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Resolution Strategies for the Finite-Element-Based
Solution of the ECG Inverse Problem
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Abstract—Successful employment of numerical techniques for
the solution of forward and inverse ECG problems requires the
ability to both quantify and minimize approximation errors in-
troduced as part of the discretization process. Our objective is to
develop discretization and refinement strategies involving hybrid-
shaped finite elements so as to minimize approximation errors for
the ECG inverse problem. We examine both the ill-posedness of the
mathematical inverse problem and the ill-conditioning of the dis-
cretized system in order to propose strategies specifically designed
for the ECG inverse problem. We demonstrate that previous dis-
cretization and approximation strategies may worsen the proper-
ties of the inverse problem approximation. We then demonstrate
the efficacy of our strategies on both a simplified and a realistic
2-D torso model.

Index Terms—Adaptive refinement, ECG forward problem,
ECG inverse problem, finite-element method (FEM), resolution
studies.

I. INTRODUCTION

THE numerical solution of ECG forward and inverse prob-
lems has received considerable attention as a means of

providing insight into the connection between observable data
(ECG signals) and the underlying biophysical phenomena that
they represent. Both forward and inverse modeling follow a
similar simulation science pipeline. First, a set of model equa-
tions is selected that mathematically articulates the biophysical
process of electric potential propagation within the torso vol-
ume. Second, geometric models are generated that capture the
domain over which the mathematical models operate. In the
case of the ECG problem, these models normally consist of a
geometric discretization of the heart surface, the torso surface,
and relevant organs and critical structures. Third, the model
equations are then discretized to form a numerical system, the
solution of which approximates the “true” solution of the model
system. Given the motivating goal of understanding complex
biophysical phenomena, it is natural to inquire as to how accu-
rately this pipeline reflects the process of interest. The means
by which one answers this question is the final step within the
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simulation science pipeline, which is a step that is essential to
providing scientific confidence in the results obtained. Within
the engineering literature, this final step is known as the process
of validation and verification (V&V) [1].

As its name implies, V&V partitions the evaluation of the sim-
ulation science pipeline into two parts. The validation process is
concerned with how faithfully the mathematical and geometric
models represent the phenomena of interest. The verification
process, on the other hand, is concerned with how accurately
one’s numerical and geometric discretizations approximate the
aforementioned models. Whenever numerical methods are em-
ployed for the solution of science and engineering problems,
it is important to understand the impact of one’s discretization
choice on how well the process of interest is being approximated.
Most numerical method practitioners tackle this issue through
the development of “refinement” strategies, which specify how
one decreases errors by increasing the resolution (or fidelity)
of the numerical approximation at the cost of increased com-
putational work. With such strategies in place, one can specify
an acceptable discrepancy between the true and approximate
solutions and can tune (or refine) the numerical and geometric
approximations accordingly. Most of the literature on adap-
tive refinement strategies has been targeted toward the solution
of “forward” simulations, which are mostly well-posed prob-
lems [2], [3]. This paper intends to develop discretization and
refinement strategies to be employed when solving the inverse
ECG problem with the finite-element method (FEM).

Continuous inverse problems are often ill-posed in the
Hadamard sense, in that the existence, uniqueness, and/or sta-
bility of the solution may not be guaranteed. Because of this
ill-posedness, the discrete version of an inverse problem can
be severely ill-conditioned, requiring numerical techniques to
address the ill-conditioned systems. The term “regularization”
is used to denote a class of techniques for constraining the orig-
inal ill-posed problem so as to yield a somewhat better-posed
problem. Solutions to the better-posed problem are interpreted
as constrained approximations of the original problem of in-
terest. The past few decades have seen the creation of a wide
range of regularization methods, both theoretical and practi-
cal [4]–[9]. In the context of our studies, it is worth noting
that one form of regularization to overcome the ill-posedness
of inverse problems is the discretization itself [10], which is
a method referred to as “self-regularization” or “regularization
by projection.” Theoretical optimal discretization formulations
have been proposed from both functional analysis [11], [12] and
Bayesian statistics [13], [14] viewpoints. The goal of our work
is to study regularization by discretization and refinement at a
practical level and to develop optimal discretization strategies
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that can be employed for computational inverse problems. The
discretization techniques we have developed can also be used in
combination with other classical regularization methods, such
as the widely used class of Tikhonov-based methods [4], [5],
so as to provide additional improvement to the inverse solution
accuracy.

A. Related Work

Two commonly used numerical methods employed for the
solution of ECG problems are the boundary element method
(BEM) and the FEM. Both are categorized as variational meth-
ods: they seek to satisfy the differential (model) equations in
a variational (or weak) sense. Each method has strengths and
weaknesses in terms of accuracy, fidelity, and computational
cost. Practitioners must balance these in making decisions as
to which method to employ. No matter which method is cho-
sen, however, one must deal with the verification process. Both
methods require the practitioner to understand the impact of res-
olution on the problem of interest. We now provide an overview
of some relevant research literature.

A comparative study applying both the BEM and the FEM
to ECG problems has indicated that under similar discretization
levels, the BEM yields smaller errors and consumes less compu-
tation time but requires more memory than does the FEM [15].
On the other hand, the FEM better accounts for the anisotropic
conductivities of human bodies. Discretizing the potential field
explicitly, the FEM allows a flexible investigation of the impact
of resolution in the verification process. In particular, adap-
tive finite-element refinement strategies that are widely used
in many engineering fields can be applied to the ECG prob-
lem [2], [16], [17]. Such strategies are normally based on cer-
tain element-wise error estimators and tend to refine the regions
where the spatial gradients of the field are high. The adaptation
process in such schemes is usually determined by a physiolog-
ically based stopping criterion, e.g., a minimax condition [17].
The efficacy and efficiency of such spatial adaptive refinements
in simulating forward ECG problems compared to conventional
uniform refinements have been demonstrated in [2], supported
by similar results reported by an adaptive BEM study [18].

Another somewhat indirect spatial adaption method for ECG
problems is to partition the transfer matrix resulting from the
FEM into several submatrices, each of which is relevant to a local
region of the biophysical potential field, and then, to apply a local
regularization procedure specifically to each submatrix [19].
Since discretization is one form of regularization, the rationale
of localized regional regularization coincides with the adaptive
spatial refinement.

In addition to the aforementioned h-type refinements, which
spatially refine the elements, p-type refinements, which approx-
imate the problem using higher order basis polynomials, have
also been explored for forward/inverse ECG problems. For ex-
ample, a finite-element/boundary element model based on cubic
Hermite interpolation was proposed in [20], and it was shown
in [21] that high-order quadrilateral elements could significantly
improve the numerical quality of inverse ECG solution.

Most of the referenced refinement studies report that while
increasing the numerical resolution beyond a certain point may
still further improve the accuracy of the forward ECG problem,
the ill-conditioning of the inverse problem is worsened, and thus,
the solution accuracy is diminished. Multilevel methods have
been proposed as one possible approach to alleviate this issue,
both in theory [22] and in practice [23]. An algebraic multilevel
method (AMG) has been proposed that allows more automatic
refinements and better stability in the presence of discontinuous
coefficients and boundary conditions than ordinary multigrid
methods [24]. However, multilevel studies have not addressed
the issue of optimization of discretization specifically for inverse
ECG problems.

To summarize, there is a notable gap in the current ECG
literature concerning the impact of resolution on the practical
forward and inverse problems for the FEM. Although the impact
of resolution on the epicardium and the body surface has been
previously investigated [25], it still remains an open question
as to how discretization is related to the ill-posedness of the
inverse ECG problem both qualitatively and quantitatively, and
correspondingly, how one should adapt one’s volumetric mesh
to maximize the operator conditioning while at the same time
minimizing error. Because the FEM is ubiquitously applied in
other fields of engineering, such as in fluid and solid mechan-
ics, especially for forward simulations, it is often assumed that
strategies developed in these contexts will naturally carry over
to both the solutions of the forward and inverse ECG problems.
Although many of the refinement strategies developed for me-
chanics simulations are effective when solving the ECG forward
problems, the ill-posedness of the ECG inverse problem under-
mines the transfer and extension of such refinement strategies
toward the inverse solution. To emphasize this point, in the next
section, we present a vivid example that illustrates how em-
ploying refinement strategies appropriate for the forward ECG
problem can undermine the solution accuracy when solving the
inverse ECG problem.

B. Motivation

To motivate this study, we consider an example of a finite-
element discretization of the forward and inverse ECG prob-
lems. The details will be discussed in Sections II and III, respec-
tively; here, we distill for presentation only the salient features
that help motivate our study.

The mathematical model used for our forward ECG problem
consists of a well-posed elliptic boundary value problem in
which one seeks the electric potential on the surface of the torso
given as input the potential on the surface of the heart. The
discretization by finite elements of boundary value problems of
this type is well studied, with very clear theoretical and empirical
guidelines as to how and where to place resolution in the form
of adding additional, smaller elements or using higher order
basis functions to decrease the approximation error. For the
ECG forward problem, a noticeable decrease in the error can be
obtained by increasing the number of elements at and around
the heart surface. The physical rationale for this strategy is that
the accuracy of the forward problem approximation is jointly
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Fig. 1. Effects of uniform refinement on the forward solution error and singular values of the transfer matrix. (Left) Increasing the resolution both on and normal
to the surface of the heart consistently reduces the error in the forward ECG simulation. |uH | is the resolution on the heart surface and |ūT − uT | is the forward
solution error on the torso surface. Four meshes are labeled as A–D in the ascending order of their resolutions. For simplicity, only mesh B and C are displayed.
(Right) Increase in resolution worsens the conditioning of the transfer matrix to be inverted in the inverse problem. Curves A–D are singular values in their original
length; these singular values are normalized to the length of A, as shown by curves B′–D′.

determined by the discretization’s ability to capture the electric
potential on the surface of the heart, as well as the ability to
capture the strong gradients of the potential moving away from
the heart into the torso volume.

Fig. 1 (left) presents a convergence plot showing the decrease
in the error between the true and approximate solutions of a
forward ECG problem where the resolution is being added at
and around the heart surface—precisely what traditional FEM
theory would dictate.

In Fig. 1 (right), we present the singular values (a measure
of numerical conditioning) of the transform matrix—the dis-
cretized operator that “transforms” potentials on the heart sur-
face to potentials on the torso surface. The inverse problem
consists of “inverting” the transform matrix so that, given po-
tentials on the torso surface, one can obtain potentials on the
heart surface. The magnitudes of the singular values provide a
measure of the invertability of the system. As can be seen in
this figure, the increase in resolution on and around the heart
surface actually increases the ill-conditioned nature of the in-
verse problem. A refinement strategy developed solely based
on considerations within the forward problem leads to an in-
appropriate discretization for the inverse problem. Thus, in this
paper, we seek to develop discretization and refinement strate-
gies that specifically consider the mathematical and numerical
constraints imposed by the inverse ECG problem.

C. Outline

The paper is organized as follows. Section II presents
the mathematical model for the forward ECG problem and
describe how one discretizes the model with the FEM.
In Section III, we present the mathematical model for the ECG
inverse problem and describe how one modifies the forward-
problem finite-element discretization methodology to solve the

inverse problem. We then present a mathematical discussion of
the ill-posedness of the inverse problem and the correspond-
ing ill-conditioning of the numerical system. Based upon these
discussions, we conjecture finite-element discretization strate-
gies appropriate for the ECG inverse problem. In Section IV,
we test our conjectures in two example problems: a simplified
2-D offset annulus problem and a 2-D realistic torso geometry
problem. Strategies arising as a consequence of the data pre-
sented are summarized in Section V. Section VI includes the
conclusion and discussion of future work.

II. DISCRETIZATION OF FORWARD ECG PROBLEM

In this section, we present the mathematical model used to
articulate the ECG forward problem, and present the details
of how one generates a finite-element approximation of the
problem.

A. ECG Forward Problem

The ECG forward problem seeks the potential field on the
torso surface induced by the heart’s electrical activity either
from current sources within the heart or from a potential field
on the heart surface. For this study, we use the formulation
in terms of epicardial potentials. Given the epicardial potential
as a (input) boundary condition, the potential within the torso
volume is dictated by a quasi-static approximation of Maxwell’s
equations expressed as follows:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (1)

u(x) = u0(x), x ∈ ΓD (2)

�n · σ(x)∇u(x) = 0, x ∈ ΓN (3)

where Ω denotes the torso domain, ΓD and ΓN denote the epicar-
dial (Dirichlet) and torso (Neumann) boundaries, respectively,
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u(x) is the potential field on the domain Ω, u0(x) is the known
epicardial potential boundary function, σ(x) is the symmetric
positive-definite conductivity tensor, and �n denotes the outward
facing vector normal with respect to the torso surface.

B. Finite-Element Discretization of Forward Problem

Solving (1)–(3) for any but the simplest geometries requires
the use of numerical approximations such as boundary elements
or finite elements [26]. We now review how one discretizes the
ECG forward problem using the FEM [27].

From the mathematical perspective, solving (1)–(3) is ac-
complished by assuming that the solution u(x) = v(x) + w(x)
can be decomposed into homogeneous and heterogeneous parts
(v(x) and w(x), respectively). The function w(x) is chosen to
satisfy both the Dirichlet boundary and Neumann boundary con-
ditions, and the function v(x) is chosen to satisfy the following
system:

∇ · (σ∇v(x)) = −∇ · (σ∇w(x)), x ∈ Ω (4)

v(x) = 0, x ∈ ΓD (5)

�n · σ∇v(x) = 0, x ∈ ΓN . (6)

A mathematical interpretation of this procedure is that one first
finds a “lifting” of the boundary conditions onto the space of
functions living over the entire domain, and then, solves a ho-
mogeneous problem whose forcing function involves the het-
erogeneous term. By such interpretation, one can immediately
see three approximation issues to be encountered when solving
the ECG forward problem: 1) how accurately one represents
the boundary conditions (expressed in how well w(x) captures
u0(x),x ∈ ΓD ); 2) how accurately one computes the right-
hand side forcing term involving w(x) and its interaction with
the discretization of the function v over the volume (i.e., how
to choose an optimal “lifting” operator); and 3) how accurately
one computes the solution of the homogeneous problem over
the volume.

Given a domain Ω and a partial differential equation (PDE)
operating on a solution u that lives over Ω, the standard FEM at-
tempts to construct a geometric approximation Ω̃ = T (Ω) con-
sisting of a tessellation of polygonal shapes (e.g., triangles and
quadrilaterals for 2-D surfaces) of the domain Ω, and to build an
approximating function space Ṽ consisting of piecewise linear
functions based upon the tessellation [27]. Building on these two
things, the goal of a finite-element analysis is to find an approx-
imation ũ ∈ Ṽ that satisfies the PDE operator in the Galerkin
sense. We utilized a hybrid triangular and quadrilateral tessella-
tion T (Ω) of the domain with the set N denoting indexes of the
mesh nodes as the geometric basis for the finite-element com-
putations. For the case of linear/bilinear finite elements, this set
consisted of the indexes for the triangle and quadrilateral ver-
tices. We then decomposed the set N into three nonintersecting
sets H, I, and T , which represent nodal indexes that lie on the
heart surface denoted with H (at which the heart potentials are
known, and hence the Dirichlet boundary), nodal indexes within
the interior of the domain for which the solution is sought (de-
noted with I), and nodal indexes on the torso surface for which

the solution is sought (i.e., the Neumann boundary, denoted with
T ), respectively.

Let φi(x) denote the global finite-element interpolating basis
functions, which have the property that φi(xj ) = δij , where xj

denotes a node of the mesh for j ∈ N . Solutions are then of the
form

u(x) =
∑

k∈N
ûkφk (x) (7)

=
∑

k∈I
ûkφk (x) +

∑

k∈T
ûkφk (x) +

∑

k∈H
ûkφk (x) (8)

where the first two right-hand side terms of (8) denote the sum
over the degrees of freedom of the problem consisting of the
unknown potential values at the vertices weighted by the basis
functions, and the third term denotes the same sum for the
(known) Dirichlet boundary conditions of the solution.

Substituting the expansion (8) into the differential equation
(1), multiplying by a function from the test space {φj (x); j ∈
I ∪ T }, taking inner products, and integrating by parts yield a
linear system of the form

(
AI I AIT

AT I AT T

)(
uI

uT

)
=

(
−AIH

−AT H

)
uH (9)

where uI = (ûk )T , k ∈ I, and uT = (ûk )T , k ∈ T , denote the
vectors containing the solution of the system (i.e., potential
values at the nodal positions in I ∪ T ), uH = (ûk )T , k ∈ H,
denotes the vector of known potentials on the surface of the
heart, and the matrices are given by

AI I = (∇φj , σ∇φk ) , j ∈ I, k ∈ I (10)

AIT = (∇φj , σ∇φk ) , j ∈ I, k ∈ T (11)

AT I = (∇φj , σ∇φk ) , j ∈ T , k ∈ I (12)

AT T = (∇φj , σ∇φk ) , j ∈ T , k ∈ T (13)

AIH = (∇φj , σ∇φk ) , j ∈ I, k ∈ H (14)

AT H = (∇φj , σ∇φk ) , j ∈ T , k ∈ H. (15)

In the previous expressions, (·, ·) denotes the inner product taken
over the entire spatial domain Ω. Assuming that all elements
touching the heart surface do not also touch the torso surface,
the aforementioned system can be written as

S
(

uI

uT

)
=

(
−AIH

0

)
uH (16)

where S is the so-called stiffness matrix and the right-hand side
vector is the “forcing term” induced by the known Dirichlet
boundary conditions. Because the stiffness matrix is positive-
definite, the solution of the linear system is amenable to iter-
ative methods such as the preconditioned conjugate gradient
method [28].

Based upon (16), we recapitulate the observations we made
concerning (4). Once an acceptable choice of resolution is made
for capturing the boundary conditions via uH , spatial accuracy
is dictated by how well one captures the heart surface/volume
interaction (via AIH ) and how accurate the volume conductor
is (via S).
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The forward ECG problem seeks to obtain the potential on the
torso surface. Utilizing the fact that AI I is the stiffness matrix
resulting from using FEM to solve a zero Dirichlet boundary
condition Laplace problem (and hence it is invertible), we can
rewrite the first line of (9) to obtain an expression for the poten-
tials in the interior as a function of both the torso and heart po-
tentials: uI = −A−1

I I (AIH uH + AIT uT ). Applying the Schur
complement procedure [29], one can then substitute this expres-
sion into the second row of (9) to obtain an expression for the
torso potentials as a function of the heart potentials

MuT = NuH (17)

M = AT T − AT IA−1
I I AIT (18)

N = AT IA−1
I I AIH . (19)

In addition, K = M−1N is often referred to as the transfer ma-
trix, since it “transfers” the potential information from the heart
surface to the torso surface. M is a well-conditioned and invert-
ible matrix; however, N is severely ill-conditioned. The ECG
forward problem given by (1)–(3) is a well-posed problem such
that when it is discretized as outlined before (under assumptions
of good element quality), it produces a transfer matrix that as a
forward linear operator is well-behaved.

III. INVERSE ECG PROBLEM AND DISCRETIZATION

In this section, we present the mathematical model used to ar-
ticulate the ECG inverse problem and present the details of how
one generates a finite-element approximation of the problem.
We then discuss the ill-posedness and ill-conditioning issues
one should consider when solving the FEM-based ECG inverse
problem.

A. ECG Inverse Problem

In the ECG inverse problem, one seeks to describe the elec-
trical activity of the heart either as a potential field on the heart
surface or as current sources that induce the potential field mea-
sured on the torso surface. In our study, we use the formulation
that seeks to find the potentials on the epicardial surface given
the measured potentials on the torso surface.

Given the torso surface potential as a (input) boundary condi-
tion, the potential within the volume is dictated by a Laplace’s
equation expressed as follows:

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω (20)

u(x) = g(x), x ∈ ΓN (21)

�n · σ(x)∇u(x) = 0, x ∈ ΓN (22)

where Ω denotes a torso domain bounded by the torso bound-
ary ΓN and the heart boundary ΓH , u(x) is the potential field
defined on Ω, g(x) is the measured torso boundary potential
function, σ(x) is the symmetric positive-definite conductivity
tensor, and �n denotes the outward facing vector normal to the
torso surface. With both the Dirichlet and Neumann boundary
conditions available on ΓN , one seeks the potentials on ΓH .

Solutions to (20)–(22) are unique [30], and the physical quan-
tities involved are all measurable. However, these solutions share

a characteristic of all ECG inverse problems in that they are ill-
posed in the Hadamard sense, i.e., because the solution does not
depend continuously on the data, small errors in the measure-
ment of the torso potentials or thorax geometry can yield un-
bounded errors in the solution. The origins of this ill-posedness
are biophysical; it arises both from the attenuation of potentials
as one moves away from the source and the fact that the potential
at any point on the torso surface is a weighted superposition of
all the individual sources within the heart. Hence, the ECG rep-
resents an integration of many sources, the influence of which
decreases sharply with distance. To find the inverse solution, we
must perform the complementary operations of amplification
and differentiation not only on the ECG but also on the in-
evitable noise that accompanies it. The result is highly sensitive
to any fluctuations in the input signals or geometric models.

B. Finite-Element Discretization of Inverse Problem

Instead of attempting to discretize (20)–(22) directly, most
practitioners form the finite-element approximation of the in-
verse problem indirectly by first developing the approximate
solution of the forward problem as given in (17). The nu-
merical solution procedure for the inverse problem can then
be stated as given uT , find uH so as to minimize the func-
tional ‖MuT − NuH ‖ in some appropriate vector norm. Many
practitioners go one step farther and minimize the functional
uT − (M−1N)uH , as traditional minimization techniques from
linear algebra can then be employed. Note that these forms are
mathematically equivalent since M is nonsingular. In either
form, the ill-posedness of the continuum problem translates
into an ill-conditioning of the discretized problem, thus requir-
ing constraints (via regularization) to ensure a stable solution.

C. Ill-Posedness Considerations

Acting as a volume conductor, the human body is known to
respond differently to different frequency components of the
electrical source. As such, Fourier analysis, which allows a
frequency decomposition of the solution space in infinite di-
mensions, is an effective analytic tool for understanding the
effect of the ill-posedness in inverse problems [31]–[33], and
thus, provides a guideline for discretization considerations. We
now use the Fourier analysis to study the ill-posedness of the
problem.

Assume that Ω ⊂ �2 , and without loss of generality, assume
σ = 1.0 in (1). We consider the equation in polar coordinates
with the origin point being set within the interior boundary ΓI .
The variable u0 , the Dirichlet condition on the heart boundary,
is a univariate function to the azimuthal variable θ and can be
expanded into a Fourier series

u0(θ) =
A0

2
+

∞∑

m

(Am cos(mθ) + Bm sin(mθ)) (23)

where θ ∈ [−π, π), Am and Bm are Fourier coefficients, and m
is the spatial frequency.

The general solution of (1) can be regarded as a superposition
of the solutions stemming from each frequency component of
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the source u0 in (23). By separating the variables, we can derive
the general solution

u(r, θ) =
∞∑

m=1

[(
cm rm +

dm

rm

)
(am cos(mθ)+bm sin(mθ)

]

+ a0 ln r + b0 (24)

where am , bm , cm , and dm are coefficients determined by
boundary conditions and domain geometries. To simplify our
discussion without losing generality, we consider an annulus
model with the outer radius being of unit length and the inner
radius being r0 , i.e., r ∈ [r0 , 1], 0 < r0 < 1. The zero Neumann
boundary condition requires cm ≡ 1 and dm ≡ 1; then, (24) is
reduced to

u(r, θ)= b0 +
∞∑

m=1

[(
rm +

1
rm

)
(am cos(mθ)+bm sin(mθ))

]
.

(25)
Combining (23) and (25) yields the algebraic relation between

the Dirichlet condition u0 and the solution u

u(r, θ) =
∞∑

m=1

(
rm + r−m

rm
0 + r−m

0

)
(Am cos(mθ)+Bm sin(mθ))

+
A0

2
, θ ∈ [−π, π), r ∈ [r0 , 1]. (26)

In particular, the forward operator K from the source space
(i.e., the heart surface) to the measurement space (i.e., the torso
surface) is made concrete by setting r = 1

uT =u(r = 1, θ)=
A0

2
+ 2

∞∑

m=1

Am cos(mθ)+ Bm sin(mθ)
rm
0 + r−m

0
.

(27)
The term 2/(rm

0 + r−m
0 ) describes the attenuation properties of

K, indicating that the magnitude of attenuation is an exponential
function with respect to the spatial frequency m. The magnitude
of attenuation also depends on r0 , which characterizes the ratio
of the interior/exterior radius of the domain. The ill-posedness
of the system can be understood in terms of (rm

0 + r−m
0 )/2

(the reciprocal term of the one mentioned before); it is due
to the “physical nature” of the problem being considered, and
therefore, cannot be alleviated by any discretizations.

Discretizing a function space is analogous to sampling a con-
tinuous signal, and the resolution is similar to the sampling
rate. With respect to discretization, spatial frequencies of a con-
tinuous function can be approximated by the number of sign
changes in the corresponding discrete vector (a measure of vari-
ation). According to the sampling theorem, discretization res-
olution is proportional to the band limit in terms of the spatial
frequency m. In this sense, given a discretization of the domain,
the heart boundary resolution determines the spatial frequency
band limit of the epicardial potentials to be recovered, and hence,
provides a sense of the intrinsic ill-conditioning of the discrete
inverse problem. This ill-conditioning increases approximately
as an exponential function with respect to the heart boundary
resolution.

In the forward ECG problem, the heart potential informa-
tion propagates through the volume conductor to reach the body

surface where the information is recorded. The recorded infor-
mation then forms the basis for solving the inverse problem.
The amount of recorded information not only depends on the
source but also on how much information the volume conductor
allows to pass. If a frequency component of the discretized heart
potentials cannot pass through the volume conductor, this com-
ponent can never be recovered in the inverse problem. However,
since the heart boundary discretization already assumes this
frequency component, the resulting numerical system is still
required to attempt to resolve this unrecoverable component,
leading to what can be considered as “extra” (or supplementary)
ill-conditioning. This ill-conditioning is due to discrepancies (or
mismatches) in discretization rather than the physical nature of
the inverse ECG problem. In conclusion, the recoverable band
limit of the heart potential ΦI is bounded by the minimum be-
tween the band limit implied by the heart boundary resolution
and the band limit specified by volume discretization.

Key observation: Increasing the desired resolution on the
heart surface increases the ill-posedness of the continuous sys-
tem. Requiring more fidelity in the heart-potential reconstruc-
tion increases the sensitivity of the system in the Hadamard
sense. We would consequently expect that arbitrarily increas-
ing the resolution on the heart surface will increase the ill-
conditioning of the numerical inverse problem. The resolution
in the volume mesh should be maintained to be not less than the
required fidelity of the heart-potential reconstruction.

D. Ill-Conditioning of Numerical System

In this section, we present one traditional means of evaluat-
ing the conditioning of the discretized problem—examining the
singular value spectrum of the forward operator. We will use this
method to demonstrate how the conditioning of the discretized
system affects the accuracy of the inverse solution.

After discretization via finite elements, the approximated
solutions on the heart and torso boundaries live in finite-
dimensional vector spaces, and the relationship connecting them
is given by

uT = KuH (28)

where K = M−1N as given in (17). Recall that the number of
degrees of freedom on the heart surface and torso surface need
not be the same; in general, K is an m × n matrix where m > n.
Here, m and n denote the dimension of the heart potential vector
and torso potential vector, respectively. Because of the ill-posed
nature of the problem, the corresponding discretization embod-
ied in the transfer matrix K admits a large condition number. To
assess the ill-conditioning of K, we utilize the concept of valid
and null spaces of K based upon its singular value spectrum,
which was introduced into the inverse ECG problem in [34].

To explore the spectrum of K, we first perform a singular
value decomposition (SVD) of the transfer matrix K

K = U · Σ · VT (29)

where U = (u1 , . . . , um ) ∈ �m×n and V = (v1 , . . . , vn ) ∈
�n×n are matrices consisting of the left and right singular
vectors, respectively, and Σ ∈ �n×n is a diagonal matrix with
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positive singular values σi, i = 1, 2, . . . , n. We obtain

uT = UΣVT uH =
n∑

i=1

uiσi(vT
i uH ) =

n∑

i=1

αiui

where αi = σi · (vT
i uH ) is a scalar value. The variable uT , the

vector of potentials measured on the torso surface, is a linear
combination of ui with coefficients αi , which is derived as the
product of the singular value σi and the projection of uH onto
the ith right eigenvector vi . As the singular value σi decreases
rapidly to zero (or, in practical computations, single-precision
or double-precision machine zero), the right eigenspace of K
can be decomposed into a valid subspace spanned by low-
indexed eigenvectors and a null subspace spanned by high-
indexed eigenvectors. The fraction of the source uH that falls in
the null space is smoothed out by the zero-valued σi . Only the
fraction of uH in the valid space has a nontrivial contribution
to the observable uT , and thus, can be recovered.

Accordingly, a slowly descending singular value spectrum
with a broader range of nonzero singular values indicates a
better conditioning of the discretized inverse problem. The
fraction of uH in the valid subspace estimates the best solu-
tion that is a recoverable problem, regardless of regularization
methods, regularization parameters, error measurements, input
noise, or other factors that depend on algorithms or numerical
solvers.

Key observation: Examination of the singular values of the
forward operator is a valuable means of determining the ill-
conditioning of the discretized system. Different discretization
choices, in terms of number of elements and placement of ele-
ments, will impact the formulation of the transfer matrix. This
will, in turn, impact its singular value spectrum. In order to
understand the impact of discretization choices on the numeri-
cal inverse problem, we can investigate the conditioning of the
resulting systems by assessing their singular values.

E. Regularization Methods and Parameter Selection

In general, it is extremely difficult to directly solve the in-
verse problem in (28), especially when the measured torso po-
tentials are contaminated with noise, because the matrix K is
rank-deficient characterized by a cluster of close-to-zero sin-
gular values. Regularization introduces extra constraints on the
desired solution, and then, seeks a solution that provides rea-
sonable balance between minimizing the residual error and sat-
isfying the constraints. The regularized problem is well posed
and provides a stable solution, which should be not too far from
the desired solution of the original ill-posed problem.

Perhaps, the best-known regularization technique is the
Tikhonov regularization, which is expressed as

uH (λ) = argmin{‖KuH − uT ‖2
2 + λ2‖LuH ‖2} (30)

where LuH is the regularization term. The matrix L is typically
either the identity matrix or the discrete approximation of the
first or second derivative operator, indicating that the regular-
ization term constrains the seminorm of the solution itself or
of its derivatives. λ is a regularization parameter that controls
the weight placed on the regularization relative to that placed

on solving the original problem. Obviously, a large λ implies a
large amount of regularization, placing strict constraints on the
solution seminorm without much consideration for the residual
error, while a small λ implies a small amount of regularization,
focusing on minimizing the residual error without much consid-
eration for the solution constraints. Therefore, λ is an important
quantity and should be chosen with care. Many studies have
been devoted to finding the optimal parameter [35].

On the other hand, the “optimal” value of λ (however it is
selected) somewhat reflects the ill-conditioned severity of the
inverse problem being solved. A small λ means that the problem
is not severely ill-conditioned, and therefore, does not require
much regularization, whereas a large λ offers the opposite im-
plication. In the extreme case of solving a well-conditioned
problem, the solution is obtained by minimizing the residual
error (a standard least-square problem). No regularization is
required at all, and λ = 0. Therefore, inspecting the value of
λ in the regularization process provides a means to assess the
ill-conditioning of the problem in addition to that of evaluating
singular values as we proposed earlier.

In this study, we obtained the inverse solution by adopting
the popular Tikhonov regularization and choosing L as the dis-
crete operator of the second-order derivative. The value of λ

was determined through an exhaustive search. Since the goals
of our study were to investigate optimal discretization tech-
niques, we did not intend to propose new, nonrefinement-based
regularization schemes or new methods to locate the regulariza-
tion parameter. Instead, we focused on the influence of various
discretization strategies in the regularization process.

IV. RESULTS

A. Simulation Setup

Herein, we present a study of the approximation and condi-
tioning properties of the ECG inverse problem solved by the
FEM. We will present three main categories of results: 1) ex-
amples on a 2-D simplified geometry with homogeneous con-
ductivities consisting of a circle within a circle, the so-called
“offset-annulus” problem; 2) examples on a 2-D realistic torso
geometry with homogeneous conductivities; and 3) a 2-D real-
istic geometry with heterogeneous conductivities. As our goal is
to generate guidelines for placing resolution (in the form of the
number of elements and the type of elements) in the discretized
ECG inverse problem, we examine the following scenarios:

1) increasing the resolution of the interior (heart) boundary
(tangential direction resolution);

2) increasing the resolution of the interior (heart) boundary
(normal direction resolution);

3) increasing the resolution of the volume conductor;
4) increasing the resolution of the exterior (no-flux) torso

boundary.
The objective of our experiments is to decipher which of these

scenarios leads to better-conditioned (or worse-conditioned)
systems. Throughout this study, a first-order finite-element ap-
proximation is applied, and h-refinement is employed to adjust
the resolution. To facilitate comparison and generalization, we
ensure that the annulus and the realistic geometry have the same
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Fig. 2. Effects of uniform h-refinement on the transfer matrix K and its components. (A) Mesh with 60 nodes on heart. (B) Mesh with 80 nodes on heart.
(C) Mesh with 100 nodes on heart. (D) Singular values of N and AI H plotted against the original index (A, B, C) and the normalized index (A, B′, C′).
(E) Singular values of K plotted against the original index (A, B, C) and the normalized index (A, B′, C′).

resolution both on their exterior boundaries and on their interior
boundaries. They also have approximately the same number of
elements and nodes.

After the heart-to-torso transfer matrix K, given by (17)–(19),
is formulated by the FEM, the inverse problem is solved by the
standard Tikhonov regularization, in which the optimal regular-
ization parameter is determined via an exhaustive search. Since
the choice of regularization methods and parameter values can
significantly influence the inverse solution accuracy, we apply
the classic Tikhonov regularization to provide consistency and
minimize the impact from different regularization techniques.
This choice allows us to isolate the influence of discretization
on the inverse solution.

The inverse problem is solved in the presence of various
levels of noise on the input—the measured potentials on the
torso surface. To take into account the randomness of input
noise, each experiment is repeated 50 times and the arithmetic
average of the results is analyzed.

In each study mentioned later, we present the resulting nu-
merical systems AIH , N, and K in the form of their singular
value spectra. We also show how the optimal regularization pa-
rameter reflects the numerical conditioning of the system solved
in the inverse process. Finally, we evaluate the inverse solution

using two metrics, the relative error (RE) and the so-called max-
gradient location error.

The RE between the calculated solution ûH and the exact
solution uH is defined as follows:

RE =
‖ûH − uH ‖2

‖uH ‖2
. (31)

The max-gradient location error measures the error in locating
the maximum gradient position in the inverse solution. The ra-
tionale for this metric is that it normally captures the activation
wavefront. The activation time (the time of depolarization) in
the ECG is usually estimated by the most negative time deriva-
tive, maximum spatial gradient, and zero surface Laplacian [36].
At one time instant, the field between the activated epicardial
region and the nonactivated region has the largest potential gra-
dient. This high spatial gradient is also an expression of the high
extracellular potential gradient associated with the depolariza-
tion phase. ECG researchers use this information to estimate
the propagation of activation potential wavefronts, which, com-
bined with some wavefront potential models, provides physio-
logically based a priori estimation of epicardial potentials. The
estimation can be directly incorporated into the regularization
to improve the inverse solution [37].



228 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 57, NO. 2, FEBRUARY 2010

Fig. 3. Refining the volume conductor eliminates the extra ill-conditioning induced by the discretization. The three meshes have the same boundary resolutions:
105 nodes on the torso and 60 nodes on the heart. (A) Mesh with 1045 elements, 665 nodes. (B) 1325 elements, 805 nodes. (C) 1629 elements, 957 nodes.
(D) Singular values of N and AI H . (E) Singular values of K.

TABLE I
EVALUATION OF INVERSE SOLUTIONS OF ANNULUS

SIMULATION SHOWN IN FIG. 3

B. 2-D Simplified Geometry

1) Uniform Resolution Refinement: We present in Fig. 2 a
uniform refinement typically taken in forward problems. Pan-
els (A)–(C) show three discretization levels of an annulus. The
ratio of the outer radius to the inner radius of the annulus is
set to be 1:0.4, approximating the ratio in the real human torso.
Panel (D) shows the normalized singular value spectra of the
resulting matrix AIH and N, while panel (E) illustrates the
singular value spectrum of the transfer matrix K. In order to
maintain good aspect ratios of the triangle elements, the signif-

Fig. 4. Plots of the inverse solutions from the volume-refinement simulation
shown in Fig 3. Evaluations of the solutions are presented in Table I. Mesh C
results in a better solution than does the mesh A.

icance of which in the approximation accuracy has been dis-
cussed in [1] and [38], the resolution on the interior (heart)
boundary is inevitably increased from 60 nodes in mesh A to
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Fig. 5. Refining the resolution normal to the heart under a coarse volume discretization. (A) Two layers of quadrilaterals around the heart. (B) Four layers of
quadrilaterals. (C) Eight layers of quadrilaterals. (D) Singular values of N and AI H . (E) Singular values of K.

80 nodes in mesh B and then to 100 nodes in mesh C. Our re-
sults show that such refinement worsens the ill-conditioning of
N and K.

2) Volume Conductor Resolution: In this test, we explore
the impact of the azimuthal resolution in the volume conduc-
tor. Fig. 3 shows annulus at three refinement levels [panels
(A)–(C)], the normalized singular value spectra of AIH and
N [panel (D)], and the normalized singular value spectrum of
K [panel (E)]. To avoid increasing the resolution on the heart
boundary, quadrilateral elements are placed around the heart to
decouple the tangential resolution and normal direction resolu-
tion. Quadrilateral elements also ensure the same discretization
of the high-gradient field near the heart.

Fig. 3(D) shows that such volume refinement improves the
singular value spectrum of N, whereas Fig. 3(E) shows that the
singular value spectrum of K is also improved. This is consistent
because K = M−1N where M is well conditioned. Note that
the matrix AIH remains constant in this test because neither the
mesh interface between the heart boundary and the volume nor
the basis functions spanning the interface changes. In addition,
AIH is much better conditioned than either N or K.

An important observation is that the proportion of nontrivial
singular values in the entire eigenspace of both N and K is
determined by the resolution in the volume of the polygon that

encloses the interior boundary, and that polygon has the least
number of nodes. This is clearly manifested in Fig. 3(A): The
coarsest polygon in its volume has 42 nodes compared to 60
nodes on the interior boundary. Consequently, singular values
of N and K of mesh A suddenly drop to 10−16 at the position
42/60 = 0.7 in the normalized SVD scale. As the volume is
refined in meshes B and C, singular value spectra are smoothed
and the proportion of trivial singular values (indicating the null
space) diminishes. The gap between the singular value spec-
trum of A and that of C is the additional (supplementary) ill-
conditioning caused by the discretization but not associated with
the ill-posed nature of the continuum problem. This fact can be
inferred from the Fourier analysis in Section III-C, where (23)
sets the frequency band limit of the epicardial potential one
seeks to recover, and where (27) describes the band limit of
the solvable potential field allowed by K. When the former
exceeds the latter, one could consider the discretization to be
“insufficient,” i.e., not sufficient to capture the aforementioned
resolution relationship. Note that this observation is also man-
ifested by our simulation on the realistic torso model, as will
be presented in the later section. We will further discuss this
issue in detail in Section V. Table I summarizes the evaluation
of inverse solutions and the regularization parameter λ in the
simulations shown in Fig. 3. Volume refinements consistently
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Fig. 6. Refining the resolution normal to the heart under a refined volume discretization. (A) Two layers of quadrilaterals around the heart. (B) Four layers of
quadrilaterals. (C) Eight layers of quadrilaterals. (D) Singular values of N and AI H . (E) Singular values of K.

reduce the maximum gradient location error regardless of the
presence of input noise. Without input noise, mesh refinements
reduce both the optimal value of λ from 0.0019 to 0.0003 and
the inverse solution error from 14.80% to 9.65%, indicating that
the numerical conditioning of the transfer matrix K is improved
from the regularization viewpoint. This is consistent with the
improvement of the singular value spectrum of AIH and K, as
shown in Fig. 3. While such improvement can still be observed
in the case of 30 dB input noise, it is not evident in the case of
20 dB noise. We conjecture that when the input noise goes be-
yond a certain level, its amplification effect will overwhelm the
improvement brought by discretization refinement. In this case,
this noise threshold is located between 30 and 20 dB. However,
although the quantitative metrics do not indicate apparent im-
provement in the case of 20 dB input noise, a visual inspection
of the inverse solution shows that the solution obtained from
mesh C indeed better captures the features of the exact solution
than did the solution from mesh A, as shown in Fig. 4.

3) Normal Direction Resolution: In this experiment, we
study the impact of resolution in the direction normal to the heart
boundary. This resolution captures high gradients in the poten-
tial field. Its refinement is achieved by increasing the number of
quad layers while still keeping the resolution in the tangential
direction. Meanwhile, the discretization of the rest volume is

kept constant. The test is performed in two situations: with a
coarsely refined volume conductor (shown in Fig. 5) and with a
well-refined volume conductor (shown in Fig. 6). Results from
both tests consistently indicate that increasing the resolution in
the normal direction improves the boundary-to-interior “lifting”
matrix AIH . Given that N and K are obtained by multiplying
several matrices onto AIH , their singular value spectra are also
“lifted” slightly. The basic quality of the singular value spec-
trum is still dominated by the tangential resolution in the vol-
ume: note the abrupt drop of the singular value spectrum in the
coarse-volume case in contrast with their gradual decline in the
refined-volume case. This implies that only when the azimuthal
resolution is reasonably refined does the normal direction reso-
lution matter to the condition of N and K.

4) Resolution on Torso Boundary: Measurements of the po-
tential field on the torso boundary constitute the input of the in-
verse ECG problem. While theoretically one can keep the same
resolution on the torso boundary as on the heart boundary so as
to derive a square transfer matrix, researchers in practice usu-
ally take more measurements (by placing more detecting elec-
trodes) in the belief that improving the numerical approximation
of the Cauchy condition will improve the inverse solution [19].
The intuition here is that an overdetermined (though still rank-
deficient) system may provide some sort of regularization.
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Fig. 7. Refining the resolution on the torso boundary. The heart boundary is fixed to be 60 nodes. (A) 60 nodes on the torso. (B) 100 nodes on the torso. (C) 120
nodes on the torso. (D) Singular values of N and AI H . (E) Singular values of K.

Fig. 7 illustrates our experiment in which the resolution on
the torso boundary is adjusted while the heart boundary is fixed.
To minimize perturbing effects induced by insufficient volume
discretization, as observed in our previous discussion, we refine
the volume properly in each case. However, the resolutions on
both boundaries are still kept unchanged during the refinement.
Quadrilateral elements are again employed to ensure the same
discretization of the high-gradient field around the heart. As
extra torso nodes are added in the transition from Fig. 7(A)–(C),
it is assumed that the real measured data were available on these
additional nodes, rather than simple interpolation from the data
on the existing nodes. Our results indicate that both N and K
are improved by the refinement on the torso.

C. 2-D Homogeneous Realistic Geometry

1) Volume Conductor Resolution: The geometric model for
this study consists of a single 2-D slice of the Utah torso
model [39], [40]. We assume that the volume conductor is
homogeneous with isotropic conductivities, ignoring the lung,
muscle, and other tissue conductivities. Fig. 8 shows our test
as well as properties of the resulting matrices. Analogous to
the procedure taken in the volume test of the annulus model,
we employ the same type of quadrilateral elements around the

heart in order to decouple the tangential resolution and normal
direction resolution, as well as to ensure the same discretization
of the high-gradient field near the heart. The mesh refinement
is hierarchical: mesh B in Fig. 8 includes all nodes of mesh A,
while mesh C includes all nodes of mesh B. This hierarchy has
clear implications in the first-order FEM: The stiffness matrix
AI I is also hierarchical, because all of its degrees of freedom
are located on nodes. Given that inverting AI I is the most time-
consuming step in the inverse problem computation, it is of
practical interest to weigh the marginal gain in approximation
accuracy against the extra computational cost. Fig. 8 shows that
such volume refinement improves AIH , N, and K, judging by
their singular value spectra. Also note that the proportion of
nontrivial singular values in the eigenspace of either N or K is
determined by the resolution of the polygon in the volume that
encloses the interior boundary and that has the least number of
nodes, an observation consistent with the discovery in the annu-
lus model. Table II presents the regularization parameter λ and
the evaluation of inverse solutions, which further confirms that
the improvement of singular value spectra leads to better inverse
solution. Volume refinement consistently reduces the maximum
gradient location error regardless of the presence of input noise.
In the noise-free case, mesh refinement reduces λ from 0.0077
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Fig. 8. Refining the volume conductor of a 2-D homogeneous torso slice. Three meshes share the same boundary resolution: 105 nodes on the torso and 60 nodes
on the heart. (A) Mesh containing 943 elements, 584 nodes. (B) Mesh containing 1297 elements, 761 nodes. (C) Mesh containing 1899 elements, 1062 nodes.
(D) Singular values of N and AI H . (E) Singular values of K.

TABLE II
EVALUATION OF INVERSE SOLUTIONS OF THE HOMOGENEOUS TORSO

SIMULATION SHOWN IN FIG. 8

to 0.0005, indicating that an improved K requires less reg-
ularization; consequently, the error is reduced from 8.81% to
4.19%. Similar improvement is also observed in the case of
30 dB noise, but is not evident when the noise level increases to
20 dB. Although the quantitative metrics do not indicate evident
improvement in the case of 20 dB input noise, a visual inspec-
tion of the inverse solution shows that the solution calculated
from mesh C in Fig. 8 indeed better captures the features of the
exact solution than does the solution from mesh A, as shown in

Fig. 9. Plots of real epicardial potential signals (inverse solutions) correspond-
ing to Fig. 8 and Table II. Mesh C yields a better solution than mesh A.

Fig. 9. In summary, all results are consistent with those from the
corresponding experiment conducted on the annulus model.

2) Resolution in the Normal Direction: We explore the im-
pact of the resolution in the normal direction by refining a region
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Fig. 10. Refining the resolution normal to the heart under a coarse volume discretization. (A) One layer of quadrilaterals around the heart. (B) Two layers of
quadrilaterals. (C) Four layers of quadrilaterals. (D) Singular values of N and AI H . (E) Singular values of K.

of quadrilateral layers near the heart while fixing the rest of the
volume mesh. Fig. 10 demonstrates the setup of three meshes,
and the resulting AIH , N, and K in terms of singular values.
The same conclusions are drawn as those from the annulus test in
Section IV-B3. Increasing the resolution in the normal direction
improves AIH , the boundary-to-volume lifting operator. The
abrupt drop in the singular values implies that the azimuthal
resolution in the volume still dominates the basic quality of the
numerical system. This test uses an underrefined volume mesh.
We also conducted the test with a well-refined homogeneous
torso model, and drew the same results as in the annulus test
in Section IV-B3. To avoid duplication, the latter test is not
presented in this paper.

D. 2-D Heterogeneous Realistic Geometry

Simulations are performed using a heterogeneous 2-D torso
mesh, which conforms to the interfaces between different phys-
iological tissues. The same epicardial data are taken as with the
homogeneous torso model. We repeat the refinement tests in
the volume and in the normal direction around the heart. This
model differs from the previous homogeneous model in that re-
finements must respect boundary interfaces between organs and
tissues. This study intends to demonstrate that the conclusions

drawn from homogeneous meshes also hold in heterogeneous
meshes in general. Fig. 11 presents results of volume refinement
and torso refinement. Panel (A) shows the original mesh gen-
erated by tissue segmentation. One can discern the epicardium,
lungs, skeletal muscle, and torso surface. To simplify the prob-
lem, we make two types of refinement: refining the lungs, as
shown in panel (B), and refining the tissue outside the lungs, as
shown in panel (c). Panel (D) displays the combination of both
refinements. By inspecting N in panel (E) and K in panel (E),
one can see that the lung refinement extends the singular value
spectrum, reducing the proportion of trivial singular values,
whereas the refinement on the torso surface extends the spectrum
slightly but meanwhile “lifts” it as well. Compared to mesh A,
mesh D combines the improvement brought by meshes B and C.

Fig. 12 shows the test of increasing the resolution normal
to the heart boundary. The results are consistent with the cor-
responding observation in the homogeneous torso case: The
boundary-to-interior lifting matrix AIH is improved while the
improvement of N and K is limited.

V. DISCUSSION

Our primary concern is how a finite-element discretization
of the ECG model influences the numerical conditioning of the
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Fig. 11. Effects of refining different regions in the heterogeneous torso mesh while keeping the epicardium intact. (A) Original mesh. (B) Refining the lungs.
(C) Refining skeletal muscles and torso surface. (D) Combining of B and C. (E) Singular values of N and AI H . (F) Singular values of K.

inverse problem, and consequently, the quality of the inverse
solution. The impact of discretization choices is first reflected
in the formulation of the forward transfer matrix K. Since the
inverse solution is obtained by conceptually “inverting” K, the
singular values of K (and its components such as N and AIH )
provide a quantitative measure of the numerical quality of the
discrete inverse problem. A well-formulated K should be char-
acterized by a slowly descending singular value spectrum and
a small proportion of trivial singular values corresponding to
the null space of K (theoretically, source information that falls
into the null space will be completely filtered out by K in the
forward problem, and therefore, can never be recovered in the
inverse problem, thus worsening its ill-posedness).

Although singular values describe general properties of the
system K to be solved, they are not directly associated with
the accuracy of the inverse solution, which relies heavily on
regularization of the still ill-conditioned system. In the classic
Tikhonov regularization, the parameter λ controls the amount
of regularization, and therefore, indicates the ill-conditioning of
K reflected in the problem-solving stage. These two measures,
along with the solution error evaluation, constitute the metrics
to assess the impact of discretization in this study.

When the volume conductor is insufficiently discretized,
Fourier analysis implies that the actually recoverable spatial-
frequency band limit allowed by the discrete system is less than
the frequency band limit assumed to be recovered on the heart
boundary. This implication is reflected in the transfer matrix K
by the truncation of its nontrivial singular values and by the
widening of its null space. This phenomenon is referred to as

artificial ill-conditioning because it is not due to the ill-posed
nature of the continuum problem. Volume refinement effectively
eliminates this type of ill-conditioning by improving the singular
value spectrum and reducing the null space. Such improvement
on the transfer matrix also shows its benefits in the problem-
solving stage by reducing the necessary regularization amount,
which is an improvement that ultimately leads to less error in
the inverse solution. This sequence of improvements is evident
especially when there is no measurement noise in the input torso
potential vector, because in the noise-free case, the only error
in (28) is the discretization error that lies in K only. Discretiza-
tion refinement promotes the accuracy of K, and hence, directly
improves the desired solution uH .

However, such improvement in the inverse solution becomes
less evident as input noise increases, until the noise reaches a
level that may obscure the improvement. This occurs because
any discretization refinement cannot change the underlying ill-
posed nature of the physical problem. The well-refined inverse
problem, though improved, is still ill-conditioned and very sen-
sitive to the perturbation of input noise (as can be seen, the
most improved K still has a condition number of 1014). This
observation suggests that volume refinement is necessary be-
fore reaching a certain level, beyond which it however becomes
unnecessary for computational efficiency.

All results presented in our study corroborate the following set
of “guidelines” for the placement of resolution with the finite-
element-based discretization of the inverse ECG problem.

1) Increasing the resolution on the heart surface leads to a
corresponding increase in the ill-conditioned nature of the
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Fig. 12. Refining the resolution normal to the heart. (A) One layer of quadrilaterals around the heart. (B) Two layers of quadrilaterals. (C) Four layers of
quadrilaterals. (D) Singular values of N and AI H . (E) Singular values of K.

discretized inverse system. One should realistically assess
the resolution needed on the interior boundary to satisfy
the problems of interest and be careful not to solve beyond
the minimum resolution needed.

2) Some benefit can be gained from increasing the resolu-
tion normal to the heart boundary. This corresponds to a
refinement of the right-hand side operator within the finite-
element forward problem—the boundary-to-interior lift-
ing operator. The challenge historically with unstructured
discretizations has been to effectively increase normal res-
olution while maintaining tangential (or azimuthal in our
test cases) resolution. With element types such as trian-
gles or tetrahedra, the effort to strike a balance between
the two normally leads to poorly shaped elements with
their own conditioning issues. We advocate the use of hy-
brid discretizations—in particular, the use of quadrilateral
elements for the heart surface in 2-D. The quadrilateral
elements can be connected to triangular elements in the
volume. We suggest the use of prismatic elements on the
heart’s surface in 3-D. The prism elements can be con-
nected to tetrahedral or hexahedral elements within the
volume. This allows for fixing the heart surface resolution
while increasing the resolution normal to the heart.

3) Once the other two items are in place, one should increase
the resolution of the volume conductor. Although, theo-
retically, one can argue that monotonic increases in the
resolution of the volume conductor leads to continual im-
provement of the inverse problem, there is a fundamental
practical limitation in terms of the amount of information
provided on the torso boundary. The resolution within the
volume conductor needs to be sufficient to capture both the
features of the torso data and the features implied by the
discretization of the heart boundary, but for computational
efficiency, it should not be much greater.

4) Increasing the resolution on the exterior boundary can
positively impact the conditioning of the inverse system,
but only when this increase comes as a consequence of
increasing the measured data available on the exterior
boundary. Merely embedding the data in a higher dimen-
sional (resolved) function space on the boundary does not
necessarily lead to better inverse problem solution.

These guidelines mainly advocate refining the volume con-
ductor while judiciously deciding the fidelity of the discretiza-
tion on the heart surface. One might use these guidelines to
advise under appropriate scenarios the use of the BEM, which
achieves an exact solution in the volume, which is a property
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sought for by volume refinement in the FEM. Given that the
BEM only requires discretizing interfaces between regions of
different conductivities, it is worth studying the impact of reso-
lution on each interface.

VI. CONCLUSION

This study explored the impact of different discretizations on
the inverse ECG problem and proposed refinement strategies
oriented to specific considerations in the inverse problem. We
showed that refinement strategies developed solely for optimiz-
ing the forward problem may be inappropriate for the corre-
sponding inverse problem. We then proposed refinement strate-
gies for the inverse problem that were based on the analysis of
its ill-posedness. Such strategies include determining the res-
olution on the heart surface, determining the resolution in the
volume conductor, and decomposing the resolution in tangential
and normal direction near the heart by employing quadrilateral
elements. Impacts of refinement strategies were assessed by in-
specting the singular values, the regularization behaviors, and
the error measurements of the inverse solution. The results ob-
tained both from the annulus model and the realistic torso model
consistently indicated that discretization refinement by itself is
one form of regularization, and can be combined with other
classic regularization techniques to further improve the inverse
solution.

We currently considered the problem in two dimensions. Fu-
ture work includes extending this study to realistic ECG prob-
lems in three dimensions. Our preliminary results indicate that
the guidelines presented in the previous section carry over in a
straightforward manner. Issues still to be resolved include how
to assess the epicardial potential information on the heart surface
and how to properly define its spatial frequency spectrum on the
3-D surface. It is also worth addressing how the anisotropy, as
well as discontinuities in the conductivity fields, influences dis-
cretization considerations in the inverse problem. Given that the
size of the problem in three dimensions is significantly larger
than that in two dimensions, computational resource will pose
another major constraint in practical simulations. Thus, another
probable future research direction is to optimize resource distri-
butions given limited computation resources.
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