methods designed to
work efficiently on regular spatial grids have not been
extended to work robustly and efficiently and preserve
smoothness on these complex and high-order geometries.
Furthermore, standard approaches for direct visualization
are ray based and assume single entry and exit points of a
ray within an element. That hypothesis is no longer true for
curvilinear elements. Hence, those approaches are difficult
to extend to arbitrary complex geometry with curvilinear
elements. Note that finding the complete collection of entry
and exit points into curvilinear elements is a nontrivial task.

In practice, representations of more complex geometry on
which numerical simulation techniques are applied often
contain geometric degeneracies resulting from either mesh
generation or the data-fitting process. For instance, poorly
shaped elements can lead to a Jacobian with a determinant
close to zero, which presents challenges during simulations.
In addition, and more importantly for this paper, it presents
a challenge in visualizing isosurfaces of the high-order
simulation solution. Thus, there is a need for isosurface
visualization techniques that deal robustly with both
degenerate and near-degenerate geometry.

After discussing relevant work and the mathematical
framework in Section 2, we define our mathematical
formulation by stating the visualization problem in Section
3, which is solved in Section 4. Implementation details are
given in Section 5, and Sections 6 and 7 analyze the results
of our technique, followed by a conclusion.

2 BACKGROUND

Visualization techniques are used in numerous engineering
fields—including medical imaging, geosciences, and me-
chanical engineering—to generate a 2D view of a 3D scalar
or vector data set. Additionally, they can visualize simula-
tion results (e.g., generated with the finite element method).
Consequently, the development of such visualization
algorithms has received much attention in the research
community. Techniques usually fall into three groups:
1) direct volume rendering, 2) isosurface mesh extraction

followed by isosurface mesh rendering, and 3) direct
rendering of isosurfaces.

Techniques in category 1 typically involve significant
computation, especially when dealing with arbitrary geo-
metric topologies represented by high-order basis functions
such as NURBS. In ray-based direct volume rendering
methods (see [26], [31]), it is necessary to integrate each ray
through the volume using sufficiently many integration
steps. Each integration step requires an expensive root
solving due to the nonlinear mapping. Hua et al. [17]
presented an algorithm to directly render attribute fields of
tetrahedral-based trivariate simplex splines by integrating
densities along the path of each ray corresponding to a
pixel. In the case of uniform grid data sets, accumulating
slices aligned along the viewing direction (see [45]) is
efficient and commonly used in practice, even though ray-
based techniques offer a range of optimizations (e.g., empty
space skipping).

Methods in category 2 assume a regular grid of data and
extract isosurfaces using MC [28], resulting in a piecewise
planar approximation of the isosurface. After isosurface
mesh extraction, the faces of the isosurface mesh
are rendered. Marching Tetrahedra (MT) [6] is applied to
both structured and unstructured tetrahedra-based grids.
In both MC and MT, the corners of a hexahedral or
tetrahedral element, respectively, are used to determine if
the isosurface passes through the respective element. Then,
the intersections between the element’s edges and the
isosurface are determined to create piecewise linear facets
approximating the isosurface. Although these approaches
are efficient and, therefore, widely used in practice, they
approximate the isosurface by piecewise linear facets
within an element with some ambiguity and, therefore,
do not guarantee topological correctness. As an example,
Fig. 2 shows the domain from Fig. 1c, represented with a
single triquintic NURBS element, discretized with 300;000
tetrahedra. As seen in Fig. 2a, the respective isosurface
extracted with MT has ambiguities in the topology,
resulting from data that are known only at the corners of
the elements and, hence, can miss isosurface features.
Furthermore, the time to construct the respective mesh
representation can be computationally laborious. Schreiner
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Fig. 1. Our method applied to four representative isosurface visualizations. (a) Vibration modes of a solid structure. (b) Solution to the Poisson
equation. (c) Teardrop under nonlinear deformation. (d) Two isosurfaces of the visible human data set.



and Scheidegger [40] propose an advancing-front method
for constructing manifold isosurfaces with well-shaped
triangles (Fig. 3), although it has some difficulties when the
front meets itself (the stitching problem). Meyer et al. [32]
propose a particle system on high-order finite element
mesh (arbitrary geometric topology), which applies surface
reconstruction on the particles to construct the isosurface
mesh; however, the visualization produced is not a water-
tight surface. When the data are known only at the corners
of a hexahedral mesh, our method constructs an approx-
imation by filtering the data with a high-order approx-
imating or interpolating trivariate B-spline filter (see [29]).
The filter can be trilinear (only Cð0Þ), tricubic (Cð2Þ), or
higher degree, as required by the user. Then, an isosurface
of the high-order approximation is directly rendered with
pixel accuracy.

In category 3, the isosurface is rendered directly, i.e., for
every pixel on the image plane, its corresponding point on
the isosurface is determined (Fig. 3, left). Once the point on
the isosurface for a given pixel is known, the pixel can be
shaded using the gradient as the normal for the given point.
Another motivation to visualize specific isosurfaces is to
color-code information, such as material density, to get a
better understanding through which materials the isosur-
face passes. Knoll et al. [24] use a trilinear reconstruction
filter on a structured grid and a ray-based octree approach
to render isosurfaces and achieve interactive frame rates.
Nelson and Kirby [34] propose a ray-based isosurface-
rendering algorithm for high-order finite elements using

classic root-finding methods, but it did not consider
element curvature (i.e., the multiple entry and exit
problem). Kloetzli et al. [22] construct a set of structured
Bézier tetrahedra from a uniform grid to approximate any
reconstruction filter with arbitrary footprint. Given this
reconstruction, generated from gridded input data (e.g.,
medical or simulation data), they directly visualize iso-
surfaces using the ray/isosurface intersection method
presented by Loop and Blinn [27].

The method proposed in this paper is most closely
related to class 3 approaches, i.e., our proposed method
directly visualizes an isosurface from a trivariate NURBS of
arbitrary geometric complexity as shown in Fig. 1. How-
ever, instead of following only a ray-based scheme, our
approach computes the intersection between a ray frustum
and the isosurface. Furthermore, it is often desired to
visualize the geometry represented by the NURBS. While
approaches similar to the work in [1] can be used to render
the object-surface geometry, our approach can be used to
simultaneously visualize both the geometry represented by
the NURBS and the visualization of isosurfaces of the
attribute representation (see Fig. 1b) in a robust way.
Intersecting a ray frustum with an object in the scene is
related to the approaches that propose cone tracing given in
the work [2] and beam tracing (see [16]) for more efficient
antialiasing, soft shadows, and reflections. However, both
of those techniques deal only with polygonal objects. For
isosurfaces of algebraic functions, the thesis [10] presents
interval approaches to create intersection tests in the ray
tracing of implicit surfaces. In particular, it shows a ray
sampling-based method to exploit the coherence of rays to
accelerate the process of ray tracing implicit surfaces, which
can also be used for antialiasing isosurface silhouettes.

2.1 Trivariate NURBS

A trivariate tensor product NURBS mapping is a parametric
map V : ½a1; a2� � ½b1; b2� � ½c1; c2� ! � � IR3 of degree d ¼
ðd1; d2; d3Þ with knot vectors � ¼ ð�1; �2; �3Þ, defined as

VðuÞ :¼
Pn

i¼1 wi ci Bi;d;� ðuÞPn
i¼1 wi Bi;d;� ðuÞ

ð1Þ

¼ xðuÞ
wðuÞ ;

yðuÞ
wðuÞ ;

zðuÞ
wðuÞ

� �
; ð2Þ
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Fig. 2. Discretization of domain from Fig. 1c with 300,000 tetrahedra and application of Marching Tetrahedra (using ParaView). (a) Isosurface.
(b) Scalar field on tetrahedra. (c) Our approach on a single triquintic NURBS patch.

Fig. 3. Isosurface from silicium data set (volvis.org), isovalue of 130
using Marching Cubes (using ParaView), Afront (� ¼ 0:3), and direct
visualization with our proposed method.



where ci 2 IR3 are the control points with associated
weights wi of the n1 � n2 � n3 control grid, i ¼ ði1; i2; i3Þ is
a multi-index, and u ¼ ðu1; u2; u3Þ is a trivariate parameter
value. Every coefficient ci has an associated trivariate B-
spline basis function Bi;d;� ðuÞ ¼

Q3
j¼1 Bij;dj;�jðujÞ.

Bij;dj;�jðujÞ are linearly independent piecewise polyno-
mials of degree dj with knot vector �j ¼ ftjkg

njþdj
k¼1 . They have

local support and are Cðdi�1Þ. Furthermore,
Pn

i¼1 Bi;d;� ðuÞ ¼
1 (see [7]). Fig. 4 illustrates these definitions for the 1D case.

ci 2 IR3, VðuÞ describes the physical geometry and is
referred to as the geometric mapping. Suppose an attribute
AðuÞ is related to VðuÞ where the attribute function A :
½a1; a2� � ½b1; b2� � ½c1; c2� ! IRðkÞ can be formulated as

AðuÞ :¼
Pn

i¼1 wi ai Bi;d;� ðuÞPn
i¼1 wi Bi;d;� ðuÞ

ð3Þ

¼ aðuÞ
wðuÞ ; ð4Þ

where Bi;d;� ðuÞ is defined as above.
Let ViðuÞ and AiðuÞ refer to the geometry and attribute

mapping of the ith knot span, i ¼ ði1; i2; i3Þ, called a
“patch,” i.e., its parametric domain is ½t1i1 ; t

1
i1þ1Þ �

½t2i2 ; t
2
i2þ1Þ � ½t3i3 ; t

3
i3þ1Þ, where

ViðuÞ :¼ xiðuÞ
wiðuÞ

;
yiðuÞ
wiðuÞ

;
ziðuÞ
wiðuÞ

� �
;AiðuÞ :¼ aiðuÞ

wiðuÞ
: ð5Þ

For the purpose of clarity, we consider only scalar
attributes, although this approach works equally well
for vector attributes. ViðuÞ and AiðuÞ are each a single
trivariate tensor product polynomial (or rational), and GG :
¼ fðViðuÞ;AiðuÞÞgn�d

i is the set of geometry and attribute
patches, respectively. Note that each geometry patch
ViðuÞ has a corresponding attribute patch AiðuÞ. Further-
more, in case � cannot be represented using a single
mapping VðuÞ, then � is represented as a collection of the
mappings VðuÞ and AðuÞ.

Fig. 5 illustrates these definitions with a single NURBS
surface representing � 2 IR2.

2.2 Classical Problem Statement

Let � 2 IR3 be the domain of interest and gðx; y; zÞ where g :
�! IR is an attribute function. In isosurface visualization,

the user specifies an isovalue â at which to inspect the implicit
isosurface of gðx; y; zÞ � â ¼ 0. By referring to Fig. 5 (showing
the 2D scenario), in ray-based visualization techniques, the
ray, passing through the center of a pixel, is represented as
rðtÞ ¼ oþ t d, where o is the origin of the ray (location of the
eye) in IR3, d the direction of the ray, and t 2 IR the ray
parameter. One wants to find the set of t-values that satisfy
fðtÞ ¼ 0, where fðtÞ ¼ gðrðtÞÞ � â.

When � represents a uniform scalar grid, efficient and
interactive methods exist to directly visualize isosurfaces,
including a GPU approach to visualize trivariate splines
with respect to tetrahedral partitions that transform each
patch to its Bernstein-Bézier form [20]. Earlier, a direct
rendering paradigm of trivariate B-spline functions for large
data sets with interactive rates was presented in the work in
[38], where the rendering is conducted from a fixed
viewpoint in two phases suitable for sculpting operations.
Entezari et al. [14] derive piecewise linear and piecewise
cubic box spline reconstruction filters for data sampled on
the body-centered cubic lattice. Given such a representa-
tion, they directly visualize isosurfaces. Similarly, Kim et al.
[21] introduce a box spline approach on the face-centered
cubic (FCC) lattice and propose a reconstruction algorithm
that can interpolate or approximate the underlying function
based on the FCC and directly visualize isosurfaces.

In the case where gðx; y; zÞ describes an algebraic function
in IR3, Blinn [4] uses a hybrid combination of univariate
Newton-Raphson iteration and regular falsi. More recently,
Reimers and Seland [39] developed an algorithm to
visualize algebraic surfaces of high degree, using a poly-
nomial form that yields interactive frame rates on the GPU.
Toledo et al. [9] present GPU approaches to visualize
algebraic surfaces on the GPU. Interval analysis [33] has
been adopted by Hart [15] and recently by Knoll et al. [23] to
visualize isosurfaces of algebraic functions as well.

In the following discussion, let VðuÞ represent a general
domain of interest � together with an attribute fieldAðuÞ. In
this case, � is not a cube which has undergone none or at most
an affine transformation. Therefore, gðx; y; zÞ :¼ AðV�1ðx;
y; zÞÞ.V�1ðx; y; zÞ is the inverse of a nonidentity and nonaffine
mapping, i.e., it cannot be represented in closed form and in
order to evaluate the corresponding fðtÞ, the inverse of
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Fig. 4. Cubic NURBS curve with nonuniform knot vector and open
end conditions.

Fig. 5. 2D analogy: ray passing through a bivariate NURBS surface with
color-coded attribute field AðuÞ intersecting isocontour at roots of fðtÞ,
where the red points refer to entry and exit points with the surface.



V�1ðx; y; zÞ has to be computed using a root-solving method.
Because of this, it is not clear how these methods can be
extended to work with the nonlinear, nonpolynomial map-
ping V�1ðx; y; zÞ. Computing all the roots along rðtÞ with
those methods would involve reapplication of the respective
visualization algorithm, making extensions of such ap-
proaches computationally intractable.

Before any root solving takes place, the set II � GG is
computed where the geometric subpatches ViðuÞ 2 II might
get intersected by rðtÞ and contain the respective isosurface.
Finding the roots of fðtÞ is equivalent to finding the roots of
fiðtÞ of the geometry patches ViðuÞ 2 II, where

fiðtÞ :¼ Ai

�
V�1

i ðrðtÞÞ
�
� â ¼ 0: ð6Þ

Solving (6) requires finding the range of values of t where
fiðtÞ is defined, i.e., t-values which correspond to the entry
and exit points of rðtÞ into V�1

i ðrðtÞÞ. Depending on the
geometric complexity of �, this range can consist of
multiple disjoint intervals where each interval is defined
by an entry and exit point of the ray with ViðuÞ.

One way to compute these intervals is to use the Bézier
clipping method proposed in the work [35] on the six sides
of the elements in II, implying that the elements in II have to
be turned into Bézier patches using knot insertion (see [7]).
While Bézier clipping is an elegant way to visualize Bézier
surfaces, it has problems at silhouette pixels. A discussion of
its problems and proposed solutions can be found in [11].
Once these pairs of entry and exit points are computed, a
numerical root-solving technique, such as the Newton-
Raphson method or bisection method, is applied to fiðtÞ for
each pair. The limitations of these classic methods are well
known. That is, Newton’s method requires an initial starting
value close to the root and depends on f 0iðtÞ, so it fails at
degeneracies and where the derivative is close to zero.
Krawczyk [25] presents a Newton-Raphson algorithm that
uses interval arithmetic for the initial guess. Toth [44]
applies this method to render parametric surfaces. How-
ever, since Newton’s method needs the derivative of fiðtÞ, it
can fail at the edges of ViðuÞ as discussed in [1], leading to
the well-known black pixel artifacts at the patch boundaries,
as shown in Fig. 6. The bisection method is more robust but
converges only linearly. The main problem with the
bisection method is that the signs of fiðtÞ at the entry and
exit points must be different, a requirement which often

cannot be fulfilled. In summary, an approach which
attempts to solve (6) can fail when finding the entry and
exit points, finding the inverse V�1

i ðx; y; zÞ, or finding the
roots of fiðtÞ fails. Furthermore, there is no guarantee of
determining all intersections between the isosurface and the
area corresponding to the pixel, i.e., it may only determine
the intersections at the ray itself.

Another standard approach to intersect a ray rðtÞwith an
isosurface, as defined in the work by [42], is to solve the
system of four equations and four unknowns:

rxðtÞ
ryðtÞ
rzðtÞ
AðuÞ

0
BB@

1
CCA ¼

xðuÞ
yðuÞ
zðuÞ
â

0
BB@

1
CCA;

where rxðtÞ, ryðtÞ, and rzðtÞ are the x-, y-, and z-coordinates
of rðtÞ, respectively. Such a nonlinear system can be solved
using the general geometric constraint-solving approach
proposed by Elber and Kim [13] that uses subdivision and
higher dimensional Axis-Aligned Bounding Box (AABB)
tests to find a solution where rðtÞ and VðuÞ are piecewise
polynomial or piecewise rational. Elber and Kim applied
their approach to bisectors, ray traps, sweep envelopes, and
regions accessible during 5-axis machining, but not to
rendering isosurfaces. However, as we propose here, pixel-
exact isosurface visualization requires further augmentation
of the algorithm.

In the following approach, we develop a formulation for
a guaranteed determination of all intersections between a
ray frustum and an isosurface. The proposed method
computes the set of roots simultaneously, avoiding any
computation of intervals on which fiðtÞ is defined.

3 MATHEMATICAL FORMULATION

In this section, we develop the mathematical formulation
that is used to intersect a ray frustum (Fig. 7) with the
implicit isosurface AðuÞ � ~a ¼ 0 embedded within V̂ðuÞ,
which can represent arbitrary geometry. ~a is the scalar value
for which the isosurface will be visualized.

In the following, we assume the coefficients ci and the
corresponding weights wi, as defined in Section 2.1, are in
eye space, i.e., the camera frustum sits at the origin,
pointing down the negative z-axis. Let P be the 4� 4
projection matrix defining the camera frustum, where
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Fig. 6. On the left, piecewise trivariate cubic Bézier patches results
in black pixel artifacts, due to degenerate derivative at the Bézier
patch edges.

Fig. 7. Ray frustum/isosurface intersection for pixel ðs; tÞ shaded in
magenta with adjacent pixels shaded in gray.



P ¼

near 0 0 0
0 near 0 0
0 0 � farþnear

far�near �
2 far�near
far�near

0 0 �1 0

0
BB@

1
CCA: ð7Þ

In this case, P defines a frustum with a near plane of near

units away from the eye with a size of ½�1; 1� � ½�1; 1�, and a

far plane of far units away from the eye, where near < far.

Furthermore, P projects along the z-axis.
P transforms the frustum and all geometry from eye

space into perspective space, i.e., the frustum is trans-

formed into the unit cube ½�1; 1�3 and every ray frustum in

eye space is transformed into a ray box in perspective space.

Coefficients ci and weights wi are transformed into

perspective space by

ðŵix̂i; ŵiŷi; ŵiẑi; ŵiÞT ¼ P � ðwixi; wiyi; wizi; wiÞT ; ð8Þ

where ĉi ¼ ðx̂i; ŷi; ẑiÞ and

x̂i

ŷi

ẑi

ŵi

0
BB@

1
CCA ¼

ðnear�xiÞ=zi

�ðnear�yiÞ=zi
ð2�far�nearþðfarþnearÞ ziÞ

ðfar�nearÞ�zi

�wi zi

0
BB@

1
CCA: ð9Þ

From that,

V̂ðuÞ :¼
Pn

i¼1 ŵi ĉi Bi;d;� ðuÞPn
i¼1 ŵi Bi;d;� ðuÞ

ð10Þ

¼ x̂ðuÞ
ŵðuÞ ;

ŷðuÞ
ŵðuÞ ;

ẑðuÞ
ŵðuÞ

� �
ð11Þ

is VðuÞ in perspective space. Furthermore, let x̂ ¼ ðx̂; ŷ; ẑÞ be

a point in perspective space. Although the transformed ray

frustum mapped from eye space to perspective space is a

rectangular parallelepiped, we still call it a ray frustum to

evoke its shape in eye space.
Given a ray frustum constructed from ray rðtÞ as shown

in Fig. 7, there are three types of intersections between a ray

frustum and the isosurface: 1) the isosurface intersects the

four planes of the ray frustum and the isosurface’s normals

point either toward or away from the eye over the whole

frustum and rðtÞ passes through the isosurface; 2) rðtÞ
passes through the isosurface but the ray frustum contains

an isosurface silhouette; 3) same as case 2 but rðtÞ does not

pass through the isosurface. Fig. 8 illustrates these three

intersection types.

In types 1 and 2, rðtÞ intersects the isosurface and can be

detected with ray-isosurface intersection. Type 3 requires a

different approach. Note that there are cases for which

sampling approaches such as pixel subdivision will fail.
First, we present how to detect type 1 and type 2 cases

and then discuss how to detect type 3. For an image with

resolution h� h pixels where h is the number of pixels per

row and column, we follow the development of Kajiya [19]

to detect types 1 and 2 as

x� bs ¼ 0 and y� bt ¼ 0 with bk ¼ 2ðk=hÞ � 1þ k=ð2hÞ;
ð12Þ

which are two orthogonal planes in perspective space

corresponding to pixel at ðs; tÞ whose intersection defines a

ray rðtÞ aligned with the unit cube.
Given pixel ðs; tÞ,

�̂ðuÞ
�̂ðuÞ
�̂ðuÞ

0
@

1
A :¼ 1

ŵðuÞ

x̂ðuÞ
ŷðuÞ
aðuÞ

0
@

1
A� bs

bt
~a

0
@

1
A ð13Þ

is rational B-splines. Note, aðuÞ is defined in (4).
The following constraints must be satisfied for a ray/

isosurface intersection:

j�̂ðuÞj
j�̂ðuÞj
j�̂ðuÞj

0
@

1
A <

"
"
"

0
@

1
A; ð14Þ

i.e., given a solution u, the corresponding V̂ðuÞ must lie

along the ray and on the isosurface within tolerance of

" ¼ 1=ð2 hÞ. This ensures that a solution lies within a pixel.

Multiplying (14) by ŵðuÞ,

j�ðuÞj
j�ðuÞj
j�ðuÞj

0
@

1
A < ŵðuÞ

"
"
"

0
@

1
A; ð15Þ

where �i ¼ x̂i � ŵi bs, �i ¼ ŷi � ŵi bt, �i ¼ ai � ŵi ~a, and

ð�ðuÞ; �ðuÞ; �ðuÞÞ :¼
Pn

i¼1 ð�i; �i; �iÞ Bi;d;� ðuÞ.
Equation (15) is not sufficient to detect every isosurface/

ray frustum intersection. If an isosurface silhouette lies

within the ray frustum but does not get intersected by rðtÞ
(type 3), then there is no u that satisfies (15), even though

some part of the isosurface (silhouette) lies within the ray

frustum. Let

�ðuÞ :¼ Jx̂ðuÞ � ruAðuÞ ¼ rx̂AðuÞ ð16Þ

be the gradient in normal direction of the isosurface at u in

perspective space, where Jx̂ðuÞ is the Jacobian at u in

perspective space; then

�̂ðuÞ :¼ �ðuÞẑ ð17Þ

	̂ðuÞ :¼
�� x̂ðuÞ

ŵðuÞ ;
ŷðuÞ
ŵðuÞ ; 0

�
� ð�ðuÞx; �ðuÞy; 0Þ

�
ẑ

ð18Þ

are rational B-splines, where �ðuÞẑ is the B-spline represent-

ing the ẑ-component of �ðuÞ.
With 
 defined as above, a point V̂ðuÞ on the isosurface

silhouette must satisfy
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Fig. 8. Three ray frustum/isosurface intersection types: 1) ray frustum
and corresponding pixel is fully covered; 2) isosurface silhouette
intersects ray frustum with ray intersecting isosurface; 3) Same as
Type 2 but ray does not intersect isosurface.



j�̂ðuÞj
j	̂ðuÞj
j�̂ðuÞj

0
@

1
A <

"
"
"

0
@

1
A; ð19Þ

i.e., it must lie on the isosurface (�̂ðuÞ < 
), the z-component
of the gradient is 0 (�̂ðuÞ < "), and the isosurface is
orthogonal to the ray rðtÞ from the center of the pixel
(	̂ðuÞ < "), i.e., the z-component of the cross product
between the point and the normal of the isosurface must
be zero. Similarly, by multiplying (19) by ŵðuÞ,

j�ðuÞj
j	ðuÞj
j�ðuÞj

0
@

1
A < wðuÞ

"
"
"

0
@

1
A; ð20Þ

where �ðuÞ and 	ðuÞ are defined in terms of the B-spline
basis Bi;d;� ðuÞ and where coefficients �i and 	i can be
computed using Bézier [12] or B-spline [5] multiplication.

Define

SI :¼ fu : ð�ðuÞ; �ðuÞ; �ðuÞÞ ¼ ð0; 0; 0Þg: ð21Þ

Then, SI is the set of u satisfying (15). SI is the set of
values where rðtÞ intersects the isosurface and is com-
puted such that the set of points VðSIÞ on the isosurface
lie inside the ray frustum corresponding to rðtÞ (types 1
and 2). Define SS to be the set of u where VðSSÞ does not
get intersected by rðtÞ but a part of an isosurface lies
within the ray frustum at rðtÞ and that corresponds to a
silhouette satisfying the second constraint in (20) (type 3).
In the following sections, we present a method to compute
the set S ¼ SI [ SS .

With this formulation, it is also possible to visualize an
isoparametric surface of the geometry mapping VðuÞ, e.g.,
Vðû1; u2; u3Þ, where û1 is fixed, and u2 and u3 vary over the
parametric domain. This can be achieved by using the
NURBS representation to represent fixed parameter values.
As an example, in Fig. 2c, û1 ¼ 0:5 where u2 and u3 vary
cutting the respective � along u1 in half. Furthermore, in
Fig. 1b, û3 ¼ 0 where u1 and u2 vary to show only the
boundary of � representing the Bimba statue.

In the following, we present an efficient subdivision-
based solver to compute S.

4 RAY FRUSTUM/ISOSURFACE INTERSECTION

As discussed in Section 3, finding the roots of fðtÞ is
equivalent to determining the set SI as defined in (21). To
compute all intersections between a ray frustum and the
isosurface, the set SI must be computed. Here, this is
achieved through a subdivision approach combined with
the Newton-Raphson method.

Before our proposed isosurface intersection is applied,
we find the set II 2 GG of candidate geometry subpatches
ðV̂iðuÞ; ÂiðuÞÞ that potentially may be intersected by the ray
frustum constructed from rðtÞ and may contain the isosur-
face at the isovalue ~a. While the technique itself does not
require this step, since the relevant parts can be found
through subdivision, we perform it to make the algorithm
faster and more efficient. We address different data-
dependent ways that II can be computed in Section 5. In
this section, we assume that rðtÞ and II are given. Section 4.1
details our intersection algorithm.

4.1 Algorithm

By following the framework discussed in Section 3, given
patch ðV̂iðuÞ; ÂiðuÞÞ 2 II in perspective space, a specified
isovalue ~a and a pixel through whose center the ray rðtÞ is
passing, the coefficients for the tuple ðPiðuÞ; �iðuÞÞ are
determined, where

PiðuÞ :¼
Xdþ1

j¼1

Qjþi�1 Bi;d;� ðuÞ ¼ ð�iðuÞ; �iðuÞ; �iðuÞÞ; ð22Þ

and

�iðuÞ :¼
Xdþ1

j¼1

�jþi�1 Bi;d;� ðuÞ; ð23Þ

with Qjþi�1 ¼ ð�jþi�1; �jþi�1; �jþi�1Þ. PiðuÞ has no direct
geometric meaning. We refer the reader to Fig. 9 which
shows, on the left side, the two planes defining rðtÞ, the
isosurface, and the boundaries of the tricubic patch. On the
right side, it shows the �, �, and �-coefficients of PiðuÞ
derived from the two planes, the geometry and attribute
data. The parametric boundaries transformed by PiðuÞ are
depicted as well, and parts of them may lie in the interior of

MARTIN ET AL.: DIRECT ISOSURFACE VISUALIZATION OF HEX-BASED HIGH-ORDER GEOMETRY AND ATTRIBUTE REPRESENTATIONS 759

Fig. 9. Left: a ray rðtÞ, represented as the intersection of two planes, intersects the isosurface AðuÞ � â ¼ 0 of ViðuÞ. Right: given ViðuÞ, AiðuÞ, and
the two planes, a new set of coefficients Qk ¼ ð�k; �k; �kÞ are determined to construct PiðuÞ. The ray intersects the isosurface at uj where
jPiðujÞj1 < ". PiðuÞ contains self-intersections and degeneracies depending on the number of intersections. The interior of PiðuÞ is illustrated in
wireframe. Parts of the ð�; �; �Þ-space boundary are formed by the interior of the parametric domain.



the parametric domain of PiðuÞ while forming part of the
ð�; �; �Þ-space boundary.

Given ðPiðuÞ; �iðuÞÞ, intersecting the ray frustum for ray
rðtÞ with the isosurface at ~a is a two-step algorithm.

1. Determine the superset SS ¼ SSI [ SSS of approximate
parameter values u, where V̂ðuÞ lies within the ray
frustum and on the isosurface at ~a, using a
subdivision procedure with appropriate termination
(Section 4.1.1).

2. Apply a filtering process to remove extra parameter
values in SS that represent the same root (Section 4.2)
in order to gain S.

The following discussion details these steps.

4.1.1 Intersection Algorithm

This section presents the core of our ray frustum/isosur-
face intersection algorithm. Given ðPiðuÞ; �iðuÞÞ, degenera-
cies and self-intersections in PiðuÞ at the origin are related
to the number of intersections between rðtÞ and the
isosurface at ~a: assuming there are n intersections, PiðuÞ
crosses n times within itself where PiðuÞ evaluates to
ð0; 0; 0Þ. Each u corresponding to an intersection is an
element in SSI . These cases refer to interactions of types 1
and 2 as illustrated in Fig. 8.

Intersections of type 3 (see Fig. 8) are detected by
examining the signs of the coefficients of �iðuÞ. The us
corresponding to these intersections are elements in SSS .

The set SS ¼ SSI [ SSS is computed as follows: the
fundamental idea of our subdivision procedure is to
subdivide ðPiðuÞ; �iðuÞÞ in all three directions at the center
of its domain, which results in eight subpatches defined by
the tuple ðPi;‘;kðuÞ; �i;‘;kðuÞÞ ¼ ðð�i;‘;kðuÞ; �i;‘;kðuÞ; �i;‘;kðuÞÞ;
�i;‘;kðuÞÞ, where k ¼ 1 . . . 8 identifies the kth subpatch and
‘ refers to the current subdivision level; and

1. adds subpatches ðPi;‘;kðuÞ; �i;‘;kðuÞÞ whose enclosing
bounding volume contains the origin 0 ¼ ð0; 0; 0Þ to
a list IL and

2. examines subpatches Pi;‘;kðuÞ whose corresponding
isosurface does not get intersected by rðtÞ, but for
which the corresponding isosurface potentially
intersects the ray frustum (Section 4.1.2).

Depending on the geometric representation, the algorithm
uses either Bézier subdivision or knot insertion [7].

The patches added to IL in Case 1 potentially contain
solutions which lie in SSI . Patches examined for Case 2
potentially also contain solutions which lie in SSS , i.e., Case 3
solutions. Due to properties of B-splines, note that the patch
is always contained in the convex hull of its control points,
and as the mesh of parametric intervals is split into half, the
subdivided control mesh converges quadratically to PðuÞ.

This procedure is recursively applied to the elements in IL
by adding new subdivision patches and removing the
corresponding parent patch ðPi;‘�1;kðuÞ; �i;‘�1;kðuÞÞ. The re-
cursion terminates when all intersections identified with the
remaining patches in IL can be determined using the Newton-
Raphson method, by using the node location (see [7])
corresponding to the coefficient in Pi;‘;kðuÞ closest to 0 as an
initial starting value. Note that initially ðPi;1;1ðuÞ; �i;1;1ðuÞÞ :¼
ðPiðuÞ; �iðuÞÞ and IL ¼ fðPi;1;1ðuÞ; �i;1;1ðuÞÞg; this strategy is

related to the general constraint-solving technique proposed
by Elber et al. [13].

Given a subpatch Pi;‘;kðuÞ, a crucial issue is whether it
contains the origin 0 or not. Since Pi;‘;kðuÞ can contain self-
intersections and geometric complexity in the ð�; �; �Þ-
space, this test is difficult to perform efficiently. The
general constraint-solving technique in [13] looks at the
signs of the coefficients in �i;‘;kðuÞ, �i;‘;kðuÞ, and �i;‘;kðuÞ
independently; that is, it investigates the properties of its
AABB in the ð�; �; �Þ-space. Instead, we examine the
geometry of Pi;‘;kðuÞ in the ð�; �; �Þ-space more closely.
An approximate answer to the 0-inclusion test can be given
by analyzing the convex hull property of NURBS [7]: if 0

does not lie within a convex set, computed from the
coefficients ð�k; �k; �kÞ defining Pi;‘;kðuÞ, then 0 62 Pi;‘;kðuÞ.
However, this implies that while 0 lies within the convex
boundary volume, it may not lie within its corresponding
Pi;‘;kðuÞ. Thus, during the subdivision process, the number
of elements in IL, jILj, which contain 0, is growing or
shrinking. Therefore, IL represents a list of potential

candidate patches which may contain 0. jILj at a given
subdivision level ‘ is strongly dependent on how tightly
the convex boundaries enclose its corresponding patches
Pi;‘;kðuÞ 2 IL. The properties of subdivision guarantee that
all potential roots are kept in IL.

Generally, it can be said that given Pi;‘;kðuÞ’s coefficients
ð�k; �k; �kÞ, a tighter convex boundary volume (e.g., convex
hull) is more expensive to compute than a loose convex
boundary volume (e.g., AABB), with the cost of our
Oriented Bounding Box (OBB) somewhere in the middle.
Given a tighter boundary volume, it is generally more
expensive to test whether the origin is included in it or not.
On the other hand, a tighter convex boundary will have
fewer elements in IL, resulting in fewer subdivisions. Since
a single subdivision step has a running time of Oððdþ 1Þ3Þ
where d is the largest degree of the three parametric
directions, it is desirable to keep the number of elements in
IL as small as possible, especially as d increases. In such a
scenario, a good trade-off respecting these opposing aspects
is desired. Given the coefficients ð�k; �k; �kÞ of Pi;‘;kðuÞ,
while the computation of the convex hull is more expensive
compared to much cheaper computation of an AABB, it
encloses the coefficients ð�k; �k; �kÞ much more tightly.

However, by looking locally at PiðuÞ we can adopt a
much tighter bounding volume compared to the AABB,
while still not as tight as the convex hull. An OBB, oriented
along a given coordinate system with axes ðv1;v2;v3Þ, is
determined. Let uc be the center of the parametric domain
of Pi;‘;kðuÞ. The Jacobian matrix of Pi;‘;kðucÞ determines the
first-order trivariate Taylor series. We select two of its three
directions with the two largest magnitudes to form the main
plane of the bounding box. Without loss of generality,
suppose they are @Pi;‘;kðucÞ=@u1 and @Pi;‘;kðucÞ=@u2, respec-
tively. We now form a local orthogonal coordinate system at
Pi;‘;kðucÞ by setting v1 to the unit vector in the direction
@Pi;‘;kðucÞ=@u1, v3 is the unit vector in the direction of
@Pi;‘;kðucÞ=@u1 � @Pi;‘;kðucÞ=@u2, and v2 ¼ v3 � v1. As in
other applications, the final OBB is constructed by project-
ing the coefficients ð�k; �k; �kÞ onto the planes which are
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located at the position Pi;‘;kðucÞ and have normals v1, v2, v3

and �v1, �v2, �v3, respectively.
Note that the evaluation of the derivative does not

require additional computation, since it is evaluated from
the coefficients computed in the subdivision process. Since
Pi;‘;kðuÞ is a single trivariate polynomial within a patch,
expanding around uc is justified because the first-order
Taylor series becomes a good approximation as the
parametric interval decreases in size. This assumes that
the determinants of the Jacobians of the neighborhood
around Pi;‘;kðucÞ are well behaved, i.e., do not change signs.
If Pi;‘;kðuÞ contains self-intersections and Pi;‘;kðucÞ lies on a
place in Pi;‘;kðuÞ where Pi;‘;kðuÞ folds into itself, then the
respective determinant at Pi;‘;kðucÞ is equal to zero, even
though the magnitudes of the partials @Pi;‘;kðucÞ=@uk,
k ¼ 1; 2; 3, are well behaved due to the smooth representa-
tion of Pi;‘;kðuÞ. However, with increasing subdivision level
‘, the determinants of Jacobians of the neighborhood of
Pi;‘;kðucÞ do not change signs.

Since Pi;‘;kðucÞ undulates through the origin multiple
times depending on the number of intersections between
the ray and the isosurface, this approximation is not initially
useful because the bounding box is computed from the
linear approximation of the Taylor series. But as the interval
gets smaller, the quality of the approximation increases and
the OBB encloses the coefficients of Pi;‘;kðucÞ more tightly
(see Fig. 11).

To compare the quality of this OBB, we used PCA on the
coefficients of Pi;‘;kðuÞ to compute the orientation of a
different OBB-bounding box on the data sets discussed in

Section 6. Both PCA and the method discussed above result

in the same order of subdivisions per pixel with PCA having

slightly fewer subdivisions. However, applying PCA was on

average about three times slower than our method. Table 1

shows the concrete timings on various data sets.
Also, with this strategy, the number of elements in IL is

much smaller compared to the number of elements in IL if

AABB had been used. The reader is referred to Fig. 10,

which shows the glancing ray scenario with three intersec-

tions from Fig. 9 for subdivision level ‘ ¼ 6. Using AABBs,

on a nonsilhouette pixel of the teardrop data set, IL has

67 elements, while by using our OBBs IL has only 7

elements, significantly reducing subdivision effort and

memory consumption. More results are given in Section 6.
Termination. The previous paragraphs discussed the

subdivision procedure using our OBB scheme. The termi-

nation criteria of this procedure are outlined below by

answering the question: At which ‘ should the subdivision

procedure terminate? A solution uj 2 SSI must satisfy two

requirements:

1. The patch Pi;‘;kðuÞ which corresponds to uj must
represent only one isosurface piece and must not
contain folds or self-intersections so that a final
application of Newton’s method on Pi;‘;kðuÞ finds uj
as a unique solution.

2. V̂iðuÞ has to lie within the frustum defined by the ray
rðtÞ and the pixel through which rðtÞ passes.

As the number ‘ of subdivision levels increases, the

geometric complexity of the patches, in IL in terms of

tangling and self-intersections, is reduced. Here, we focus
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TABLE 1
Average Image Generation Times Using OBB and AABB, Respectively

The table also shows the timings (in seconds) for each data set when PCA is used instead of our method to compute the OBBs. The degree column
presents degrees for the geometry and attribute mapping (tl ¼ trilinear; tc ¼ tricubic; tq ¼ triquinticÞ;� is the mean; and � is the standard deviation.
The image resolution is 512� 512.

Fig. 10. Subdivision patches stored in IL at subdivision level ‘ ¼ 8. In this
case, the ray glances the isosurface three times, as shown in Fig. 9
involving more extensive subdivision and intersection tests. On the left,
AABBs were used which result in jILj ¼ 67. On the right, our OBB
computation resulting in jILj ¼ 7, significantly reducing subdivision work.

Fig. 11. OBB hierarchy of patches, referring to a ray/isosurface
intersection. With growing subdivision level ‘, the orientation of the
OBBs gets closer and closer to its parent’s orientation.



on a specific OBB of one ðPi;‘;kðuÞ; �i;‘;kðuÞÞ 2 IL, given a
subdivision level ‘, and examine the signs of the coefficients
defining �i;‘;kðuÞ. A sign change means that the isosurface of
the patch in perspective space corresponding to Pi;‘;kðuÞ
potentially faces toward or away from the ray rðtÞ. This
implies that rðtÞ intersects the patch at least twice and,
therefore, ðPi;‘;kðuÞ; �i;‘;kðuÞÞ should be further subdivided.
If there is no sign change, then the subdivision process for
this patch can be terminated, and Newton’s method is used
to find the unique solution within the patch, such that

max
�
V̂ðujÞ � projðV̂ðujÞÞ

�
< "; ð24Þ

where projðV̂ðujÞÞ is the projection of the point V̂ðujÞ onto
rðtÞ and " ¼ 1=ð2 hÞ with h as the image resolution (see
Section 3). More specifically, given a close enough initial
solution u0, Newton’s method tries to iteratively improve
the solution and terminates when it is close enough to the
exact solution. Close enough in this context means that
Newton’s method can terminate when the inequality
equations, as defined in (15) for a current iterative solution
ui, are satisfied.

In the cases where the initial solution is not good enough
for Newton’s method, the patch ðPi;‘;kðuÞ; �i;‘;kðuÞÞ is further
subdivided. This also guarantees that a solution associated
with a ray will be within the ray’s frustum and does not
overlap with adjacent ray frustums. In the rare case that the
solution is exactly on the pixel boundary, we use the half-
open frustum to guarantee that it is included in only one of
the possible adjacent pixels.

4.1.2 Ray Frustum/Isosurface Silhouette Intersection

Before a subpatch ðPi;‘;kðuÞ; �i;‘;kðuÞÞ whose OBB does not
contain 0 is discarded, it must be examined to determine
whether the subdomain it covers in V̂ðuÞ contains any
isosurface silhouette intersecting the ray frustum rðtÞ in
perspective space. If there is no sign change in the
coefficients defining either �i;‘;kðuÞ or �i;‘;kðuÞ, then the
patch can be discarded, because a potential intersection will
be caught using the origin-inclusion test (Section 4.1) since
in this case the respective isosurface piece completely faces
toward or faces away from rðtÞ.

A sign change in both sets of the coefficients implies that
a potential part of the isosurface passes through the ray
frustum, facing toward or away from rðtÞ. If there is such a
piece of the isosurface silhouette, then u is computed so that
V̂ðuÞ lies on the isosurface silhouette and u is added to SSS .

As discussed in Section 3, an isosurface that intersects the
frustum (type 3) must have an isosurface silhouette in the
frustum, i.e., it must satisfy (20). Given ðPi;‘;kðuÞ; �i;‘;kðuÞÞ
with sign changes both in the coefficients defining �i;‘;kðuÞ
and defining �i;‘;kðuÞ, a patch Qi;‘;kðuÞ is constructed, where

Qi;‘;kðuÞ ¼ ð�i;‘;kðuÞ; �i;‘;kðuÞ; 	i;‘;kðuÞÞ ð25Þ

and the number of self-intersections corresponds to the
number of solutions u.

Termination. Subdivision is used to solve Qi;‘;kðuÞ ¼ 0,
where the 3D version of the normal cone (NC) test proposed
in the work [41] is used to make a faithful decision to stop
the subdivision process of patch Qi;‘;kðuÞ. This test

computes the NCs for the mappings �i;‘;kðuÞ, �i;‘;kðuÞ, and
	i;‘;kðuÞ. Elber et al. show that when the NCs of these three
mappings do not intersect, the patch can contain at most
one zero. If the NC test fails, i.e., Qi;‘;kðuÞ contains self-
intersections, then Qi;‘;kðuÞ is further subdivided. If the NC
succeeds, this implies that a subdivided patch does not
contain self-intersections. Newton’s method is used as
above to find a solution u which is added to SSS when (20)
is satisfied.

Note that this additional solution step to find points on
an isosurface silhouette within a ray frustum is executed
only at isosurface silhouettes, when there are sign changes
in the coefficients defining �i;‘;kðuÞ and �i;‘;kðuÞ. In most
cases, as observed in our experiments, the ray rðtÞ intersects
the isosurface.

4.2 Filtering Intersection Result

The subdivision procedure discussed in the previous
section, applied to the patch ðViðuÞ;AiðuÞÞ 2 II, outputs
the superset SS of approximate parameter values uj, i.e.,
where jAðuiÞ � âj < ". By following the framework from
Section 3, our method is guaranteed to compute all roots.
However, due to the approximate 0-inclusion test and the
fact that it is a numerical method, it can be the case that SS
contains multiple solutions that represent the same root.
This is because of the use of OBB to determine whether 0 is
contained in its respective patch. As discussed above,
Pi;‘;kðuÞ may not contain 0 while its OBB contains it. A final
postprocess on SS , yielding the set S, is therefore required
for the removal of duplicate solutions.

In the scenario of direct isosurface visualization, multiple
cases can appear (shown in Fig. 13, computed solutions in
green). In Case I, it can happen that parts of the isosurface
lie very close together. Therefore, the corresponding
solutions are numerically very similar, even though they
represent different solutions. In Case II, the ray might
glance or touch the isosurface tangentially, which corre-
sponds to two solutions. In Case III, the usual case, two
solutions can represent the same true solution even though
they are numerically different. We remove duplicates by
examining the derivative of the function fðtÞ given by

f 0ðtÞ ¼ @rðtÞ
@t

; J�1 � rAðV�1ðrðtÞÞÞ
� 	

; ð26Þ

where J�1 is the Jacobian of V�1ðrðtÞÞ, and � is the matrix/
vector product. As the ray rðtÞ travels through the volume,
it enters and eventually exits the isosurface. Entering means
that rðtÞ intersects the isosurface at the positive side; this
corresponds to a positive derivative of (26) at the
corresponding entry location. The exit point refers to a
negative derivative of (26). With this observation, Case I can
be identified. Case II appears at the silhouette of the
isosurface. If f 0ðtÞ 	 0, then one of the corresponding
solutions can be discarded. For Case III, since the signs of
f 0ðtÞ for the corresponding solutions are both positive and
negative, respectively, one of them can be discarded.

In our implementation, for every ui 2 SS , we determine
its corresponding ti by solving the linear equation ti ¼
r�1ðVðuiÞÞ and evaluate f 0ðtiÞ. The resulting list of t-values
is sorted in increasing order. Finally, the sorted list which
corresponds to the order in which the ray travels through
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the volume is traversed by removing those elements which
violate the rule of alternation of the signs of f 0ðtiÞ within the
list. Note that in some rare subpixel cases, incorrect
ordering can occur and cause incorrect transparency results.
This is a subpixel problem and can be resolved by further
subdividing the pixel. However, we found that no visual
artifacts result.

This algorithm detects intersections in the pathological
case that a whole interval of rðtÞ lies on the isosurface.
However, as with all numerical methods, there are not ways
to determine this analytical condition, but instead find
many discrete values of t. We set a heuristic threshold on
the maximum number of ray-isosurface intersections per 
-
length of t. If the number of intersections exceeds it, we use
only the smallest value and the largest value.

5 DETERMINING THE SET OF INTERSECTION

PATCHES

As discussed above, II � GG is the set which contains the
geometric subpatches ðViðuÞ;AiðuÞÞ that intersect the ray
frustum constructed from rðtÞ and through which the
isosurface AðuÞ � â ¼ 0 passes. There are multiple ways to
determine II, which depend on the number of coefficients
defining VðuÞ and the geometry it describes in physical
space. In our implementation, we distinguish between three
different types of geometry: 1) general geometry describing
a physical domain with a large number of coefficients;
2) general geometry describing a physical domain of
interest with few coefficients; and 3) a uniform grid, where
ViðuÞ describes the identity mapping, i.e., ViðuÞ ¼ u.

For geometries 1 and 2, we employ a kd-tree as an
acceleration structure, where an AABB is computed from
the coefficients of V iðuÞ where ðViðuÞ;AiðuÞÞ 2 GG. II is
determined by kd-tree traversal using the traversal algo-
rithm proposed by Sung and Shirley [43], where the ray rðtÞ
is intersected with the bounding boxes. Note the resulting II
can contain patches that are not intersected by rðtÞ. If jGGj is
small, then the AABBs do not tightly bound ViðuÞ, and II
contains a larger number of patches that do not intersect
rðtÞ. In that case, we apply knot insertion to the elements in
GG to turn them into Bézier patches whose corresponding
AABBs are much tighter. When VðuÞ consists of a large
number of coefficients, the ratio between the AABB and its
corresponding ViðuÞ is close to 1. In that case, Bézier
conversion is not a significant advantage, but a disadvan-
tage because of its higher memory consumption and
preprocessing time. In (3), where VðuÞ represents a uniform
grid, i.e., when VðuÞ ¼ u, conventional uniform grid
traversal is used without any data preprocessing. Also note
that in this case (e.g., Fig. 1d), the smooth representation for
AðuÞ is generated using a B-spline [29] filter to which our
method is applied.

6 ANALYSIS AND RESULTS

This section is concerned with the correctness and efficiency
of our approach. Verifying the correctness of an isosurface
visualization technique on acquired data is difficult,
especially in terms of correctness of the topology and
existence of all features, since given data usually only

approximate the true solution (e.g., the results of Galerkin’s
method or data from a CT scan). In this section, we use the
fact that every rational polynomial can be represented with
a NURBS representation, i.e., there are coefficients ai 2 IR
such that

aðx; y; zÞ 
 Aðx; y; zÞ ¼
Xn

i¼1

ai Ri;d;� ðx; y; zÞ; ð27Þ

defined over a rectangular parallelepiped of � 2 IR3, where
� is rectangular and where aðx; y; zÞ is an algebraic
function. Given aðx; y; zÞ and a NURBS basis (as defined
in Section 2.1) whose degree matches the highest degree of
aðx; y; zÞ, the coefficients ai can be derived by solving the
multivariate version of Marsden’s identity [30]. If aðx; y; zÞ
is a cubic algebraic function, the approach of Bajaj et al. [3]
can be used to compute coefficients ai for the NURBS basis.
For our tests, we chose the isosurface at 0.0 of the teardrop
function, defined as aðx; y; zÞ ¼ x5=2þ x4=2� y2 � z2, a
common function to test correctness of a visualization
technique. The thin features around the origin, as seen in
Fig. 1c, are challenging to isosurface meshing techniques
where areas around the thin feature are missing (e.g., see
work by [36]). Next to the coefficients ai, our method
requires a choice of coefficients Pi ¼ ðxi; yi; ziÞ to define
VðuÞ. If Pi are node locations as defined in [7], then
aðx; y; zÞ 
 Aðx; y; zÞ is achieved. However, since our
technique is independent of the geometric complexity, a
choice can be made on the mapping VðuÞ. A more general
version of (27) is aðV�1ðuÞÞ 
 AðuÞ, in which aðx; y; zÞ
undergoes a nonlinear transformation defined by VðuÞ
deforming �. By referring to Fig. 1c, � is stretched and
perturbed, which results in a deformation of aðx; y; zÞ ¼ 0.
The deformation does not affect the accuracy of our
algorithm in reproducing the thin feature discussed above,
indicating robustness and topological correctness of our
technique at the per-pixel level.

In Fig. 14, the number of subdivisions per pixel of the
isosurface intersection technique, using AABBs and OBBs
constructed in the above section, is visualized. The images
are generated from the same view as the shaded version in
Fig. 1. It can be seen that major work is done only for pixels
that actually correspond to a point on the isosurface and
pixels on the silhouette. When employing an AABB, a large
number of silhouette pixels require an average of 270 and
up to 380 subdivisions per pixel. With OBBs, only a few
pixels require more than 68 subdivisions, and, on average,
35 subdivisions are needed for the silhouette. This means
that the number of subdivision levels for OBB is much
smaller than with AABB, resulting in a more memory
efficient algorithm.

6.1 Timings

Fig. 12a shows the result of our algorithm, rendering
geometry of a torso with multiple isosurfaces of the
potential trilinear (cubic) field. Both are represented using
unstructured hex meshes. In Fig. 12b, we present the
visualization of an isosurface of pressure (isovalue ¼ 0)
generated due to a rotating canister traveling through an
incompressible fluid. The data set was generated by the
spectral/hp high-order finite element CFD simulation code,
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Nektar, and was used as test data set for visualization in the
works [32], [34]. The geometry of these data is trilinear
(Cð0Þ), and the attribute data are tricubic.

Table 1 provides concrete numbers of the proposed
approach in comparison to the AABB and PCA as
discussed in Section 4. The table provides average render
times (� time), additional information such as the average
number of pixels per frame (� pixel), the average number
of subdivisions per frame (� subd.), the average list size of
L overall (� list size), and the standard deviation of the list
size L overall (� list size). Due to space constraints for PCA,
only the render times are presented, since the remaining
values are within �1% compared to our method.

The data in the table were generated by rotating the
camera around the respective isosurfaces in 360 frames,
using Phong shading and normals computed from the
NURBS representation. The above information is generated
using our method’s OBBs and AABBs from the same space.
Subdivision is the major work in both cases. However, both
cases outperform the typical problem formulation with the
four equations and four unknowns discussed in Section 2,
since subdivision has to be performed on four parametric
directions with each subdivision being Oððdþ 1Þ4Þ versus
three parametric subdivisions with Oððdþ 1Þ3Þ for each
subdivision, where d is the degree.

The timings were taken on interlinked Intel Xeon X7350
Processors comprised of 32 cores using gcc version 4.3 and
OpenMP. Evidently, OBB is up to three times faster than
AABB, depending on the isosurface complexity.

7 CONCLUSION

In this paper, we proposed a novel direct isosurface
visualization technique which computes all the intersec-
tions between a ray and an isosurface embedded in
various representations, such as data-fitted geometry,
rational geometry, and uniform grids. Our framework
supports rendering the isosurface with view-independent
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Fig. 13. S can contain duplicate solutions which can arise due to the
scenarios I, II, and III. The derivative of the scalar function fðtÞ is used
to filter S to identify unique solutions and solutions representing the
same root.

Fig. 12. (a) Unstructured hexahedral mesh (	 2:3 million elements) of a segmented torso. Isosurfaces representing voltages of the potential field
(using a trilinear basis) are used to specify locations of electrodes to determine efficacy of defibrillation to find a good location to implant a defibrillator
into a child. (b) Wake of a rotating canister traveling through a fluid (isosurface of pressure from spectral/hp element CFD simulation data as used in
the work [34], [32]). The Cð0Þ nature of the boundaries of the spectral/hp elements can be seen on the isosurface and is not an artifact of our
proposed method.

Fig. 14. Number of subdivisions per pixel frustum using AABB and OBB
for teardrop isosurface from Fig. 1.



transparency. The technique is robust, user friendly, and
easy to implement: all the images in this paper, which

show different isosurface visualization scenarios, did not
require tweaking and had no parameter readjustment. We
have shown that even though the high-order geometry
mapping contains parametric distortions (e.g., Fig. 1c),

important features in the isosurface are still maintained,
something that is challenging for most isosurface techni-
ques. Currently, we are working on a GPU implementation

where we expect a significant speed-up of the technique. A
direction for future work is to extend the approach to
tessellated isosurfaces.
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