
J Sci Comput (2010) 45: 447–470
DOI 10.1007/s10915-009-9342-9

Quantification of Errors Introduced in the Numerical
Approximation and Implementation
of Smoothness-Increasing Accuracy Conserving (SIAC)
Filtering of Discontinuous Galerkin (DG) Fields

Hanieh Mirzaee · Jennifer K. Ryan · Robert M. Kirby

Received: 15 June 2009 / Revised: 8 December 2009 / Accepted: 14 December 2009 /
Published online: 8 January 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract The discontinuous Galerkin (DG) method continues to maintain heightened lev-
els of interest within the simulation community because of the discretization flexibility it
provides. Although one of the fundamental properties of the DG methodology and arguably
its most powerful property is the ability to combine high-order discretizations on an inter-
element level while allowing discontinuities between elements, this flexibility generates a
plethora of difficulties when one attempts to post-process DG fields for analysis and evalu-
ation of scientific results. Smoothness-increasing accuracy-conserving (SIAC) filtering en-
hances the smoothness of the field by eliminating the discontinuity between elements in a
way that is consistent with the DG methodology; in particular, high-order accuracy is pre-
served and in many cases increased. Fundamental to the post-processing approach is the
convolution of a spline-based kernel against a DG field.

This paper presents a study of the impact of numerical quadrature approximations on
the resulting convolution. We discuss both theoretical estimates as well as empirical results
which demonstrate the efficacy of the post-processing approach when different levels and
types of quadrature approximation are used. Finally, we provide some guidelines for effec-
tive use of SIAC filtering of DG fields when used as input to common post-processing and
visualization techniques.

This paper is in honor of our mentor and collaborator Professor David Gottlieb, who taught us that
implementations require approximations, approximations lead to “numerical crimes”, and as with all
crimes, numerical crimes come at a cost.

H. Mirzaee · R.M. Kirby (�)
School of Computing, University of Utah, Salt Lake City, UT, USA
e-mail: kirby@sci.utah.edu

H. Mirzaee
e-mail: mirzaee@cs.utah.edu

J.K. Ryan
Delft Institute of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands
e-mail: J.K.Ryan@tudelft.nl

mailto:kirby@sci.utah.edu
mailto:mirzaee@cs.utah.edu
mailto:J.K.Ryan@tudelft.nl

448 J Sci Comput (2010) 45: 447–470

Keywords High-order methods · Discontinuous Galerkin · SIAC filtering · Accuracy
enhancement

1 Introduction

The discontinuous Galerkin (DG) methods provide a high-order extension of the finite vol-
ume method in much the same way as high-order or spectral/hp elements [15, 21] extended
standard finite elements. The DG methodology allows for a dual path to convergence through
both elemental h and polynomial p refinement, making it highly desirable for computational
problems which require resolution fidelity. In the overview of the development of the dis-
continuous Galerkin method, Cockburn et al. [4] trace the developments of DG and provide
a succinct discussion of the merits of this extension to finite volumes.

The primary mathematical advantage of DG is that unlike classic continuous Galerkin
FEM, that seeks approximations which are piecewise continuous, the DG methodology only
requires functions which are L2 integrable. Much like FEM, DG uses the variational form;
however, instead of constraining the solution to being continuous across element interfaces,
the DG method merely requires weak constraints on the fluxes between elements. This fea-
ture provides a discretization flexibility that is difficult to match with conventional continu-
ous Galerkin methods.

Lack of inter-element continuity, however, is often contrary to the smoothness assump-
tions upon which many post-processing algorithms such as those used in visualization are
based. A class of post-processing techniques were introduced in [7, 18] as a means of gain-
ing increased accuracy from DG solutions through the exploitation of the superior con-
vergence rates of DG in the negative norm; these filters had as a secondary consequence
that they increased the smoothness of the output solution. Building upon these concepts,
in [20, 22] smoothness-increasing accuracy-conserving (SIAC) filters were proposed as a
means of ameliorating the challenges introduced by the lack of regularity at element inter-
faces while at the same time maintaining accuracy constraints that are consistent with the
verification process used in the original simulation. In essence, in the application domain,
one seeks to increase smoothness without destroying (i.e. by maintaining) the order of accu-
racy of the original input DG solution.

The basic operation performed to gain the smoothness and accuracy benefits is convolu-
tion of the DG solution against a judiciously constructed B-spline based kernel. The goal of
this paper is to ascertain and quantify the impact of quadrature errors within this convolu-
tion process. All of the mathematical proofs concerning accuracy and smoothness assume
exact integration. All the empirical numerical examples both in the mathematical literature
[7, 18] and the engineering literature [20, 22] employed consistent integration with Gaussian
quadrature to guarantee that the numerical errors within the convolution operator could be
driven below machine precision. In this paper we seek to quantify the impact of inexact
quadrature on the filtering process and to assess whether it greatly impacts its use as inter-
mediary stage between simulation and visualization in the scientific pipeline.

In this paper we examine a collection of common scenarios that might arise when one
seeks to implement the aforementioned post-processing algorithms in the engineering con-
text. We focus on one-dimensional and two-dimensional quadrilateral implementations over
periodic domains as for these cases we can derive theoretical estimates as to the impact of
the “numerical crimes” committed through the different quadrature strategies. We use as
our gold-standard the solving of the convolution operation with consistent integration (in-
tegration that partitions the domain so as to respect all breaks in regularity) combined with

J Sci Comput (2010) 45: 447–470 449

Gaussian integration that integrates the kernel times the DG-based polynomial exactly to
double-precision machine zero. We first examine the case when consistent integration with
inexact Gaussian quadrature (under-integration) is used. Because consistent integration re-
quires solving the challenging geometric problem of find all the places in which regularity is
decreased and generating a super-mesh based on this data, we consider what happens when
only the original DG mesh is used as the underlying support mesh for integration. Under
this scenario, we examine the use of Gaussian quadrature and of midpoint quadrature. This
choice highlights the difference between polynomial-based high-order and adaptive low-
order quadrature implementations. We emphasis that this study is primarily for engineering
circumstances when the trade-offs between time, resources and accuracy are important. Al-
though the case against committing such numerical crimes is well-known, the repercussions
have not been well documented for the use of this filter as a visualization tool. It is this
specific crime that we wish to address.

The paper is organized as follows. In Sect. 2 we discuss the discontinuous Galerkin
method for systems of hyperbolic equations. In Sect. 3 we present the mathematical back-
ground on the smoothness-increasing accuracy-conserving filters being examined in this
paper. In Sect. 4 we present the different implementation strategies one might employ, in
particular: (1) the consistent integration approach with exact and inexact Gaussian quadra-
ture, (2) the input mesh based Gaussian quadrature approach and (3) the input mesh based
midpoint quadrature approach. In Sect. 5 we present analysis which provides theoretical es-
timates which bound the numerical crimes committed when using the three aforementioned
approaches. In Sect. 6 we present an empirical study which corroborates the error estimates
we have derived. In Sect. 7 we summarize our results and provide guidelines based upon our
study concerning under which circumstances one technique should be used versus another.

2 The Discontinuous Galerkin Method

In this paper, we focus our attention on simulation results that arise as solutions of the linear
hyperbolic equation

ut + � · (a(x, t)u) = 0, (1)

where x ∈ � and t ∈ R. The DG formulation for this equation has been well studied in the
series of papers [2, 3, 5, 9–12]. Here we present a brief introduction.

We use the weak form of (1) to derive our discontinuous Galerkin approximation. That
is, we multiply by a test function v to obtain

d

dt

∫
�

u(x, t)vdx +
∫

�

(a(x, t)u) · n̂vd� −
∫

�

(a(x, t)u) · �vdx = 0, (2)

where n̂ denotes the unit outward normal to the boundary and � the boundary of our do-
main, �.

We can now define our discontinuous Galerkin approximation to (1) using (2). Begin by
defining a suitable tessellation of the domain �, T (�) = �̃. We note that the current form
of the post-processor requires using a rectangular domain in two-dimensions. Secondly, we
define an approximation space, Vh, consisting of piecewise polynomials of degree less than
or equal to k. Our discontinuous Galerkin approximation will then be of order k + 1. Using
the variational formulation and taking our test function vh from our approximation space we

450 J Sci Comput (2010) 45: 447–470

obtain

d

dt

∫
K

u(x, t)vh dx +
∑
e∈∂K

∫
e

(a(x, t)u) · n̂e,Kvh d� −
∫

K

(a(x, t)u) · �vh dx = 0, (3)

where n̂e,K denotes the outward unit normal to edge e. We then obtain the numerical scheme

d

dt

∫
K

uh(x, t)vh dx +
∑
e∈∂K

∫
e

h(uh(x−, t),uh(x+, t))vh d�

−
∫

K

(a(x, t)uh) · �vh dx = 0 (4)

for all test functions vh ∈ Vh where h(u(x−, t),u(x+, t)) represents the numerical flux and
uh is the DG approximation of degree k.

3 The Post-Processor

We concentrate on quantifying and improving the computational cost of the convolution for
the Smoothness-Increasing Accuracy-Conserving (SIAC) filter that were first introduced as
a class of post-processors for the discontinuous Galerkin method in [6, 7]. The filtering
technique was extended to a broader set of applications, including as a streamline visual-
ization filter, in [8, 14, 17, 18, 20, 22]. As a visualization filter, it is unique in that it takes
into account the information about the discontinuous Galerkin approximation. For an ap-
proximation of degree k, we convolve it against a filter containing a linear combination of
B-splines of degree k. This works to smooth the oscillations in the error and improve the
order of the filtered solution to 2k + 1. Here we only present a brief introduction to this
post-processing technique. For a more detailed discussion of the post-processor see [1, 7,
14, 18].

The post-processor itself is simply the discontinuous Galerkin solution convolved against
a linear combination of B-splines. That is, in one-dimension,

u�(x) = 1

h

∫ ∞

−∞
K2(k+1),k+1

(
y − x

h

)
uh(y) dy, (5)

where u� is the post-processed solution, h is the uniform element size, uh the DG solution
of degree k and

K2(k+1),k+1(x) =
k∑

γ=−k

c2(k+1),k+1
γ ψ(k+1)(x − γ). (6)

The B-splines used in the post-processor are well studied and can be computed using the
recurrence relation

ψ(1) = χ[−1/2,1/2], (7)

ψ(k+1) = 1

k

((
x + k + 1

2

)
ψ(k)

(
x + 1

2

)
+

(
k + 1

2
− x

)
ψ(k)

(
x − 1

2

))
, k ≥ 1, (8)

J Sci Comput (2010) 45: 447–470 451

see [19]. The coefficients of the kernel, c2(k+1),k+1
γ , can be found by using the property that

the kernel must not destroy the accuracy of the approximation. More specifically, they re-
produce polynomials of degree 2k by convolution. This leads to a system of equations

	(k+1)c2(k+1),k+1 = X (9)

where the (i, γ)-th element of 	(k+1) is given by

∫
R

ψ(k+1)(x − y − γ)yi dy, i = 0, . . . ,2k, γ = −k, . . . , k,

and Xi = xi . When using a symmetric B-spline kernel, it is only necessary to solve this sys-
tem once and store the resulting coefficient vector, c2(k+1),k+1. We note that the coefficients
are symmetric in this case, that is c

2(k+1),k+1
−j = c

2(k+1),k+1
j , j = 1, . . . , k. We note that the

two-dimensional case is tensor product of the one-dimensional case.
After solving for the coefficients, we then need to carry out the convolution

Ci,
,k = 1

h

k∑
γ=−k

c2(k+1),k+1
γ

∫
Ii

ψ(k+1)

(
y − x

h
− γ

)
φ(
)

(
y − xi

h

)
dy,
 = 0, . . . , k, (10)

where Ii denotes the element and φ(
) represents the
th-piecewise polynomial from our
approximation space scaled to the interval (−1/2,1/2). Using this notation, we then have
that the post-processed solution is

u� =
k′∑

i=j−k′

k∑

=0

Ci,
,ku
(
)
i (11)

where k′ = � 3k+1
2 � and u

(
)
i are the polynomial modes on Ii . The outer sum is over the ele-

ments that fall within the support of the post-processor. We can see from this notation that
if we choose to compute the post-processing coefficients ahead of time at specific points
within an element, the post-processor simply becomes a series of small matrix-vector multi-
plications. However, if we choose to compute the convolution directly, it can become com-
putationally expensive. The latter implementation, in which we take care of the convolution
within the definition of Ci,
,k , is the one we concentrate on for the purposes of this paper. We
will, in the next section, go into more detail as to how one implements the post-processor
and the corresponding computational costs.

4 Implementation

In this section we present the different implementation strategies used to calculate the con-
volution operator.

4.1 Gaussian Quadrature Approaches

The post-processed solution, u�(x), which is a piecewise polynomial of degree 2k + 1, can
be evaluated exactly. As we mentioned in Sect. 3, u�(x) is defined by (5), where uh(y) =

452 J Sci Comput (2010) 45: 447–470

∑k

=0 ui
(
)φ

(
)
i (y), and φ

(
)
i are the basis functions of the projected function on cell Ii =

(xi − h
2 , xi + h

2). Therefore, for x ∈ Ii , we have

u∗(x) = 1

h

∫ ∞

−∞
K2(k+1),k+1

(
y − x

h

)
uh(y) dy

= 1

h

k′∑
j=−k′

∫
Ii+j

K2(k+1),k+1

(
y − x

h

)
uh(y) dy

= 1

h

k′∑
j=−k′

∫
Ii+j

K2(k+1),k+1

(
y − x

h

)(
k∑

=0

u
(
)
i+jφ

(
)
i+j (y)

)
dy. (12)

We have used the compact support property of K2(k+1),k+1 to reduce the area of the integral
to a total support of 2k′ + 1 elements where k′ = � 3k+1

2 �.
As mentioned earlier in Sect. 3, the kernel in the expression above consists of a linear

combination of B-splines. Therefore, in order to calculate the above integral exactly, we need
to decompose the interval Ii+j into subintervals that respect the kernel knots (which we refer
to as breaks); the resulting integral is calculated as the summation of the integrals over each
subinterval. The term consistent integration is used to denote integration that respects these
breaks by finding the necessary subintervals such that the integral on each subinterval can
be done exactly to machine precision. To compute the post-processed solution for x ∈ Ii , the
algorithm is as follows:

For j = −k′, . . . , k′:

• Find the kernel breaks (if any) that lie in the interval Ii+j . Use the kernel breaks to identify
the subintervals. Note that in the general case the number of breaks can be zero up to
several breaks within an element. In the case of uniform meshes, one can show that there
is at most one break per input mesh element.

• Evaluate the integral over each of the subintervals using Gaussian quadrature. For the case
of an exact quadrature, we are required to evaluate the integrand at k + 1 Gauss points
where k is the approximation degree of the DG solution. We have used k Gauss points
(one less than the required) for the inexact quadrature experiments presented in the results
section.

• Sum the resulting values from each subinterval to gain the overall value of the integral on
element Ii+j .

This general algorithm can be used in one of several ways which we will mention here.
First, this algorithm holds for any x ∈ Ii , and hence can be used for isolated post-processing
of the solution at some arbitrary point. The only additional cost not previously mentioned
is the search time needed to find the element Ii containing the point x of interest. Building
upon this usage, the second strategy is to post-process an entire element (i.e. find the post-
processed polynomial of degree 2k + 1 on a element) by repeating the above procedure for
a collection of collocation points or at quadrature points so that a transform to a modal rep-
resentation can be done. The third usage, which is often implemented for uniform meshes,
is to rewrite the above equation using small matrix multiplications,

u∗(x) =
k′∑

j=−k′

k∑
l=0

u
(l)
i+jCj,l,k(x) (13)

J Sci Comput (2010) 45: 447–470 453

where Cj,l,k(x) is a polynomial of degree 2k + 1 and u
(l)
i+j are the coefficients in the discon-

tinuous Galerkin approximation.
In previous implementations, one computes the convolution of the basis functions of

the DG solution and B-splines together for a given mesh once so that post-processing can
be accomplished repetitiously for different DG solutions on the same mesh through mere
matrix-vector multiplication. As the kernel is translation invariant when a uniform mesh is
used, one needs only to compute a small set of matrices that can be used for post-processing
all elements. As is presented in [14], it takes O(N) operations to filter the entire domain,
where N is the total number of elements.

However, the purpose of this paper is to quantify the numerical crimes committed when
using different quadrature schemes. Therefore, it is useful to understand the dominant costs
in the above algorithm so that one can appreciate why different engineering implementation
choices might be made. The possibly dominating cost in the above algorithm is the finding of
the consistent integration mesh. This is a geometric projection and intersection problem that,
in general, is quite complex in two and three dimensions as it requires finding the intersec-
tion of mesh elements against knots of the B-spline kernel, and possibly the further refined
tessellation of the subdomains into elements upon which integration can be performed (for
instance, partitioning polyhedra into a collection of tetrahedra). When filtering based upon
the input mesh, we disregard the position of the kernel breaks and evaluate the integrand
over the entire element. That is, we skip the first step in the consistent integration approach
(and hence its associated cost); in the second step there is only one interval which is the en-
tire element. We then proceed by using Q ≥ k + 1 Gauss points for computing the Gaussian
quadrature. Considering the computational cost, as we increase the number of quadrature
points, Q, filtering based upon the input mesh will use more floating point operations for
Q > 2k + 2 to calculate the integral over Ii+j compared to the consistent integration ap-
proach; however, the algorithmic scaling is still O(M) where M is a number related to the
extent of the local filter.

Two further notes are worth mentioning before proceeding. The first is that the algorithm
above extends easily to the case of two-dimensional and three-dimensional post-processing
as the convolution kernel is merely a tensor-product of the one dimensional kernels. Sec-
ondly, in the case of a non-uniform mesh since the kernel is no longer translation invariant
the post-processing coefficients need to be recomputed for each element as is mentioned
in [14]. In order to avoid this re-computation, Curtis et al. proposed two strategies for post-
processing over non-uniform meshes: one based upon the local L2-projection of the solution
to a uniform “scratch-pad” mesh and one based upon the characteristic length. The algorith-
mic scaling for both algorithms is O(N), with N being the size of the domain.

4.2 Midpoint Quadrature Approach

In this section we examine an alternative strategy to using Gaussian quadrature for the ap-
proximation of the convolution integral. For a given x ∈ Ii we try to approximate the integral

u∗(x) = 1

h

∫ ∞

−∞
K2(k+1),k+1

(
y − x

h

)
uh(y) dy (14)

using midpoint integration. For a complete overview of the derivation and implementation
of the midpoint rule we refer the reader to [16]. In this case we evaluate the post-processed
solution u∗(x) using the midpoint rule to compute the integral in (14) over the entire kernel
support at once, i.e., we are not following the element-by-element approach mentioned in
the previous section. In other words, we proceed as follows:

454 J Sci Comput (2010) 45: 447–470

• For x ∈ Ii determine where the limits of the kernel lie on the DG mesh. That specifies the
integration area, which we denote by [xleft, xright].

• Set the level of the midpoint integration. Assuming �x is the size of each of the n equal
cells involved in the discretization we have �x = (xright − xleft)/2level with 2level being the
number of evaluation points used in the midpoint rule. Typically, the support of the kernel
centered around zero will be the case where xleft = − 3k+1

2 and xright = 3k+1
2 . This gives

�x = 3k+1
2level .

• Perform the midpoint integration,

u∗(x) = 1

h

∫ ∞

−∞
K2(k+1),k+1

(
y − x

h

)
uh(y) dy

= 1

h

∫ xright

xleft

K2(k+1),k+1

(
y − x

h

)
uh(y) dy

= 1

h

(
�x

n∑
i=1

Ki−1/2uh,i−1/2

)
. (15)

Again, we follow a similar process in case of a 2D post-processor along each direction.
As it is understood from the aforementioned steps, we both disregard the kernel breaks

and the element interfaces in the input mesh for this quadrature approach.

5 Quadrature Approximations of the Convolution Operator

In this section we analyze the crimes committed when performing a non-consistent, inexact
quadrature. Although we discuss the simplified case of a uniform one-dimensional mesh,
many of the concepts extend to post-processing over non-uniform meshes. We begin by
discussing the ideal case of an exact, consistent quadrature, then an inexact quadrature on
a consistent integration mesh. We next move to implementing an inconsistent quadrature
which takes only the DG mesh into account and lastly, the midpoint quadrature on the DG
mesh.

5.1 Gaussian Quadrature on a Consistent Integration Mesh

5.1.1 Exact, Consistent Gaussian Quadrature

Gaussian Quadrature is well-known to integrate polynomials of degree 2m − 1 exactly by
using m points, x1, x0, . . . , xm, and m weights w1,w2, . . . ,wm [13]. The formula for the
quadrature is given by

∫ b

a

f (x) dx =
m∑

j=1

f (yj)wj , (16)

where yj = b−a
2 xj + b+a

2 , and wj is the associated weight function. This means that for our
convolution, which consists of integrals of polynomial degree at most 2k, we need to use
k + 1 points and weights in our quadrature in order to be exact.

The main point of this discussion is to point out that in order to post-process one element
that contains a discontinuous Galerkin approximation of degree k, we have a support size

J Sci Comput (2010) 45: 447–470 455

of 2k′ + 1 elements for the post-processor, where k′ = � 3k+1
2 �. There are two integral eval-

uations per element. Therefore we are performing 4k′ + 2 Gaussian Quadratures of degree
2k + 1. Although Schumaker gives a simplified formula for integrating a B-spline against a
polynomial [19], we should point out that we are convolving the B-splines against a piece-
wise polynomial.

To begin, let us look at the kernel performed using exact integration over a uniform mesh.
In this case, to post-process element i, we have

u�(x) =
k′∑

j=−k′

k∑

=0

ui+j

k∑
γ=−k

cγ

1

h

∫
Ii+j

ψ(k+1)

(
y − x

h
− γ

)
φ(
)

(
y − xi+j

h

)
dy. (17)

Setting η = y−x

h
and ξi = y−xi

h
, this becomes

u�(x) =
k′∑

j=−k′

k∑

=0

ui+j

k∑
γ=−k

cγ

∫ −ξi+j+1/2

−ξi+j−1/2
ψ(k+1)(η − γ)φ(
)(ξi + η − j) dη. (18)

On each element, Ii+j , define the function in our integral to be

f (η, ξi) =
k∑

=0

ψ(k+1)(η − γ)φ(
)(ξi + η − j). (19)

For purposes of error analysis, we note that this function is Ck−1 over each DG element and
discontinuous at element boundaries. This is easily seen by examining the case of piecewise
monomials. In this case, φ(
)(ξi +η− j) = (ξi +η− j)
. If we consider the boundary where
η → (−ξi − 1/2), then we have, from the left of the elemental boundary:

lim
η→−(ξi+1/2)−

f (η, ξi) =
k∑

=0

ψ(k+1)(−ξi − 1/2 − γ)

(
−3

2

)

,

since we are approaching from the element Ii−1. However, approaching the limit from the
right, we would have

lim
η→−(ξi+1/2)+

f (η, ξi) =
k∑

=0

ψ(k+1)(−ξi − 1/2 − γ)

(
−1

2

)

,

as we are approaching from element Ii . The limits of these two functions are continuous for
piecewise constants, but otherwise they are discontinuous.

In order to analyze the error for the case of consistent integration with reduced quadrature
and quadrature based on the input DG mesh it is useful to review the existing literature. Here
we follow the work of de Boor [13] for w(x) = 1. That is, if we were to use exact quadrature
over a consistent integration mesh using k + 1 Gauss points per integral, the error is given
by

∫ b

a

f (η, ξi) dη −
∫ b

a

pk(η) dη =
∫ b

a

f [x0, . . . , x2k+1]g2k+1(x) dx (20)

where pk is some polynomial that interpolates f (η, ξi) at k + 1 points and

g2k+1(x) = [(x − x0) · · · (x − xk)]2.

456 J Sci Comput (2010) 45: 447–470

If f (η, ξi) ∈ C 2k+2, then we have the error estimate

∫ b

a

f (η, ξi) dη −
∫ b

a

pk(η) dη = C(ξi, y0, . . . , yk+1)f
(2k+2)(z, ξi), z ∈ (a, b). (21)

Note that f (η, ξi) is a polynomial of degree 2k, and the integral is exact.

5.1.2 Inexact, Consistent Gaussian Quadrature

Now that we have discussed the necessary components for exact, consistent quadrature, let
us examine the case where we simply use less Gauss points. In this case, we are respecting
both the kernel breaks and the DG elemental boundaries and use only k gauss points. From
the error formula above (21), we have the following error estimate for one integral

∫ b

a

f (η, ξi) dη −
∫ b

a

pk(η) dη = C(ξi, y0, . . . , yk+1)f
(2k)(z, ξi) = C. (22)

The constant in the error is not necessarily less than one, but is certainly bounded due to the
smoothness of f (η, ξi). We also note that the constant depends upon k.

5.2 Gaussian Quadrature on the DG Mesh

Next, we look at the case were we are using exact quadrature over a discontinuous Galerkin
mesh. That is, we are ignoring the knots of the B-splines and disregarding the level of
smoothness. For this case, we may only use the error estimate given in (20) since the func-
tion on a given element is only Ck−1. That is, the error is given by

∫ b

a

f (η, ξi) dη −
∫ b

a

pk(η) dη =
∫ b

a

f [x0, . . . , x2k−1]g2k+1(x) dx. (23)

5.3 Midpoint Quadrature on the DG Mesh

Lastly, we consider the problem of using midpoint integration. In this case our formula is
given by

∫ b

a

f (x) dx = (b − a)f (c) (24)

where c = (a + b)/2 and f is as given in (19). It is well known that the midpoint error is
given by

Error(midpoint) = 1

24
f ′′(z)(b − a)3, z ∈ (a, b)

[13]. In our case, we are carrying out m = level midpoint quadratures. Therefore, we have
for the error

m−1∑
j=0

1

24
f ′′(z)
x3 ≤ C
x3 (25)

where
x = 3k+1
2m since xleft = − 3k+1

2 , xright = 3k+1
2 and
x = (xright − xleft)/2m. We should

note two things. First, that the constant that bounds f ′′(z)/24 depends upon the polynomial

J Sci Comput (2010) 45: 447–470 457

order. Secondly, that this estimate of the error does not improve for higher polynomial or-
ders. Therefore, it does not matter whether we increase the polynomial order of our B-spline
or our DG solution. The only time where implementing the midpoint quadrature may be
effective is for piecewise linear polynomial approximations.

6 Results

In this section we present the results for the various choices of quadrature. We examine the
L2-errors, and in the case of one-dimension, the smoothness of the error. Lastly, we present
a test example to demonstrate the usefulness for visualization purposes.

6.1 Consistent Integration with Inexact Gaussian Quadrature Approach

We consider the one dimensional projection of the function

u(x) = sin(2πx), x ∈ (0,1) (26)

onto a uniform mesh to mimic a DG solution. We should note that we always use exact inte-
gration to calculate the L2 projections and we only focus on different integration strategies
for the convolution operator used in the post-processor. We assume that we have a periodic
interval in order to simplify the application of the post-processor. For this example, consis-
tent integration is used, but the number of quadrature points used in the computation of the
integrals is one less than what is required for exact integration. The results are presented in
Fig. 1. In this set of plots, we can see that the aliasing error is more sensitive at low orders
and that the higher-order coefficients in the approximation are important. Additionally, no-
tice that increasing N for P

2-polynomial approximations does not lower the convergence
rate as expected.

6.2 Input Mesh Based Gaussian Quadrature Approach

In this section we examine the results of not using a consistent integration mesh (i.e., ig-
noring knots of the B-spline kernel), but instead attempt to overcome the numerical crimes
committed by integrating over the jump by increasing the number of quadrature points.

6.2.1 One-Dimensional DG

For this section, we again consider the L2-projection of the function

u(x) = sin(2πx), x ∈ (0,1) (27)

to a uniform mesh. We assume a periodic interval. Figures 2, 3 and 4 show the point-wise
errors when post-processing on the DG mesh for P

2, P
3 and P

4 polynomials, respectively.
Considering P

k polynomials, we need k + 1 Gauss points to exactly evaluate the inner prod-
ucts involved in post-processing of a DG solution on a consistent integration mesh. Using
the same number of points when post-processing on the DG input mesh, we observe that
the accuracy in terms of error is improved but that oscillations still exist (see Fig. 2 Q = 3,
Fig. 3 Q = 4 and Fig. 4 Q = 5).

458 J Sci Comput (2010) 45: 447–470

Fig. 1 Point-wise errors on a logarithmic scale before post-processing (left), after post-processing on the
consistent integration mesh with inexact quadrature (middle) and after post-processing with exact quadrature
(right)

6.2.2 One-Dimensional DG—Non-Uniform Mesh

In this section, we examine the L2-projection of the function

u(x) = sin(2πx), x ∈ (0,1) (28)

to smoothly varying mesh. The smoothly varying mesh is defined by x = ξ + 1
2 sin ξ , so that

the element sizes vary by at most 50% from each other. We use the characteristic length-
based post-processor implementation introduced in [14]. In the case of a non-uniform mesh,
Table 1 demonstrates that the lowest quadrature order for piecewise quadratic polynomials
is not sufficient for removing the error, unlike the uniform mesh case. In the case of a non-
uniform mesh, a quadrature the uses at least nine Gauss points seem to be required. For
piecewise cubic, the errors using the lowest value of the quadrature are even worse (Table 2).
And, unless exact quadrature is implemented, the errors are always worse when using ten
elements.

J Sci Comput (2010) 45: 447–470 459

Fig. 2 Point-wise errors on a logarithmic scale when post-processing on the DG input mesh using P
2 poly-

nomials. Top left: errors before post-processing. Bottom right: errors after post-processing on the consistent
integration mesh using exact quadrature. Q is the number of quadrature points

6.2.3 Two-Dimensional DG

In this case, we consider the L2-projection of the function

u(x, y) = sin(2π(x + y)), x ∈ (0,1), y ∈ (0,1) (29)

to a uniform mesh. Again we assume a periodic domain. Additionally, we see in Tables 3
and 4 that although the convergence rates with the post-processor are not always improved,
the errors are always lower than for the input DG solution.

6.2.4 Two-Dimensional DG—Constant Coefficient Linear Advection Equation

For this example, we consider solutions of the equation,

ut + ux + uy = 0, (x, y) ∈ (0,2π) × (0,2π), T = 12.5 (30)

460 J Sci Comput (2010) 45: 447–470

Fig. 3 Point-wise errors on a logarithmic scale using P
3 polynomials

Fig. 4 Point-wise errors on a logarithmic scale using P
4 polynomials

with initial condition u(0, x, y) = sin(x + y). Observe in Table 5 that when we use two
Gauss points for linear polynomials, we immediately obtain the desired convergence rate.
Additionally the errors are slightly better than what is observed for the original DG solution.
For the quadratic polynomial approximation as presented in Table 6 we also immediately
improve both the errors and the convergence rate using only three Gauss points.

J Sci Comput (2010) 45: 447–470 461

Table 1 Errors for one-dimensional DG using P
2 polynomials for the non-uniform mesh. Before post-

processing, after post-processing on the DG mesh where Q is the number of quadrature points and finally
after post-processing on the consistent integration mesh. CI stands for consistent integration mesh

P
2

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 3

10 1.22E−03 – 5.60E−03 – 2.67E−03 – 1.04E−02 –

20 1.55E−04 2.98 7.74E−04 2.85 1.58E−03 0.76 6.16E−03 0.76

40 1.94E−05 3.00 9.93E−05 2.96 4.76E−04 1.73 2.22E−03 1.46

80 2.43E−06 3.00 1.25E−05 2.99 1.05E−04 2.17 6.06E−04 1.87

After post-processing, Q = 9 After post-processing, Q = 12

10 6.23E−04 – 1.44E−03 – 6.30E−04 – 1.49E−03 –

20 1.03E−04 2.60 3.68E−04 1.97 5.99E−05 3.39 1.94E−04 2.94

40 9.76E−05 0.08 3.26E−04 0.18 4.01E−05 0.58 1.67E−04 0.22

80 4.09E−05 1.26 1.81E−04 0.85 2.11E−05 0.93 1.12E−04 0.57

After post-processing, Q = 21 After post-processing, Q = 35

10 6.17E−04 – 1.42E−03 – 6.21E−04 – 1.41E−03 –

20 1.07E−05 5.85 2.95E−05 5.59 1.15E−09 5.76 2.57E−05 5.78

40 9.79E−06 0.12 3.50E−05 −0.24 2.14E−06 2.43 8.76E−06 1.55

80 8.03E−06 0.28 3.43E−05 0.03 2.01E−06 0.09 8.03E−06 0.13

After post-processing, Q = 45 After post-processing, CI

10 6.22E−04 – 1.42E−03 – 6.21E−04 – 1.42E−04 –

20 1.08E−05 5.84 2.30E−05 5.95 1.08E−05 5.84 2.27E−05 5.96

40 8.99E−07 3.59 3.65E−06 2.65 1.73E−07 5.96 3.36E−07 6.08

80 8.69E−07 0.05 4.34E−06 −0.25 2.74E−09 5.99 5.31E−09 5.99

6.2.5 Two-Dimensional DG—Variable Coefficient Equation

In this example, we consider solutions to a two-dimensional variable coefficient equation,

ut + (au)x + (au)y = f (x, y, t), (x, y) ∈ (0,2π) × (0,2π), T = 12.5 (31)

with the variable coefficient function a(x, y) = 2 + sin(x + y). We set the forcing function
so that the solution is u(x, y, t) = sin(x + y − 2t). We observe in Tables 7 and 8 that the
convergence rate is not always optimal, but that indeed, with a minimum number of Gauss
points we improve the errors.

6.3 Input Mesh Based Midpoint Quadrature Approach

In this section the effect of using midpoint integration while approximating the convolution
operator is examined for the 1D and 2D cases.

6.3.1 One-Dimensional DG using midpoint quadrature

In this example we again consider the case of projecting

sin(2πx), x ∈ (0,1)

462 J Sci Comput (2010) 45: 447–470

Table 2 Errors for one-dimensional DG using P
3 polynomials for the non-uniform mesh. Before post-

processing, after post-processing on the DG mesh where Q is the number of quadrature points and finally
after post-processing on the consistent integration mesh. CI stands for consistent integration mesh

P
3

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 4

10 5.56E−05 – 2.18E−04 – 2.97E−04 – 8.94E−04 –

20 3.55E−05 3.97 1.55E−05 3.81 1.88E−04 0.66 6.08E−04 0.55

40 2.24E−07 3.99 9.89E−07 3.97 6.85E−05 1.46 2.75E−04 1.15

80 1.40E−08 4.00 6.16E−08 4.00 1.32E−05 2.38 3.94E−05 2.80

Before post-processing, Q = 7 After post-processing, Q = 16

10 1.42E−04 – 3.39E−04 – 1.38E−04 – 3.40E−04 –

20 1.86E−05 2.94 6.16E−05 2.46 9.62E−07 7.16 2.74 6.95

40 1.98E−05 -0.09 6.07E−05 0.02 7.84E−07 0.30 2.82E−06 −0.04

80 4.63E−06 2.10 1.62E−05 1.90 6.21E−07 0.34 1.96E−06 0.53

Before post-processing, Q = 31 After post-processing, CI

10 1.38E−04 – 3.40E−04 – 1.38E−04 – 3.40E−04 –

20 6.34E−07 7.76 1.42E−06 7.91 6.32E−07 7.77 1.41E−06 7.91

40 5.96E−08 3.41 2.56E−07 2.47 2.57E−09 7.94 5.24E−09 8.08

80 5.68E−08 0.07 1.95E−07 0.39 1.02E−11 7.98 2.00E−11 8.04

Table 3 Errors for two-dimensional DG using P
2 polynomials. Before post-processing, after post-processing

on the DG mesh where Q is the number of quadrature points and finally after post-processing on the consistent
integration mesh. CI stands for consistent integration mesh

P
2

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 3

162 1.90E−04 – 9.16E−04 – 3.15E−05 1.00E−04 –

322 2.38E−05 3.00 1.16E−04 2.99 3.31E−06 3.25 1.18E−05 3.08

642 2.98E−06 3.00 1.45E−05 3.00 4.11E−07 3.01 1.48E−06 3.00

1282 3.72E−07 3.00 1.81E−06 3.00 5.15E−08 3.00 1.85E−07 3.00

After post-processing, Q = 6 After post-processing, Q = 9

162 1.72E−05 – 2.71E−05 – 1.68E−05 – 2.41E−05 –

322 5.05E−07 5.09 1.67E−06 4.02 2.88E−07 5.87 6.75E−07 5.16

642 5.35E−08 3.24 2.03E−07 3.04 1.37E−08 4.40 6.97E−08 3.27

1282 6.65E−09 3.00 2.54E−08 3.00 1.63E−09 3.07 8.68E−09 3.00

After post-processing, Q = 12 After post-processing, CI

162 1.68E−05 – 2.40E−05 – 1.68E−05 2.39E−05 –

322 2.77E−07 5.92 4.53E−07 5.73 2.69E−07 5.97 3.81E−07 5.97

642 9.45E−09 4.87 3.10E−08 3.87 4.22E−09 5.99 6.00E−09 5.99

1282 1.06E−09 3.15 3.80E−09 3.02 6.60E−11 6.00 3.38E−11 6.00

J Sci Comput (2010) 45: 447–470 463

Table 4 Errors for two-dimensional DG using P
3 polynomials. Before post-processing, after post-processing

on the DG mesh where Q is the number of quadrature points and finally after post-processing on the consistent
integration mesh. CI stands for consistent integration mesh

P
3

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 4

162 4.71E−06 – 2.42E−05 – 8.49E−07 – 1.91E−06 –

322 2.95E−07 4.00 1.53E−06 3.99 1.72E−08 5.62 5.21E−08 5.19

642 1.84E−08 4.00 9.58E−08 4.00 1.06E−09 4.03 3.21E−09 4.02

1282 1.15E−09 4.00 5.99E−09 4.00 6.60E−11 4.00 2.01E−10 3.99

After post-processing, Q = 7 After post-processing, Q = 10

162 8.09E−07 – 1.15E−06 – 8.07E−07 – 1.16E−06 –

322 3.43E−09 7.88 5.37E−09 7.75 3.29E−09 7.94 6.05E−09 7.57

642 2.69E−11 7.00 6.56E−11 6.36 3.02E−11 6.77 1.08E−10 5.81

1282 1.10E−12 4.61 3.03E−12 4.44 1.71E−12 4.15 5.70E−12 4.25

After post-processing, Q = 13 After post-processing, CI

162 8.09E−07 – 1.15E−06 – 8.07E−07 – 1.14E−06 –

322 3.42E−09 7.88 5.26E−09 7.77 3.26E−09 7.95 4.61E−09 7.95

642 2.44E−11 7.13 5.84E−11 6.49 1.29E−11 7.99 1.82E−11 7.99

1282 8.62E−13 4.82 2.59E−12 4.50 5.04E−14 7.99 7.74E−14 7.88

Table 5 Errors for one-dimensional DG using P
1 polynomials for the linear advection equation. Before post-

processing, after post-processing on the DG mesh where Q is the number of quadrature points and finally
after post-processing on the consistent integration mesh. CI stands for consistent integration mesh

P
1

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 2

102 1.92E−01 – 2.93E−01 – 1.92E−01 – 2.78E−01 –

202 3.02E−02 2.67 4.98E−02 2.56 2.93E−02 2.71 4.35E−02 2.68

402 4.31E−03 2.81 7.69E−03 2.69 3.81E−03 2.94 5.95E−03 2.87

802 7.06E−04 2.61 2.45E−03 1.65 4.85E−04 2.97 8.24E−04 2.85

After post-processing, Q = 5 After post-processing, Q = 8

102 1.92E−01 – 2.73E−01 – 1.92E−01 – 2.71E−01 –

202 2.94E−02 2.71 4.18E−02 2.71 2.92E−02 2.71 4.15E−02 2.71

402 3.83E−03 2.94 5.50E−03 2.93 3.78E−03 2.95 5.39E−03 2.94

802 4.88E−04 2.97 7.10E−04 2.95 4.76E−04 2.99 6.82E−04 2.98

After post-processing, Q = 11 After post-processing, CI

102 1.92E−01 – 2.71E−01 – 1.92E−01 – 2.71E−01 –

202 2.92E−02 2.71 4.14E−02 2.71 2.92E−02 2.71 4.14E−02 2.71

402 3.78E−03 2.95 5.37E−03 2.95 3.78E−03 2.95 5.35E−03 2.95

802 4.75E−04 2.99 6.77E−04 2.99 4.76E−04 2.99 6.73E−04 2.99

464 J Sci Comput (2010) 45: 447–470

Table 6 Errors for two-dimensional DG using P
2 polynomials for the linear advection equation. Before post-

processing, after post-processing on the DG mesh where Q is the number of quadrature points and finally
after post-processing on the consistent integration mesh. CI stands for consistent integration mesh

P
2

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 3

102 4.95E−03 – 2.78E−02 – 3.48E−03 – 4.99E−03 –

202 4.87E−04 3.34 3.72E−03 2.90 1.11E−04 4.97 1.64E−04 4.92

402 5.96E−05 3.03 4.74E−04 2.97 3.83E−06 4.86 6.57E−06 4.64

802 7.44E−06 3.00 5.94E−05 3.00 2.38E−07 4.01 5.75E−07 3.51

Before post-processing, Q = 6 After post-processing, CI

102 3.48E−03 – 4.92E−03 – 3.48E−03 – 4.92E−03 –

202 1.10E−04 4.98 1.56E−04 4.98 1.10E−04 4.98 1.56E−04 4.98

402 3.44E−06 5.00 4.91E−06 4.99 3.42E−06 5.01 4.84E−06 5.01

802 1.12E−07 4.94 1.78E−07 4.79 1.07E−07 5.01 1.51E−07 5.01

Table 7 Errors for two-dimensional DG using P
1 polynomials for the variable coefficient advection equa-

tion. Before post-processing, after post-processing on the DG mesh where Q is the number of quadrature
points and finally after post-processing on the consistent integration mesh. CI stands for consistent integra-
tion mesh

P
1

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 2

102 3.52E−02 – 2.06E−01 – 1.50E−02 – 2.51E−02 –

202 8.42E−03 2.06 5.10E−02 2.01 1.85E−03 3.01 4.90E−03 2.36

402 2.09E−03 2.01 1.28E−02 2.00 3.48E−04 2.41 9.61E−04 2.35

802 5.23E−04 2.00 3.17E−03 2.00 7.78E−05 2.16 2.16E−04 2.15

After post-processing, Q = 5 After post-processing, Q = 8

102 1.42E−02 – 2.21E−02 – 1.41E−02 – 2.20E−02 –

202 1.36E−03 3.38 2.68E−03 3.04 1.44E−03 3.29 2.66E−03 3.05

402 1.66E−04 3.04 3.73E−04 2.85 1.95E−04 2.88 3.74E−04 2.83

802 2.11E−05 2.97 5.57E−05 2.74 2.71E−05 2.85 5.67E−05 2.72

After post-processing, Q = 11 After post-processing, CI

102 1.41E−02 – 2.20E−02 – 1.41E−02 – 2.20E−02 –

202 1.44E−03 3.29 2.64E−03 3.06 1.44E−03 3.29 2.63E−03 3.06

402 1.97E−04 2.87 3.69E−04 2.84 1.94E−04 2.89 3.53E−04 2.90

802 2.75E−05 2.84 5.53E−05 2.74 2.66E−05 2.86 5.00E−05 2.82

onto a piecewise polynomial space. The results are displayed in Fig. 5. The plots show that
it takes many applications of the midpoint rule to get better errors for the post-processed
solution than the initial projection, and that the midpoint rule is effective when we use

J Sci Comput (2010) 45: 447–470 465

Table 8 Errors for two-dimensional DG using P
2 polynomials for the variable coefficient advection equa-

tion. Before post-processing, after post-processing on the DG mesh where Q is the number of quadrature
points and finally after post-processing on the consistent integration mesh. CI stands for consistent integra-
tion mesh

P
2

Mesh L2 error Order L∞ error Order L2 error Order L∞ error Order

Before post-processing After post-processing, Q = 3

102 3.87E−03 – 3.39E−03 – 2.85E−04 – 6.30E−04 –

202 4.79E−04 3.02 4.06E−03 3.06 1.52E−05 4.22 4.36E−05 3.85

402 5.97E−05 3.01 4.93E−04 3.04 1.72E−06 3.14 4.73E−06 3.20

802 7.45E−06 3.00 6.05E−05 3.03 2.12E−07 3.02 5.64E−07 3.07

After post-processing, Q = 6 After post-processing, Q = 9

102 2.62E−04 – 4.91E−04 – 2.61E−04 4.69E−04 –

202 6.91E−06 5.24 1.43E−05 5.10 6.59E−06 5.31 1.44E−05 5.03

402 3.59E−07 4.27 1.05E−06 3.77 2.49E−07 4.73 6.30E−07 4.51

802 3.43E−08 3.39 1.02E−07 3.36 1.12E−08 4.47 4.53E−08 3.80

After post-processing, Q = 12 After post-processing, Q = 15

102 2.61E−04 – 4.63E−04 – 2.61E−04 4.62E−04 –

202 6.58E−06 5.31 1.06E−05 5.45 6.60E−06 5.31 1.06E−05 5.45

402 2.44E−07 4.75 4.92E−07 4.43 2.41E−07 4.76 4.47E−07 4.57

802 9.40E−09 4.70 2.64E−08 4.22 8.37E−09 4.85 1.87E−08 4.58

After post-processing, Q = 18 After post-processing, CI

102 2.61E−04 – 4.62E−04 – 2.61E−04 4.62E−04 –

202 6.57E−06 5.31 1.06E−05 5.45 6.57E−06 5.31 1.06E−05 5.45

402 2.41E−07 4.77 4.34E−07 4.61 2.41E−07 4.77 4.18E−07 4.66

802 8.08E−09 4.90 1.70E−08 5.34 8.04E−09 4.91 1.49E−08 4.81

128 points or greater. However, the point-wise errors are smoother than the errors for the
piecewise polynomial projection. This is because the breakpoints for the midpoint rule align
with the element boundaries on our mesh. Additionally, in Fig. 6 we can see that the lines
level off to the same as that for consistent integration error, which is the best possible sce-
nario.

6.3.2 Two-Dimensional DG using midpoint quadrature

In this section we again consider the two dimensional projection problem given by (29).
It is observed that in the case of 2D midpoint rule the convergence rate in the L2-norm is
linear, as is shown in the sample plot in Fig. 7. We observe this linear trend as we double
the number of evaluation points. For this particular example and based upon the slope of
our convergence diagram, we would need approximately 213 evaluation points to get an
error level similar to the DG solution. The errors for the higher degree polynomials are not
shown as they do not provide any new information given the computational time required to
compute them.

466 J Sci Comput (2010) 45: 447–470

Fig. 5 Point-wise errors on a logarithmic scale when using midpoint integration for post-processing with
different number of evaluation points. Top left: before post-processing. Bottom right: after post-processing on
the consistent integration mesh

Fig. 6 Convergence of the L2 errors when using midpoint integration for post-processing

6.4 Two-Dimensional Vector Field

As it is mentioned in [20, 22], smoothness-increasing, accuracy-conserving filtering can be
applied to discontinuous Galerkin vector fields to enhance streamline integration. In this sec-

J Sci Comput (2010) 45: 447–470 467

Fig. 7 Convergence of the L2

errors when using midpoint
integration for post-processing

tion we examine the impact of input mesh based filtering of a 2D vector field on streamline
calculations for visualization purposes.

A two dimensional vector field was created from

[
u(r, θ)

v(r, θ)

]
=

[1
2 cos(20θ) cos(θ) − r sin(θ)

1
2 sin(20θ) sin(θ) − r cos(θ)

]
. (32)

This has streamlines which are oscillating closed circuits. In Fig. 8 we present a sample
streamline of this vector field by projecting the function above over a 40 × 40 uniform mesh
on the interval [−1,1] × [−1,1] with a starting location of (0.0,0.3). The field approxi-
mations are linear in both the x- and y-directions. Streamlines were calculated using three
different time integration schemes, Euler Forward, 2nd-order Runge-Kutta (RK-2) and 4th-
order Runge-Kutta (RK-4), with three different time steps dt = 0.1,0.01,0.001. The “true
solution” streamlines (denoted as solid black line in all the images) are calculated by per-
forming RK-4 on the analytical function.

These results corroborate that input mesh based integration with sufficient quadrature
provides sufficient post-processing benefit in terms of smoothness and accuracy to be of use
in data processing and visualization.

7 Summary and Conclusions

This paper presents a study of the impact of numerical quadrature approximations used for
evaluating the convolution operator in smoothness-increasing accuracy-conserving (SIAC)
filters. We provide both theoretical estimates as well as empirical results which demonstrate
the efficacy of the post-processing approach when different levels and types of quadrature
approximation are used. We first examined the case when consistent integration with inex-
act Gaussian quadrature (under-integration) is used. Because consistent integration requires
solving the challenging geometric problem of find all the places in which regularity is de-
creased and generating a super-mesh based on this data, we considered what happens when
only the original DG mesh is used as the underlying support mesh for integration. Under

468 J Sci Comput (2010) 45: 447–470

Fig. 8 (Color online) Streamline integration example based upon vector field mentioned in (32). Solid black
streamlines denote “true” solution; blue streamlines were created based upon integration on an L2 projected
field; red streamlines were created based upon integration on a filtered field using consistent integration
approach and dashed black streamlines were created based upon integration on a filtered field using the input
mesh based approach

this scenario, we examined the use of Gaussian quadrature and of midpoint quadrature. This
choice highlighted the differences between polynomial-based high-order and adaptive low-
order quadrature implementations.

There are several points that can be draw from our results and discussions:

• The major uncontrollable cost in the post-processing algorithm is finding the consistent
integration mesh when given an arbitrary tessellation. In the case of uniform meshes,
many things simplify to drastically cut down the cost; however, uniform meshes are not
often used in general engineering practice.

• Because the post-processor consists of integrating a B-spline kernel against a DG solu-
tion, there are certain things we can state about the integrand being integrated. As the DG
element discontinuities and the B-spline knot lines cannot overlap, we know that in the
worst case the integrand contains a reduction in regularity due to the product of the DG

J Sci Comput (2010) 45: 447–470 469

discontinuity with the polynomial on a B-spline knot-segment. Although Gauss quadra-
ture over such a region is not exact, it can nonetheless be very effective.

• If the cost of finding the consistent mesh is prohibitive, post-processing with input mesh
based post-processing provides in many cases benefits comparable with consistent inte-
gration. The error introduced can be controlled by increasing the number of quadrature
points.

• Alternatives to Gaussian quadrature can be used for evaluating the convolution integrals;
however, a large number of samples are needed to obtain comparable results.

• When examined in the light of the our focus application area—visualization of DG
solutions—input mesh based post-processing appears to provide a convenient means of
obtaining smooth solutions with controllable accuracy.

We emphasis again that our study is primarily for engineering circumstances when the
trade-offs between time, resources and accuracy are important. Although the case against
committing such numerical crimes is well-known, the repercussions have not been well
documented for the use of this filter as a visualization tool. It is concerning this specific
crime to which we have attempted to provide both theoretical and empirical insight.

Acknowledgements The first and third authors are sponsored in part by the Air Force Office of Scientific
Research (AFOSR), Computational Mathematics Program (Program Manager: Dr. Fariba Fahroo), under
grant number FA9550-08-1-0156. The second author is sponsored by the Air Force Office of Scientific Re-
search, Air Force Material Command, USAF, under grant number FA8655-09-1-3055. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

1. Bramble, J., Schatz, A.: Higher order local accuracy by averaging in the finite element method. Math.
Comput. 31, 94–111 (1977)

2. Cockburn, B.: Discontinuous Galerkin methods for convection-dominated problems. In: High-Order
Methods for Computational Physics. Lecture Notes in Computational Science and Engineering, vol. 9.
Springer, Berlin (1999)

3. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

4. Cockburn, B., Karniadakis, G., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and
Applications. Springer, Berlin (2000)

5. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

6. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Post-processing of Galerkin methods for hyperbolic prob-
lems. In: Proceedings of the International Symposium on Discontinuous Galerkin Methods. Springer,
Berlin (1999)

7. Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element
methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)

8. Cockburn, B., Ryan, J.: Local derivative post-processing for discontinuous Galerkin methods. J. Comput.
Phys. 28, 8642–8664 (2009)

9. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element
method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

10. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P 1-discontinuous-Galerkin finite element
method for scalar conservation laws. Math. Model. Numer. Anal. (M²AN) 25, 337–361 (1991)

11. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V:
multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

470 J Sci Comput (2010) 45: 447–470

12. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated prob-
lems. J. Sci. Comput. 16, 173–261 (2001)

13. Conte, S., de Boor, C.: Elementary Numerical Analysis. McGraw-Hill, Tokyo (1972)
14. Curtis, S., Kirby, R., Ryan, J., Shu, C.-W.: Post-processing for the discontinuous Galerkin method over

non-uniform meshes. SIAM J. Sci. Comput. 30(1), 272–289 (2007)
15. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for CFD, 2nd edn. Oxford University Press,

London (2005)
16. Karniadakis, G.E., Kirby, R.M.: Parallel Scientific Computing in C++ and MPI. Cambridge University

Press, New York (2003)
17. Ryan, J., Shu, C.-W.: On a one-sided post-processing technique for the discontinuous Galerkin methods.

Methods Appl. Anal. 10, 295–307 (2003)
18. Ryan, J., Shu, C.-W., Atkins, H.: Extension of a post-processing technique for the discontinuous Galerkin

method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci. Comput. 26,
821–843 (2005)

19. Schumaker, L.: Spline Functions: Basic Theory. Wiley, New York (1981)
20. Steffen, M., Curtis, S., Kirby, R., Ryan, J.: Investigation of smoothness enhancing accuracy-conserving

filters for improving streamline integration through discontinuous fields. IEEE Trans. Vis. Comput.
Graph. 14, 680–692 (2007)

21. Szabó, B., Babuska, I.: Finite Element Analysis. Wiley, New York (1991)
22. Walfisch, D., Ryan, J.K., Kirby, R.M., Haimes, R.: One-sided smoothness-increasing accuracy-

conserving filtering for enhanced streamline integration through discontinuous fields. J. Sci. Comput.
38, 164–184 (2009)

	Quantification of Errors Introduced in the Numerical Approximation and Implementation of Smoothness-Increasing Accuracy Conserving (SIAC) Filtering of Discontinuous Galerkin (DG) Fields
	Abstract
	Introduction
	The Discontinuous Galerkin Method
	The Post-Processor
	Implementation
	Gaussian Quadrature Approaches
	Midpoint Quadrature Approach

	Quadrature Approximations of the Convolution Operator
	Gaussian Quadrature on a Consistent Integration Mesh
	Exact, Consistent Gaussian Quadrature
	Inexact, Consistent Gaussian Quadrature

	Gaussian Quadrature on the DG Mesh
	Midpoint Quadrature on the DG Mesh

	Results
	Consistent Integration with Inexact Gaussian Quadrature Approach
	Input Mesh Based Gaussian Quadrature Approach
	One-Dimensional DG
	One-Dimensional DG-Non-Uniform Mesh
	Two-Dimensional DG
	Two-Dimensional DG-Constant Coefficient Linear Advection Equation
	Two-Dimensional DG-Variable Coefficient Equation

	Input Mesh Based Midpoint Quadrature Approach
	One-Dimensional DG using midpoint quadrature
	Two-Dimensional DG using midpoint quadrature

	Two-Dimensional Vector Field

	Summary and Conclusions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

