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Abstract

We propose an extrinsic, continuous-Galerkin (CG), extended finite element method (XFEM) that allows multiple Heaviside
nrichments within a single element in a hierarchical manner. This approach enables complex, evolving XFEM surfaces
n 3D that cannot be captured using existing CG-XFEM approaches. We describe an implementation of the method for
D static elasticity with linearized strain for modeling open cracks as a salient step towards modeling progressive fracture.
he implementation includes a description of the finite element model, hybrid implicit/explicit representation of enrichments,
umerical integration method, and novel degree-of-freedom (DoF) enumeration algorithm. This algorithm supports an arbitrary
umber of enrichments within an element, while simultaneously maintaining a continuous solution across elements. Additionally,
ur approach easily allows an implementation suitable for distributed computing systems. Enabled by the DoF enumeration
lgorithm, the proposed method lays the groundwork for a computational tool that efficiently models progressive fracture.
o facilitate a discussion of the complex enrichment hierarchies, we develop enrichment diagrams to succinctly describe and
isualize the relationships between the enrichments (and the fields they create) within an element. This also provides a unified
anguage for discussing extrinsic XFEM methods in the literature. We compare several methods, relying on the enrichment
iagrams to highlight their nuanced differences.
c 2021 Elsevier B.V. All rights reserved.

eywords: CG-XFEM; Progressive fracture; Heaviside enrichment; HHE

1. Introduction

Researchers have proposed numerous computational methods for modeling the fracture of solids. Each method
as its advantages for individual scenarios, but due to the complexity of fracture, no single method has won out
ver the others for general use. One significant difference between approaches lies in the choice of a damage
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model. Damage models treat damage as either a discrete process that localizes to a surface, or as a continuum
process that affects the response of a finite volume of material. While both methods capture the far field influence
of damage, discretely modeling damage yields more accurate stress fields near fracture surfaces. In this paper, we
address discrete modeling of damage, for which there are a variety of methods in the literature. However, the genre
of continuous-Galerkin (CG), extended finite element methods (XFEM) have not been capable of modeling some
complex crack interactions. This paper proposes an extension of CG-XFEM for handling such situations.

To understand where this contribution fits within the larger community of discrete damage modeling, we provide
review of the literature. For most problems of interest to the community, the crack path is not known a priori.
ost computational methods suitable for modeling crack propagation with solution-dependent paths broadly fall

nto the following categories:

1. Remeshing methods, which modify the mesh throughout the analysis to conform to inserted cracks,
2. Meshless/mesh-free methods, which only require the enrichment of a node-based mesh upon which to solve

the governing equations,
3. Generalized/extended finite element methods, which account for cracks without requiring a conformal mesh

by enriching the approximation functions,
4. Augmented finite element methods, which account for the displacement jump without introducing new

degrees of freedom through a static condensation technique,
5. Embedded discontinuity approaches, which introduce surface elements within the volume elements to account

for the discontinuity and consider the coupling between the two, and
6. Boundary element methods, which only require a boundary mesh (including surfaces of cracks) instead of a

volume mesh upon which to solve the governing equations.

Remeshing methods combined with the classical finite element method (FEM) were some of the first methods
eveloped for numerically predicting crack propagation. Since the mesh must conform to the crack as it grows,
ne approach is to remesh the entire domain whenever cracks are modified, but this strategy is costly [1,2]. Some
ethods effectively remesh at the element level by replacing elements cut by a crack extension with new elements,

ut it can be difficult to insert standard elements that conform to both the original element boundaries and the
rack surface. Polyhedral finite element methods (PFEM) extend the element library to include polyhedral elements,
llowing a standard element to be cut by an arbitrary crack and replaced by two polyhedrons (or polygons in
D) [3–7].

Outside PFEM, requiring the mesh to conform to any surfaces that introduce discontinuities is very restrictive
hen dealing with complex geometries and large analyses. Meshless (sometimes referred to as mesh-free)
ethods emerged to avoid the need for a mesh altogether, based on the early development of smoothed-particle

ydrodynamics [8,9]. While mesh-based methods construct the trial space used to approximate the solution on a
esh, meshless methods construct the trial space only on nodes [10]. These methods are well-suited for situations
here very large deformations are expected, which would result in extreme mesh distortion, or where discontinuities
ould move through the domain, such as moving phase boundaries or crack propagation [9,11]. Meshless methods

an solve a broad class of problems that are difficult for mesh-based methods and still receive attention in the recent
iterature [12,13].

Babuška et al. [14] developed the partition of unity finite element method (PUFEM) within the genre of
meshless methods to allow special functions to be used in the approximation based on a priori knowledge,
building on the work of Duarte and Oden in h-p adaptive methods [15]. Borrowing concepts from meshless
methods, especially PUFEM, Belytschko et al. used analytical solutions of simple fracture problems to enrich
the approximation functions, while maintaining partition of unity. This extended finite element method (XFEM)
could accommodate the presence of a crack with minimal remeshing during crack propagation [16]. The XFEM
community continued to develop methods that used local enrichment with a focus on modeling cracks and other
discontinuities [17,18]. In parallel, Babuška and collaborators at the University of Texas similarly developed the
generalized finite element method (GFEM) [19–21]. Though early developments of GFEM focused on global
enrichment, the two categories of methods began to converge and were considered equivalent by Belytschko [18].
Within the XFEM community, methods fall into two subgenres. First, extrinsic methods account for enrichment by
introducing additional degrees of freedom (DoFs) into the global system of equations, and the majority of XFEM
variants fall into this category [18,22]. Second, intrinsic methods avoid introducing additional DoFs by basing the

approximation functions on moving least squares functions instead of standard polynomial shape functions [22,23].
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An early development especially pertinent to this work is that of Hansbo and Hansbo [24]. Though the authors
id not classify their method as a type of XFEM, Areias and Belytschko [25] later showed that the method
as mathematically identical to XFEM and merely differed in implementation. An important difference was the

hoice of basis functions. The XFEM/GFEM community proposed introducing terms to the basis functions, which
nvolved the addition of DoFs, but the standard approach causes the original DoFs to no longer directly represent
isplacements [25]. Alternatively, Hansbo and Hansbo chose a different linear combination of the same basis
unctions that allows the original DoFs to preserve their representation of the nodal values of the displacement
eld on one side of the crack and the new DoFs to represent the nodal values of the displacement field on the other
ide. Though mathematically equivalent to the classical XFEM approach, this approach greatly simplifies the DoF
numeration for hierarchies of enrichments as proposed herein.

A few years later, Song et al. [26] proposed the phantom node method (PNM), which extended the work
f Hansbo and Hansbo to model dynamic crack propagation and focused on efficient numerical integration of
nriched elements. Subsequently, researchers continued to extend the phantom node method to allow a crack tip to
erminate within a 2D element [27], support mixed-mode cohesive laws with greater robustness [28], and support
hell models [29].

Borrowing concepts from PNM and local remeshing, Chen et al. [30] proposed the floating node method (FNM),
hich, like PNM, possesses the advantage of not modifying the global mesh geometry but accomplishes local

emeshing through the introduction of additional nodes and subelements. The local nature of FNM allows the
ethod to be easily implemented in standard FEA codes, and importantly, FNM allows multiple cracks within an

lement through local remeshing of the cut element. The method has been successfully applied to modeling cracks
nd delaminations within laminated composites using both the virtual crack closure technique (VCCT) and the
ohesive segment method [30–32].

Taking a different approach to extend standard FEM to account for discontinuities, the augmented finite element
ethod (AFEM) effectively considers a remeshed element that conforms to a discontinuity and statically condenses

he additional DoFs at the element level. This results in an element-local algorithm with great computational
fficiency, but introduces nonphysical discontinuities that can lead to significant error near a crack [33–35]. This
trategy has many advantages from the viewpoint of economy, providing algorithms that are easy to parallelize
nd avoiding the need to modify the global system of equations, but it also creates artifacts that can significantly
egrade accuracy and requires careful estimation of the error introduced. Highlighting and ameliorating this issue,
a et al. recently proposed conforming-AFEM (C-AFEM), which approaches the problem as a local–global analysis

nd requires iterative solutions at both crack and global levels until convergence is achieved [36]. C-AFEM is a
ignificant improvement for the AFEM community, though the nonlocal and multiscale nature of the algorithms
akes parallel implementation more difficult, and the similarities to intrinsic XFEM should be noted.
In parallel to GFEM, embedded discontinuity methods were developed, accounting for the presence of a

iscontinuity by introducing DoFs that correspond to the response of the surface and coupling the equations with
hose governing the volume element [37]. Early on, Bolzon [38] developed a method that accounts for discontinuities
or meshes that employ constant strain triangular elements. Soon after, Alfaiate et al. [39] proposed two different
trategies for inserting interfacial elements within a volume element. The first strategy statically condensed the DoFs
orresponding to the displacement jump, which is very similar to classical AFEM. The second strategy introduces
ew DoFs at the interface, which is similar to XFEM but with fewer DoFs, resulting in additional error for the
isplacement field. Linder et al. [40] generalized Bolzon’s first strategy by introducing DoFs and subsequently
liminating them from the system of equations through static condensation. Meanwhile, Dias et al. [41] generalized
he second strategy, calling it the discrete strong discontinuity approach (DSDA), by keeping the additional DoFs in
he system of equations. Finally, Dias et al. [42] developed the generalized strong discontinuity approach (GSDA)
y borrowing concepts from both Linder et al. [40] and Dias et al. [41] but weakly enforcing continuity of tractions
etween elements. GSDA has many similarities to XFEM approaches, but the primary difference is that GSDA
ntroduces fewer DoFs into an element to capture the presence of a discontinuity, resulting in a discontinuous
isplacement field across elements.

Analyses conducted by engineers for design often seek information about the region with the highest stresses,
gnoring the stress state for much of the volume. When modeling fracture, the highest stresses generally develop near

aterial boundaries, especially crack fronts. Consequently, for decades, researchers have been developing boundary

lement methods (BEM) to target such problems. When the response is linear, this genre of methods only requires a
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boundary mesh, without modeling the volume, and results in a more dense system of equations compared to sparse
systems encountered in FEM. When nonlinearities are introduced, only the portion of the volume experiencing
nonlinearity needs to be modeled [43].

It should be noted that there are many other methods that do not strictly fall into the categories of methods
uitable for either continuum damage models or discrete damage models. For example, variational methods have
een developed to connect the two disciplines [44]. A genre of variational methods of particular note is phase-field
odels (PFM), which solve two sets of partial differential equations: one that governs the elastic response of the

ontinuum, and one that governs the intensity of a second phase-field. Phase-field models were originally developed
o model moving weak boundaries, but researchers have applied them to fracture by treating cracks as a phase-field
nd minimizing the total potential energy, which is an extension of Griffith’s theory [45–47]. Additionally, several
esoscale particle approaches exist outside the traditional categories, such as peridynamics [48–50] and the lattice

iscrete particle model (LDPM) [51].
Despite the wide variety of computational methods for discretely modeling fracture, no method stands out as

ell-suited for problems involving the combination of complex networks of interacting cracks, nonlinear materials,
nd complex domains. Additionally, many problems that fall into this category require modeling a large domain
nd/or with fine discretization near crack networks, making a distributed implementation crucial. Therefore, it is
reatly beneficial to develop a method that easily lends itself to a distributed implementation.

This paper proposes an extrinsic XFEM approach for modeling discontinuities that relies on standard finite
lement basis functions, similar to the works of Hansbo and Hansbo [24], Iarve [52,53], and Song [26]. However,
nlike the aforementioned works, the proposed method takes a hierarchical view of Heaviside enrichments in an
lement, without introducing the artifacts seen in AFEM or requiring a set of basis functions for polyhedra as
equired in PFEM. In particular, the approach we offer:

1. Supports an arbitrary number of Heaviside enrichments within an element, while properly accounting for the
interactions between them;

2. Provides a novel DoF enumeration that naturally maintains a C0 continuous solution across elements and
can be quickly updated as XFEM surfaces evolve; and

3. Prioritizes element locality in all algorithms to ensure an implementation suitable for distributed computing.

The proposed approach extends the state-of-the-art for modeling complex, evolving 3D surfaces within the CG-
FEM community. It serves as an apropos foundation for modeling progressive fracture in conjunction with crack
odels that smear the effect of the crack front, such as the cohesive segment method. However, a detailed discussion

f a crack model implementation is reserved for a future work.
In addition to the method itself, we also develop a lexicon using enrichment diagrams for describing and

visualizing relationships between enrichments (and the fields they create) both in a single element and between
adjacent elements. This provides a unified language for discussing and comparing extrinsic XFEM approaches used
for modeling fracture that rely on Heaviside enrichments.

Section 2 discusses the basics of hierarchical Heaviside enrichment (HHE), which is the basis of the proposed
XFEM approach. This initial explanation focuses on defining the necessary concepts through illustrations. In
Section 3, we introduce the formal notation of enrichment diagrams, which will be used throughout the paper.
In Section 4, we describe the implementation of HHE, creating a new XFEM approach that is a natural extension
of several existing methods in the literature. Section 5 provides several examples, which verify the implementation
and showcase the capabilities of the method. In Section 6, we use the enrichment diagram lexicon to compare
several XFEM methods in the literature, highlighting key differences between them. Finally, we conclude with a
delineation of the strengths and shortcomings of our method and planned future work.

2. Hierarchical heaviside enrichment (HHE)

As discussed in the introduction, researchers have already successfully used Heaviside enrichments to model
discontinuities and bi-material interfaces that do not conform to faces of elements in the mesh, and our approach
extensively uses the concept of a hierarchy of enrichments in an element. Additionally, we require that Heaviside
enrichments:

1. Do not move once inserted,
2. Extend to the boundary of an element or the surface of another enrichment in the same element, and

3. Do not lie entirely along a face, edge, or node of an element.

4
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Fig. 1. Enrichment tree for a quadrilateral element.

Since the literature does not use consistent terminology for delineating extrinsic XFEM approaches, we define
terms related to a hierarchical view of Heaviside enrichments for the remainder of this section. We borrow concepts
from the method proposed in Hansbo and Hansbo [24] and the phantom-node method. [26] Namely, a Heaviside
enrichment introduces a second set of degrees of freedom for the element conforming to the original element
support, such that each set represents the solution for a half-space on either side of the enrichment. Let a field refer
to the solution defined by one set of DoFs in the element. Though a field extends over the entire element, it only
“physically” represents a subdomain of the element, referred to as the physical domain of the field. A field may
be similarly divided into two new fields with a second enrichment. This binary property of Heaviside enrichment
(under the above assumptions) makes it natural to describe the creation of fields within an element as a full binary
tree. Each node of the tree represents a field, which can have either 0 or 2 children, and an enrichment exists where
a node forks into two branches. The term enrichment tree refers to the binary tree view of fields and enrichments
n an element.

For the simplest case, consider a 2D quadrilateral element enriched to account for a planar discontinuity or
aterial interface. Fig. 1a shows the enrichment tree. The shaded regions in the figure indicate the physical

omain of each field. We use + and − to distinguish between sides of the enrichment. The choice is arbitrary,
but enforcement of interelement compatibilities requires the convention. The enrichment trees shown in this paper
will always place the field that represents the negative side of an enrichment on the left side, removing the need to
label the normal vector explicitly.

The enrichment tree acknowledges the original field of the element, but only the fields that are leaves in the binary
tree have degrees of freedom associated with them. Due to this important difference, fields can be separated into two
categories: basal fields, which are the leaves in the enrichment tree, and aggregate fields, which are interior nodes
in the tree and calculated via an aggregation function of their descendent fields, which is defined in Section 4.1.
In the enrichment tree, only basal fields can be enriched, and a new enrichment creates two new basal fields and
changes the enriched field into an aggregate field. If both sides of an existing enrichment should be enriched, then
two enrichments must be introduced, one for each basal field on either side of the existing enrichment. This is
important for modeling phenomena like the fracture of solids, since a crack terminates at an existing crack surface
or material boundary and may only “continue” or “jump” to the other side if an initiation criterion is satisfied there.
For example, Fig. 1b shows the enrichment tree if the field on the negative side of the first enrichment in Fig. 1a
is enriched. The resulting enrichment tree has three basal fields, two aggregate fields, and two enrichments.

In HHE, we can hierarchically introduce Heaviside enrichments ad infinitum within an element, each one further

dividing a physical domain of a field. Up to this point, the discussion has only considered a single element. For
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multiple elements, compatibility of fields across adjacent elements requires special attention. Let an enrichment
surface refer to a contiguous collection of element level enrichments that compose a physically meaningful surface
in the global domain. Within the context of fracture modeling, an enrichment surface could model a crack or a bi-
material interface in the domain. For CG-XFEM, the solution should be continuous throughout the global domain,
except across enrichment surfaces that represent discontinuities. The front of the enrichment surface exists where
an enrichment surface terminates interior to the global domain and is capable of growth. Thus, an enrichment in
an element that terminates at another enrichment surface is not considered part of the front. The front requires a
strategy to maintain proper continuity of fields depending on what the enrichment surface models. For example, the
cohesive segment method allows a partially closed cohesive zone to exist along the surface’s front, and when the
cohesive zone begins to open at the front, the cohesive surface grows.

The idea of hierarchically considering Heaviside enrichments is not novel to this work. In the field of topology
optimization, Noel et al. [54] developed an immersed boundary method using hierarchical B-splines to define
Heaviside enrichments along material boundaries, including a strategy for adaptively refining the background
mesh. Recently, Jahn developed an XFEM method based on hierarchical level-sets to define material boundaries
for multi-phase problems, including problems with moving phase boundaries [55]. Advancing the interface-
enriched generalized finite element method (IGFEM) [56], Soghrati developed a hierarchical approach for Heaviside
enrichment to ameliorate artifacts that emerge when material boundaries come close together [57]. This is not an
exhaustive list of authors who have used the concept. However, to our knowledge, a hierarchical view of Heaviside
enrichments in a CG-XFEM approach, which by definition maintains C0 continuity of the solution across elements,
is novel to this work.

3. Enrichment diagram notation and terminology

We extend the ideas and notation of the previous section to build a unified lexicon for discussing hierarchical
Heaviside enrichment. With additional compatibility information, the enrichment trees become enrichment diagrams.

he idea of using diagrams like these is not novel. For example, Chen et al. extensively used diagrams to
llustrate how the floating-node method and the phantom-node method worked, highlighting the differences between
hem [30,58]. However, a formalized language that can efficiently describe methods using multiple enrichment
urfaces is a unique contribution of this work. Table 1 defines the symbol notation for enrichment diagrams that
ill be used through the remainder of the paper.
The remainder of the paper relies heavily on terms that describe the relationships between fields and enrichments

ithin the same enrichment tree. Relationships between fields directly follow the terminology for binary trees, while
elationships between enrichments are new but borrow concepts from binary trees. To facilitate a definition of terms,
ig. 2 shows an enrichment diagram with all fields and enrichments labeled. Terms describing relationships in the
nrichment tree are:

eld a function which exists over the entire element and represents the solution on its physical domain.

hild field a field that is directly below another field or created by an enrichment (e.g., Field B is a child of Field
A and of Enrichment 1).

hild enrichment an enrichment directly below another field or enrichment (e.g., Enrichment 2 is a child of Field
B and of Enrichment 1).

escendant fields the set of all fields below a field or enrichment (e.g., Field B, C, D, and E are the descendant
fields of Field A and of Enrichment 1).

escendant enrichments the set of all enrichments below a field or enrichment (e.g., Enrichments 1 and 2 are
the descendant enrichments of Field A; Enrichment 2 is the only descendant enrichment of Field B and of
Enrichment 1).

ibling field one of two fields created by the same enrichment (e.g., Field B is a sibling field of Field C and vice
versa).
asal field a field without any children, i.e., a leaf in the enrichment tree (e.g., Fields C, D, and E).

6
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Table 1
Hierarchical enrichment diagram symbols.

aggregate field a field with children, i.e., an interior node in the tree (e.g., Fields A and B)

branch one of two paths stemming from an enrichment (e.g., Enrichment 1 creates two branches, with Field B
and its descendants on one branch and Field C (and any subsequent descendants) on the other).

branch sign the sign (− or +) indicating which branch a field occupies for the level it exists at. By convention,
negative branches will always be on the left and positive branches will always be on the right (e.g., Fields B
and D have a − branch sign, while Fields C and E have a + branch sign).

parent field the field one level up from another field or enrichment along the same branch (e.g., Field A is the
parent field of Field B, Field C, and Enrichment 1).

parent enrichment the enrichment that created a field or the enrichment one level up from an enrichment on the
same branch (e.g., Enrichment 1 is the parent enrichment of Fields B and C, and of Enrichment 2).

ancestor fields the set of all fields above a field or enrichment along the respective branch, i.e., the recursive set
of parent fields (e.g., Fields A and B are ancestors of Field D, Field E, and Enrichment 2).
7



M.K. Ballard, R. Amici, V. Shankar et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114221

r

4

s
i
A
a
r
e
f
m

4

f
e
d
u

w
f
t
t
t
t
e

Fig. 2. Enrichment diagram for notation.

ancestor enrichments the set of all enrichments above a field or enrichment along the respective branch, i.e., the
recursive set of parent enrichments (e.g., Enrichment 1 is an ancestor of Fields B, C, D, and E and of
Enrichment 2).

oot field a field that does not have any ancestors (e.g., Field A).

. HHE implementation

In Section 2, the concepts of hierarchical Heaviside enrichment (HHE) were discussed at a high level. This
ection describes our implementation of the HHE theory in an XFEM formulation for infinitesimal strain elasticity
n the context of fracture. To simplify the discussion in this section, enrichment surfaces will represent cracks.
dditionally, as previously stated, we impose that an enrichment is not allowed to lie along an edge or face of

n element nor allowed to exactly intersect a node of an element. When a situation arises that would violate this
estriction, we move the enrichment slightly to avoid coincidence with the face, edge, or node. This restriction
nsures that the enrichment tree remains a full binary tree. Note that this paper focuses on the pieces of the analysis
ramework needed to account for discontinuities in the solution field. Therefore, the implementation of a crack
odel will be left to a future publication.

.1. Aggregation of fields

As discussed in Section 2, degrees of freedom (DoFs) correspond to basal fields, and an aggregate field is a
unction of its descendant basal fields. This section delineates the aggregation function for elasticity for a single
nrichment and then extends to the general case of multiple enrichments. For elasticity, DoFs correspond to
isplacements at the nodal positions. Before enrichment, the displacement field at any location within the element,

¯(x̄), is given by

ū (x̄) =

N∑
i=1

φi (x̄) ūi , (1)

here overbar denotes a vector quantity, ūi denotes the displacement at node i , φi (x̄) denotes the element shape
unction which has value 1 at node i , and N is the number of nodes in the element. After Heaviside enrichment,
he element is divided into two half-spaces, each with its own basal field to represent displacement on its side of
he enrichment. Let ū− (x̄) refer to the displacement field on the negative side of the enrichment and ū+ (x̄) refer to
he displacement field on the positive side of the enrichment, with these signs assigned based on a vector normal to
he enrichment surface. The displacement fields are calculated from the respective nodal values using the existing
lement shape functions via

ū− (x̄) =

N∑
φi (x̄) ū−

i , and (2)

i=1

8
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ū+ (x̄) =

N∑
i=1

φi (x̄) ū+

i , (3)

here ū−

i and ū+

i refer to two sets of DoFs for the element (one for the negative side and one for the positive side
f the enrichment, respectively).

Then, the aggregation function yields the aggregate displacement field, ū (x̄), by

ū (x̄) = H (x̄) ū+ (x̄) + (1 − H (x̄)) ū− (x̄) , (4)

where H (x̄) is the generalized Heaviside function that takes the value of 0 on the negative side of the enrichment
and 1 on the positive side. Effectively, a parent field is a convex combination of its two child fields. If a child field
itself is an aggregate field, then the same equation recursively applies down the tree.

For the remainder of this paper, let lowercase Greek letters denote fields, uppercase script letters denote
enrichments, and double stroke letters denote sets of fields or enrichments. Furthermore, let superscripts denote
to which field or enrichment a function belongs. Finally, let subscripts refer to the containing element.

In the general case of multiple enrichments, it is useful to have an expression for ū (x̄) that does not rely on
recursion, which is given by

ū (x̄) =

∑
β∈Be

Cβ (x̄) ūβ (x̄), (5)

here Be is the set of basal fields in element e, and the coefficient Cβ (x̄) is a function of β and all of β’s ancestor
elds, denoted by Aβ

e . With A as the parent enrichment of α, and B as the parent enrichment of β, Cβ (x̄) is given
y

Cβ (x̄) =

∏
α∈Aβ

e ∪{β}

hα (x̄), where (6)

hα (x̄) =

⎧⎪⎨⎪⎩
1 − HA (x̄) , if α is on the negative side of A,

HA (x̄) , if α is on the positive side of A,

1, if α is the root field.

(7)

Fig. 3 shows the application of these definitions to the situation in Fig. 1b, where ū− (x̄) was enriched. The basal
eld indices for this example are Be = {1+, 2−, 2+}; recall ū1− (x̄) is an aggregate field after enrichment. The root
ggregate displacement field, ū (x̄), is given by

ū (x̄) = C1+ (x̄) ū1+ (x̄) + C2− (x̄) ū2− (x̄) + C2+ (x̄) ū2+ (x̄) , where (8)

C1+ (x̄) = H 1 (x̄) , (9)

C2− (x̄) =
(
1 − H 1 (x̄)

) (
1 − H 2 (x̄)

)
, and (10)

C2+ (x̄) =
(
1 − H 1 (x̄)

)
H 2 (x̄) . (11)

Recall that a basal field can be evaluated at any location within the element, but the function hα is only nonzero
ver the physical domain of the field, thus the coefficient Cβ (x̄) is only nonzero in a subset of the domain of the
lement, Ωe. Note then that an aggregate field β also has a physical domain. In general, the physical domain of any
eld β, Ωβ

e , is given by

Ωβ
e ⊆ Ωe | ∀ x̄ ∈ Ωe → Cβ (x̄) = 1. (12)

For the situation depicted in Fig. 3, the physical domain of each field is shaded. For integrals over the element
nvolving ū (x̄) or a quantity derived from ū (x̄), it is convenient to integrate piecewise, since

ū (x̄) = ūβ (x̄) , ∀ x̄ ∈ Ωβ
e , β ∈ Be. (13)

.2. Finite element model with enriched elements

The implementation and theory up to this point hold for any type of physics for which the solution field contains

iscontinuities. This section develops HHE for linearized infinitesimal strain theory. The weak form of the governing
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Fig. 3. Enrichment diagram from Fig. 1b with labeled fields and enrichments.

equation for infinitesimal strain elasticity is provided in many textbooks [59]. Without body forces, the weak form
becomes∫

σ̃ (x̄) : δ̃ε (x̄) dΩ =

∫
t̄ (x̄) · δū (x̄) dΓ , (14)

here σ̃ (x̄) is the rank-2 stress tensor, ε̃ (x̄) is the rank-2 strain tensor, and t̄ (x̄) is the traction vector. For a linear
lastic material, stress is linearly related to strain through a rank-4 tensor that represents the constitutive relation,
,̃ so Eq. (14) can be rewritten as∫

Ckl (x̄) εl (x̄) δεk (x̄) dΩ =

∫
t j (x̄) δu j (x̄) dΓ , (15)

here stress, strain, and the constitutive relation use Voigt notation. This holds for any arbitrary volume, including
or a single element, Ωe. However, the form used for classical FEM requires modification for enriched elements. If
β

j , v
β

j , and w
β

j denote the x , y, and z components of ūβ (x̄), respectively, evaluated at node j within an element,
hen all the nodal values of field β in an enriched element can be arranged as the vector

qβ
=

[
uβ

1 , v
β

1 , w
β

1 , . . . , uβ

N , v
β

N , w
β

N

]
∀ β ∈ Be, (16)

here N is the number of nodes in the element and Be is the set of basal fields in the element. For a given basal
eld within the element, ūβ (x̄) is a function of the nodal displacement vector, qβ , and a matrix of shape functions,

A, where

uβ

i (x̄) = Ai j (x̄) qβ

j , and (17)

A =

⎡⎣φ1 (x̄) 0 0 . . . φN (x̄) 0 0
0 φ1 (x̄) 0 . . . 0 φN (x̄) 0
0 0 φ1 (x̄) . . . 0 0 φN (x̄)

⎤⎦ . (18)

The matrix A involves the same shape functions for all fields within an enriched element. Using this with Eq. (13)
ields the root aggregate displacement field, ū (x̄), in indicial notation

ui (x̄) = Ai j (x̄) qβ

j , ∀ x̄ ∈ Ωβ
e , β ∈ Be. (19)

Typically, the matrix B denotes the partial derivative of the strain with respect to the nodal displacement vector,
β . Like A, the form of B is the same for both HHE and classical FEM, and it is only a function of the derivatives
f the shape functions for the element. With this, the strain becomes

ε̃ (x̄) = B (x̄) qβ, x̄ ∈ Ωβ
e , β ∈ Be. (20)

Since the displacement and strain within the element are piecewise defined, the variational form of the governing
β β
quation must be piecewise integrated. Let Be denote the set of basal fields and Γe be the boundary of Ωe . Using

10
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piecewise integration and rearranging to separate the variation of the nodal displacements, the variational form of
the governing equation is∑

β∈Be

(∫
Bki (x̄) Ckl (x̄) Bl j (x̄) dΩβ

e qβ

j −

∫
tm (x̄) Ami (x̄) dΓ β

e

)
δqβ

i = 0, ∀ β ∈ Be, (21)

ut δqβ is arbitrary and independent of δqγ
∀ γ ∈ Be \ {β}. Therefore, the expression within the parentheses must

e zero for each basal field β. Notice that the finite element model forms a block system of equations of size |Be|.
Since enrichments introduce new boundaries into the domain, it is useful to distinguish between the new

oundaries that intersect the boundary of the element and those that are internal to the element for each basal
eld, β. Let Γ β

ext denote the external boundary of β, and let Γ β

int denote the internal boundary, i.e.,

Γ
β
ext = Γ β

e ∩ Γe, ∀ β ∈ Be, and (22)

Γ
β

int =

∑
γ∈Be\{β}

Γ β
e ∩ Γ γ

e , ∀ β ∈ Be. (23)

Note that the intersection of three or more basal field boundaries is either an empty set or a single point. Since
β
e = Γ

β

int ∪ Γ
β
ext , the finite element model in can be rearranged as∫

Bki (x̄) Ckl (x̄) Bl j (x̄) dΩβ
e qβ

j −

∑
γ∈Be\{β}

∫
t j (x̄) A j i (x̄) d

(
Γ β

e ∩ Γ γ
e

)
−

∫
t j (x̄) A j i (x̄) dΓ β

ext = 0, ∀ β ∈ Be. (24)

The sum of the integrals over the intersections of basal field boundaries is important for a crack model and should
eceive special attention. Section 3 used the term enriched cohesive zone at a conceptual level. Mathematically, an
nriched cohesive zone ensures that the sum of the integrals over the intersection of basal field boundaries for all
ombinations of basal fields is accurately calculated. For this paper, all enrichments are traction-free, so the integrals
ver the internal boundaries are all zero.

Under this assumption, the finite element model is rearranged to form the system of linear equations

Keqe = Fe. (25)

he block stiffness matrix, Ke, for the element becomes block diagonal, with each diagonal block, Kβ
e , defined by

Kβ
e =

∫
BT (x̄) C (x̄) B (x̄) dΩβ

e . (26)

he off-diagonal blocks are nonzero only when tractions across internal boundaries are nonzero. Additionally, the
orce vector, Fe, may be defined via blocks Fβ

e for each basal field β, given by

Fβ
e =

∫
AT (x̄) t̄ (x̄) dΓ β

ext . (27)

losed-form solutions for these integrals are generally difficult to obtain, so we evaluate the expressions using
umerical integration, as described in Section 4.4.

.3. Enrichment surface discretization and growth

We require a representation of enrichment surfaces to track where the surface lies and define boundaries of the
hysical domains of the basal fields. A representation of an enrichment surface can be either implicit (defined by
function evaluated on the original mesh), or explicit (composed of a collection of surface elements). Implicit

epresentations benefit from the many established methods for evolving level-sets, easing the implementation of
rowth algorithms. On the other hand, explicit representations are convenient for modeling complex behavior
cross enrichment surfaces, such as a cohesive law governing the opening of cracks or oxygen diffusion through
crack network, since explicit representations provide a mesh for the required calculations. We implement both

epresentations, using the implicit representation to determine how an enrichment surface evolves and the explicit

epresentation for numerical integration and topological checks.
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4.3.1. Level-set representation
We use the signed distances evaluated at each node of an element to implicitly represent where an enrichment

ies within an element via the level-set method. We interpolate the nodal signed distance values to any point within
he element using a set of basis functions and consider the enrichment to lie along the 0-isosurface. We restrict the
nterpolation of the signed distance to linear polynomials, regardless of the order of the element, in order to avoid

ultiple intersections along a single edge. Additionally, we require a signed distance value at a nodal position to
e non-zero, avoiding the possibility of a level-set exactly going through a node, edge, or face and guaranteeing
hat the level-set will cut through some volume within the element. To avoid a signed distance value of zero at a
odal position in this case, we always add a small positive value of O(1e-10).

To ease a distributed implementation, we give a strong emphasis to the locality of algorithms within this
ramework. Consequently, we selected the element-local level-set method proposed by Duan et al. [60]. While
volving level-sets, Duan et al. recognized that there is a competition between minimizing the error between the
epresented crack surface and the surface predicted by the fracture model, and minimizing the discontinuity between
n extension of the crack front with the existing crack surface. Consequently, they devised a method to find a level-
et within an element through least-squares minimization of these two competing error terms. The method relies
n the fact that the set of nodal signed distance values is unique to each element, which means that two adjacent
lements can have different signed distance values at their shared nodes, and a weighting parameter is introduced to
etermine the relative importance of each of the two errors. However, importantly, the level-set method allows an
nrichment surface to be discontinuous across element boundaries and, consequently, can introduce a small amount
f discontinuity into the solution field at adjacent enriched elements. Allowing some discontinuity may provide
dvantages, such as a lower global error and improved condition numbers for the global system of equations, which
e plan to explore. However, in this paper, the weighting parameter is set such that all enrichment surfaces are C0

continuous across element boundaries. In combination with the hierarchical Heaviside enrichment method proposed
herein, the solution remains C0 continuous across all adjacent elements.

4.3.2. Polygonal discretization
After an implicit representation is created for a new enrichment, we create the explicit representation based on the

intersection of the level-set with the physical domain of the parent field, which is approximated by a set of bounding
polygons forming a polyhedron. Since the explicit representation is used for volume integrals over the physical
domain of a basal field, the polygons are expressed in the parametric coordinate system of the element, avoiding the
need to map from the global coordinate system to the parametric coordinate system of the element during numerical
integration. Additionally, we do not require that the polygons be planar, but they must be a trilinear function in the
element’s parametric coordinate system. Although the implicit representation of an enrichment extends throughout
the entire element, the explicit representation is bound by the physical domain of the parent field. Furthermore,
when a new enrichment is introduced, all the intersected polygons that bound the basal field being enriched are cut
(or divided) by the new enrichment.

For example, consider an 8-node hexahedron element with a first enrichment defined by a signed distance function
f 1(ξ̄ ) = ξ3, which is the plane ξ3 = 0, and a second enrichment defined by the signed distance function f 2(ξ̄ ) = ξ2

(the plane ξ2 = 0). Figs. 4a and 4b show the implicit representations for both enrichments, respectively, while
Fig. 4c shows the explicit representations for both enrichments. Note that the first enrichment restricts the explicit
representation of the second enrichment. The second enrichment also caused the first enrichment to be divided into
two polygons with vertices {a, f, e, d} and { f, b, c, e}, respectively.

The polygonal discretization of enrichments (and faces) of an element allows fast topological queries that are
equired for growing enrichment surfaces and finding compatibilities for basal fields and enrichments, which we
iscuss in the next section. For each polygon, we store to which enrichment or face it represents, and for each
dge of the polygon, we store to which element edge it lies along (if any). This information efficiently enables the
ollowing queries:

uery 1. Whether the level-set for an enrichment in one element intersects the physical domain of a basal field in
an adjacent element through the shared topology of the two respective elements,

uery 2. Whether the level-set for an enrichment in one element intersects the shared topology between its parent

element and an adjacent element, and
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Fig. 4. Implicit and explicit representations of two enrichments in a 8-node hexahedron element.

Query 3. Whether the physical domain of a basal field touches the shared topology between its parent element and
an adjacent element.

Query 1 is critical to the algorithms described later in this paper. Namely, it is needed when testing if a given
nrichment may grow into a given basal field and when determining if a new enrichment in one element should
e compatible with any existing enrichments in adjacent elements. On the other hand, Queries 2 and 3 serve as
lters to short-circuit complex logic involving enrichment tree traversals for cases when the topological predicate
an guarantee that a more expensive enrichment tree predicate will not be met. Importantly, storing this topology
nformation alongside the polygonal discretization is not required to perform any of the three queries mentioned,
ince they can be based entirely on the element topology and the signed distance values of all enrichments in
elevant elements. However, storing this information significantly reduces the computational time required (at the
ost of more memory). Thorough profiling is required to understand the details of this trade-off.

.3.3. Growth algorithm
To advance the front of an enrichment surface, we must first determine the basal fields into which it is

opologically permissible for the front to grow. This determination involves compatibilities between enrichments,
which must be distinguished from compatibilities between basal fields, which was defined earlier in Table 1. Let a
compatibility between an enrichment in one element and an enrichment in an adjacent element mean that the solution
jump should be C0 continuous along the two enrichments across the adjacent elements. Given this definition, the
conditions that must be satisfied to permit an enrichment A that lies along the front to advance into a basal field β

are as follows:

Condition 1. The parent element of β is adjacent to the parent element of A,
ondition 2. A must intersect the physical domain of β across the shared edge/face between the two elements (see

Query 1 in Section 4.3.2),
ondition 3. A must not be compatible with any enrichment in the set of ancestor enrichments of β, Aβ

E , and
ondition 4. For each ancestor enrichment in AA

E , if there is an enrichment in Aβ

E that is compatible, then A and
β must both be on the positive side or both be on negative side of their respective ancestors. There is one
exception, if the two ancestor enrichments have opposite orientations, which can occur when cracks merge,
then they should be on opposite sides of their respective ancestors.

If A and β meet all conditions, then it is topologically permissible for A to grow into β. However, if the surface
epresents a crack, then there must also be a physics-based criterion to determine if the front should advance at
nrichment A. The criterion greatly depends on the type of crack model used. For example, for the cohesive segment
ethod, the criterion might dictate that the front should advance if the damage parameter in A is greater than a

umerical tolerance. As emphasized in the scope of this paper, we reserve detailed discussion of crack models for
future publication.
When the physics indicates that A should advance into β and all four conditions above are met, we must
etermine those enrichments in adjacent elements with which the new enrichment, B, should be compatible and
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determine the values of the signed distance function for B at the nodes of the parent element. As previously
iscussed, the element-local level-set method does not require the signed distance function for two compatible
nrichments to exactly match along the shared topology of the respective parent elements. However, if enrichment

in element e is to be compatible with some enrichment C in an adjacent element n, either

sign
(

f B
(
x̄ie

))
= sign

(
f C

(
x̄ jn

))
∀ x̄ie , x̄ jn | x̄ie = x̄ jn , or (28)

sign
(

f B
(
x̄ie

))
= −sign

(
f C

(
x̄ jn

))
∀ x̄ie , x̄ jn | x̄ie = x̄ jn (29)

ust be satisfied, where x̄ie denotes the position of node i in element e. Therefore, the signed distance values
ffect whether B is permitted to be compatible with enrichments in adjacent elements, but the list of compatible
nrichments also affects the signed distance function for B, since the signed distance values must be determined
uch that either Eq. (28) or (29) is met. To circumvent the circular dependency, we divide the algorithm into the
ollowing steps:

tep 1. Construct a partial list of compatibilities for B that only includes the subset of enrichments that are
compatible with any front enrichment of the surface to which A belongs and for which the parent element
is adjacent to the parent element of B, thus ensuring the new enrichment is compatible with the existing
surface being advanced.

Step 2. Find a temporary set of signed distance values for B that satisfy Eq. (28) or (29) based on the partial list
of compatibilities from Step 1.

Step 3. Use the temporary set of signed distance values from Step 2 to create the complete list of compatible
enrichments for B, checking if B should merge with any other enrichment in an adjacent element based
on whether the difference of the signed distance values at the shared nodes is within a tolerance along the
shared topology between the elements and any required physics-based criteria.

Step 4. Determine the final signed distance values based on the complete list of compatible enrichments from Step
3.

To determine either the temporary or final signed distance values, we follow the strategy proposed by Duan
et al. [60], which we will describe here for completeness. Given the set of enrichments that should be compatible
with B, CB

E , let vector b contain a 1 or 0 for each node of the parent element of B (following the order of the
element’s connectivity) indicating whether the respective node is shared with the parent element of any enrichment
in CB

E . Similarly, for each node of the parent element of B, let a denote a vector containing the average signed
distance value of all enrichments in CB

E that has a value at the respective node. For all nodes with a value of 1 in
b, the signed distance values will be weakly constrained to the corresponding value in a. However, as Duan et al.
recognized, C0 continuity of the crack surface sometimes competes with the physics model governing the orientation
of the crack surface. Let wC0 denote the relative weight of the C0 continuity objective. As wC0 increases, the level-set
for B tends towards C0 continuity with the averaged level-sets for CB

E . Additionally, a system of equations at the
element level can be solved to minimize the error of the weighted objective functions. Let matrix A and vector c
be given by

Ai j =

∫
∂φi

∂xk

∂φ j

∂xk
dΩe + (wC0lc) diag (b)i j and (30)

ci =

∫
∂φi

∂x j
n̂ j dΩe + (wC0lc) ai (31)

respectively, where lc is the cube root of the volume of the element and represents the characteristic length. Then
he signed distance values for B at each node, fB, are given by A−1c. We start with wC0 = 1 as recommended

by the authors, but if Eqs. (28) and (29) are violated, then wC0 is increased by an order of magnitude and a new
fB is determined. This is repeated iteratively until either Eq. (28) or (29) is satisfied. Since we also restrict the
signed distance value at any node to be larger than a very small tolerance, this iterative procedure is guaranteed to
converge.

4.4. Numerical integration

In general, piecewise integration over the physical domain of each basal field, Ωβ
e , and over the internal and

β β , respectively, is needed to calculate the integrals appearing
external boundaries of each basal field, Γint and Γext
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Fig. 5. Illustration of coordinate systems and maps between them. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

n Eq. (24). To numerically integrate over Ω
β
e , we first apply Delaunay tetrahedralization to the polyhedron that

pproximates the physical domain of the field and then integrate over the tetrahedra.
There are three coordinate systems of interest. Let x̄ denote a coordinate in the reference frame of the global

oordinate system, ξ̄ denote the parametric coordinate system of the element, and ᾱ denote the parametric coordinate
ystem of a reference tetrahedron. Additionally, let Ωβ

e denote the physical domain of field β in x̄ , let Υβ
e denote

he physical domain in ξ̄ , let Υ̂β
e denote the approximation of Υ

β
e by a polyhedron, and let T be the domain of

tetrahedron in ᾱ. Fig. 5 illustrates the three coordinate systems and the maps between them. Note that there is
ᾱ → ξ̄ map for each tetrahedron in the Delaunay tetrahedralization of each field, denoted by ḡβ

i for the i th
etrahedron of field β, although the figure only displays the 1st tetrahedron, outlined in blue.

Integrating over Υ̂β
e , the stiffness matrix appearing in Eq. (26) becomes

Kβ
e =

∫
BT (

ξ̄
)

C
(
ξ̄
)

B
(
ξ̄
) ⏐⏐⏐⏐∂ f̄

∂ξ̄

⏐⏐⏐⏐ dΥ̂β
e + ϵβ, (32)

where ϵ is the discretization error arising due to either volumetric (measure) discretization errors and/or a mismatch
between the integration space of our quadrature rule and the integrand. The volumetric discretization error is nonzero
in elements containing enrichments with level-sets that are not planar in ξ̄ . Fortunately, elements with curved edges
in the global coordinate system avoid additional discretization error, since the edges of the reference element are
straight for the types of elements considered in this work. Finally, we assume ϵβ is small and use the Delaunay
tetrahedralization of Υ̂β

e to obtain

Kβ
e ≈

M∑
i=1

∫
BT

(
gβ

i (ᾱ)
)

C
(

gβ

i (ᾱ)
)

B
(

gβ

i (ᾱ)
) ⏐⏐⏐⏐⏐∂ ḡβ

i (ᾱ)

∂ᾱ

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐∂ f̄

(
ξ̄
)

∂ξ̄

⏐⏐⏐⏐⏐ dT , (33)

where M denotes the number of tetrahedra for the field.
Depending on the type of element, we select a Gaussian quadrature scheme for the tetrahedra to exactly integrate

the integrand when C is constant throughout the element. For example, for a linear hexahedron element, the integrand
is quadratic with respect to ξ̄ , so a 5-point Gaussian quadrature scheme specialized for the tetrahedra exactly
integrates the integrand in Eq. (33). We can use a similar strategy for integrating over Γ

β

int and Γ
β
ext . However,

since the verification cases shown in this paper only consider traction-free enrichment surfaces, we will reserve
further discussion on integration strategy for these terms for future work.

4.5. Degree of freedom enumeration via basal field compatibilities

For the continuous-Galerkin (CG) method, the displacement field should remain continuous everywhere, except
across enrichment surfaces that model a discontinuity. To enforce continuity of basal fields across elements, we
enumerate the degrees of freedom associated with a basal field in one element with the same numbers at the shared
nodes of the adjacent element. Enumerating the DoFs this way ensures that all basal fields are continuous across
elements without the need for constraints in the system of equations. Since we enforce enrichment surfaces to be

0 across element boundaries in this paper, the aggregated solution will also be C0 across adjacent elements.
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When a field is enriched, an additional set of DoFs must be introduced for the element, resulting in two new basal
elds. Rather than update the DoF enumeration every time an element is enriched, we elect to track new enrichments

hat occur and renumber the DoFs for all elements when an updated solution is needed. However, generating a
uitable DoF enumeration directly from the enrichment trees within all elements is an expensive operation, since
etermining the DoFs for a basal field in an element relies on complex logic involving the enrichment trees of
he given element and all of its neighbors. Instead, we propose storing a graph of compatibilities between basal
elds in adjacent elements, which can be incrementally updated to accommodate new enrichments. The existence
f this compatibility graph allows for an efficient DoF enumeration of the entire domain when an updated solution
s required.

In this section, we describe the algorithm for constructing and updating the basal field compatibility graph and
he DoF enumeration algorithm that naturally maintains a continuity of the solution across elements, including how
he algorithm is suitable for distributed computing.

.5.1. Basal field compatibility graph
As discussed in a previous section, a compatibility between a basal field in one element and a basal field in

the adjacent element means that the solution field should have C0 continuity within those basal fields across the
two elements. For the simplest case, consider an enrichment surface that cuts through two elements. The two basal
fields on the positive side of the surface should be compatible with each other, and separately, the two basal fields
on the negative side should also be compatible with each other. Whether two basal fields should be compatible can
be deduced from the enrichment trees in the two elements, topological information, and the pairs of compatible
enrichments between the two elements.

First, it is helpful to delineate three types of relationships between a basal field in one element and the basal fields
in an adjacent element. The given basal field can either be: (1) incompatible with all basal fields in the adjacent
element, (2) compatible with exactly one basal field in the adjacent element, or (3) compatible with multiple basal
fields in the adjacent element. Fig. 6 illustrates a situation with all three types. In Figs. 6b–d, we represent each basal
field with a sphere, which is placed at the centroid of the physical domain of the basal field. Additionally, we indicate
a compatibility between two basal fields with a gray line connecting the two spheres, and similarly, we represent
an incompatibility between two basal fields with a yellow line. The DoF enumeration will enforce continuity of the
solution across any compatible basal fields in adjacent elements for which the compatibility appears in the graph.
Consequently, there is a choice of which compatibilities to include. Some crack models weakly enforce continuity
of the solution along the front, including the cohesive segment method since it requires a closed cohesive element
along the front. In this case, only including compatibilities involving exactly one basal field in one element and
exactly one basal field in the adjacent element, such as those shown in Fig. 6c, might lead to a more well-conditioned
system of equations. However, other crack models might require the DoF enumeration to create continuity of the
solution along the front, in which case all compatibilities should be included, but as a reminder, something must
be done to address the stress singularity if the crack model does not smear or regularize the effect of the crack tip.
For the verification cases shown later in this paper, the choice is irrelevant since we will restrict the verification
to situations where the front only terminates at another enrichment surface or the boundary of the model, which
precludes the possibility of compatibilities involving one basal field in one element and multiple basal fields in the
adjacent element, such as those shown in Fig. 6d.

Storing compatibilities between basal fields in adjacent elements in a graph is convenient for a computer
implementation, and before any enrichments are introduced, the compatibility graph is equivalent to the element
adjacency list. For example, Fig. 7a shows a 3 × 3 × 1 grid and the graph of compatibilities between basal fields.
When a new enrichment is introduced in an element, the compatibilities between basal fields in the neighborhood
of the enriched element are disrupted and must be updated. However, all compatibilities involving elements not
adjacent to any enriched element remain unaffected. This allows the compatibility graph to be updated only in the
neighborhood of new enrichments when an updated DoF enumeration is required. For example, when the enrichment
surface shown in Fig. 7b is inserted, then compatibilities involving the enriched elements are removed from the
graph, as illustrated in Fig. 7c. After all enrichments have been inserted and a new DoF enumeration is required,
the correct compatibilities are added back using an algorithm that requires two passes. In the first pass, a partial
compatibility graph is constructed based on the element topology and enrichment tree information. This partial
compatibility graph may exclude some corner cases. Consequently, in the second pass, the element topology and
partial compatibility graph are used to find a complete compatibility graph.
To create the partial compatibility graph, a compatibility should be added between basal fields β and γ if:
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Fig. 6. Illustration of all three cases pertaining to compatibilities of basal fields. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

. The parent element of β is adjacent to the parent element of γ ,

. Both β and γ touch the shared edge (if the two elements share an edge) or the shared face (if the two
element share a face), and

. For each ancestor enrichment in Aβ

E , if there is an enrichment in Aγ

E that is compatible, then β and γ

must both be on the positive side or both be on negative side of their respective ancestors. There is one
exception, if the two ancestor enrichments have opposite orientations, which can occur when cracks merge,
then they should be on opposite sides of their respective ancestors.

Note that the above conditions describe the relationship between two basal fields. While similar, these conditions
iffer from the enrichment growth conditions in Section 4.3.3, which relate an enrichment to an adjacent basal field.

As previously discussed, one might elect to exclude compatibilities for a basal field involving multiple basal
elds in the adjacent element, and whether a basal field is compatible with a single basal field or multiple basal
elds in the adjacent element can be trivially deduced from the compatibility graph after the fact. However, based
n the information available before the compatibility graph is updated, β can be guaranteed to only be compatible
ith γ out of the set of basal fields in the parent element of γ and vice versa if all of the following are met in

ddition to the three conditions above:

. No enrichment in Aβ

E is compatible with multiple enrichments in Aγ

E ,
. No enrichment in Aγ

E is compatible with multiple enrichments in Aβ

E ,
. Any enrichment in Aβ

E that intersects the shared topology between the adjacent elements is compatible with
an enrichment in Aγ

E , and
. Any enrichment in Aγ

E that intersects the shared topology between the adjacent elements is compatible with
β
an enrichment in AE .
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e

Fig. 7. Illustration of initial compatibility graph map and the steps update the graph to account for new enrichments.

By testing these conditions, we can construct a partial compatibility graph, such as the one shown in Fig. 7d.
However, as mentioned, this partial compatibility graph excludes a corner case, namely, a compatibility between
the labeled fields A and B. The compatibility is not included automatically because the element topology and
nrichment tree information are insufficient. Note that the compatibility between D and E is found because the two

fields touch the shared topology between the respective parent elements. However, A and B are compatible through
a basal field, C , that lies in an element adjacent to the parents of both A and B, and this type of compatibility
cannot be deduced from the enrichment trees of the two elements alone. After the partial compatibility graph is
constructed, a second pass over the elements and basal fields is performed to ensure that a compatibility exists
between any pair of basal fields, β and γ , that lie in adjacent elements for which there is an α that is compatible
with both β and γ . For example, Fig. 7 shows the complete compatibility graph after the second pass. As it is
difficult to visually distinguish, we present this graph in two parts, one for each side of the enrichment surface
(Figs. 7e and f).

Importantly, parallelizing this algorithm for creating the basal field compatibility graph requires no modification
of the algorithm itself. In a multithreaded paradigm, each thread can be assigned a subset of elements and fill in
18
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the compatibility graph for the assigned elements, although adjacent elements assigned to different threads will be
visited multiple times. Storing the graph within an adjacency list ensures thread-safety if each thread only modifies
the list of compatibilities for the assigned elements.

Within a distributed paradigm combined with domain decomposition, the mesh is partitioned, with each element
nd each node assigned to a particular rank. Each rank may only have access to the subset of the mesh that contains
ll owned elements and any element containing an owned node. Let a ghost element or node refer to an element
r node that is accessible in a partition of the mesh but is not owned. As long as each rank has the topological
nd enrichment tree information for each ghost element in its partition, then no communication between ranks is
equired for each rank to build a compatibility graph for its partition.

.5.2. Degree of freedom enumeration
In our proposed XFEM approach, each degree of freedom (DoF) corresponds to a component of the solution

ector at a particular nodal position and receives a number indicating the corresponding row in the global system
f equations. Consequently, it is convenient to store a map that takes an element, basal field, and nodal position and
eturns the DoF numbers. In turn, the DoF map can be used to efficiently assemble element level matrices/vectors
nto global matrices/vectors. In our implementation, the DoF map is stored as an array of DoF numbers ordered
rst by element, then by basal field, and then by nodal position relative to the respective element’s connectivity.
o maintain a continuous solution, the DoF enumeration must ensure that every basal field has the same DoF
umber at a nodal position as another compatible basal field at the same nodal position. Of course, there are many
numerations that would satisfy this requirement. We propose an algorithm for cheaply creating an admissible DoF
numeration given the basal field compatibility graph. The resulting enumeration can then be combined with one of
he many established methods for permuting the enumeration to improve solver performance, such as METIS [61].

One serial approach for cheaply creating an admissible DoF enumeration is to loop over the elements and the
asal fields within the element, assigning a DoF index to each nodal position following

d[e, β, i] =

{
d[n, γ, j], if d[n, γ, j] is initialized | γ ∈ CB

E and x̄ie = x̄ jn ,

new index, otherwise,
(34)

where d[e, β, i] denotes the DoF index for basal field β in element e at nodal position i , Cβ

E denotes the set of
basal fields compatible with β in any adjacent element n, and the new index is simply the next largest index of the
enumeration that has not yet been assigned.

Similar to the compatibility graph, this enumeration algorithm is easily parallelized through domain decom-
position. If the mesh is partitioned with each element and each node assigned to a particular rank, then a local,
admissible DoF enumeration within a rank can be created in the following two steps:

1. Loop over the elements (both ghost and owned) and the basal fields within each element, assigning DoF
indices for owned and ghost nodal positions separately with each range starting at 0, per

d[e, β, i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d[n, γ, j], if d[n, γ, j] is initialized |

γ ∈ CB
E and x̄ie = x̄ jn ,

new owned local DoF index, if node i belongs to the rank,

new ghost local DoF index, otherwise,

(35)

and then,
2. Revisit positions of the DoF map corresponding to a ghost nodal position and increment the index by the

largest index at any owned nodal position.

Importantly, the indices for DoFs corresponding to the owned nodal positions will appear at the front of the
local enumeration, followed by those corresponding to ghost nodal positions. Next, a local-to-global map can be
constructed by each rank as follows:

1. Perform a parallel prefix sum (scan) of the number of DoFs assigned to owned nodal positions, which each
rank can use to determine their starting global index,

2. Populate the first section of the local-to-global map that corresponds to the owned nodal positions with

increasing integers starting at the starting global index for the rank,
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3. Send the global indices for any owned nodal position that appears as a ghost node on another rank to that
rank, and

4. Complete the local-to-global map using the list of global indices for all ghost nodal positions that were
received in the previous step.

The only communication needed to create a DoF enumeration from the compatibility graph occurs in steps 1
nd 3. Step 1 is a collective operation that is known to run in O(log n) time, while step 3 involves communication
etween each rank and the other ranks whose partition borders its own partition. A deeper discussion of the details
f a parallel implementation and a characterization of its scalability will be reserved for a future article.

. Verification

Thus far, we described the algorithms and implementation of our CG-XFEM approach. In this section, we
erify our complete FEA implementation via a few linear elastic analyses, focusing on certain challenging cases.
or the remainder of this section, we will model open cracks using enrichment surfaces. In many applications, a
ohesive crack model would allow crack fronts to exist within the domain without introducing stress singularities.
owever, since cohesive crack models and surface integration techniques are outside the scope of this paper, we
nly consider verification cases where enrichment surfaces evolve until the fronts of the surfaces encounter a mesh
oundary, encounter another enrichment surface, or create a closed manifold. As a consequence of this choice,
nrichment surfaces divide the computational domain into multiple disconnected pieces. We visualize the solutions
sing a custom ParaView [62] plugin tailored for XFEM data. The verification cases were selected to highlight two
eatures of our method. First, they show that our DoF enumeration algorithm correctly allows a discontinuity in
he displacement field along enrichment surfaces and maintains a continuous displacement field elsewhere. Second,
hey illustrate that our method is not restricted to uniform grids and hexahedral elements.

.1. Intersection of curved enrichment surfaces within a mixed-element mesh

For this verification case, we consider two intersecting curved enrichment surfaces within a mixed-element mesh,
onsisting of a combination of pyramid, wedge, hexahedron, and tetrahedron elements. Fig. 8 shows the mesh, which
as a side length L , and a view of the elements belonging to each type.

First, we insert a surface to form a spherical manifold centered in the grid with a radius of 0.37L , as shown in
ig. 9a. Since the surface is traction-free, it disconnects the material inside the sphere from the material outside the
phere. Second, we insert a surface corresponding to a sphere with center (0, 0, 2.71L), a radius of 2.37L , and
erminating where it intersects the first surface and the boundary of the grid, as shown in Fig. 9b.

To fully test our implementation, we prescribe boundary conditions to distinctly separate each disconnected
egion of the domain, i.e.,

u1 (0, x2, x3) = u2 (x1, 0, x3) = u3 (x1, x2, 0) = 0, (36)

u3 (0.5L , 0.5L , 0.5L) = 0.5L , and (37)

u3 (x1, x2, L) = L . (38)

An implementation error would likely result in a nonzero displacement gradient within each disconnected piece
f the domain. Fig. 9c shows the deformed configuration with contours based on the magnitude of the displacement
ector, |ū|. As expected from a correct implementation, |ū| is constant in each of the three pieces of the domain.
urthermore, the bottom piece correctly experiences no deformation, the sphere correctly translates along x3 by
.5L , and the top piece correctly translates along x3 by L . This case also illustrates the ability of our method to

evolve enrichment surfaces through a mixed-element mesh.

5.2. Intersection of enrichment surface fronts

In this verification case, we consider two enrichment surfaces whose fronts intersect within a uniform grid with
side length, L . First, we insert and grow two enrichment surfaces up to the point where the surfaces intersect
(Fig. 10a). The first enrichment surface (red) now lies in the x3 = 0.45L plane, while the second enrichment
urface (green) lies in the x1 = 0.45L plane. Next, we grow the red enrichment surface with the normal vector, n̂1,
pecified by
20
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Fig. 8. Mixed-element mesh used for the verification case of intersecting curved enrichment surfaces.

n̂1 (x̄) =

{
−0.6 ĵ + k̂, if x1 < 0.45L ,

0.6 ĵ + k̂, otherwise,
(39)

here î , ĵ , and k̂ are unit vectors along the x1, x2, and x3 axes, respectively. Fig. 10b shows enrichment surfaces
fter the red surface has grown to the boundary of the grid. Next, we grow the green enrichment surface with normal
ector, n̂2, specified by

n̂2 (x̄) =

{
î + 0.45 ĵ, if x2 < 0.45L ,

î − 0.45 ĵ, otherwise.
(40)

Fig. 10c shows enrichment surfaces after the green surface has grown to the boundary of the grid. Finally, we
rescribe the following boundary conditions:

u1 (0, x2, x3) = u2 (x1, 0, x3) = u3 (x1, x2, 0) = 0, (41)

u1 (L , x2, x3) = L , and (42)

u3 (x1, x2, L) = L , (43)
21
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Fig. 9. Enrichment surfaces and results for the verification case of intersecting curved enrichment surfaces with a mixed-element mesh.

here the same global coordinate system shown in Fig. 8a is used. Fig. 10d shows the deformed configuration with
ontours based on the magnitude of the displacement vector, |ū|. As expected, |ū| is constant in each piece of the

domain, with Piece 1 experiencing no deformation, Piece 2 translating along x3 by L, Piece 3 translating along x1
by L, and Piece 4 translating by Lî + Lk̂. Both of these simulations show that our implementation properly supports
the operations needed to enable complex growth of enrichment fronts in 3D.

6. Comparison of XFEM fracture models in the literature

To understand how this work compares to other XFEM approaches for progressive fracture, this section provides
enrichment diagrams for several approaches in the literature, illustrating how they would fit within the HHE
framework. The enrichment diagrams developed in Section 3 provide a concise, clear way of communicating some
of the key similarities and differences between methods. They do not communicate enough information to fully
characterize a given XFEM approach as many methods differ at a level of detail not revealed by the diagrams.
However, the diagrams do illustrate compatibilities or incompatibilities that exist for a given method, which is
often difficult to discern in the literature.

For a comparison of the methods, consider a crack orthogonally intersecting a bi-material interface, which can
delaminate via a cohesive connection. Although the methods extend to 3D, the comparison will use a 2D situation
for simplicity. The figures below show the material above the bi-material interface in light blue and below in
green. As some methods cannot support an embedded bi-material interface, the bi-material interface will lie on
an element boundary when necessary. The comparison of approaches pays special attention to the compatibilities
of fields across enriched elements and the type of cohesive connections between elements on each side of the bi-
material interface. There is a strong interaction between the opening of the embedded crack and the delamination
of the bi-material interface. Fang et al. showed that an enriched cohesive zone is necessary to properly capture this
interaction, although they used the term “augmented cohesive zone” since the work was within the context of the
augmented finite element method [63]. Additionally, Chen et al. highlighted the same issue and arrived at the same
conclusion [30]. Thus, methods that support an enriched cohesive zone across the bi-material interface will yield a

more accurate solution, although each of these methods are useful within the proper context.
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Fig. 10. Uniform grid, enrichment surfaces, and results for the verification case of intersecting surface fronts. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

First, consider the regularized-XFEM (RXFEM) method developed by Iarve et al. [53,64]. For this approach,
the bi-material interface must lie along element boundaries to allow intersections between cracks and bi-material
interfaces. Fig. 11a illustrates the locations of elements (solid black lines), the bi-material interface (dashed red
line), and the embedded crack (solid blue line). Fig. 11b shows the corresponding enrichment diagram for RXFEM,
though regularization of the crack is an important detail of RXFEM not captured by these diagrams. Note that
RXFEM maintains compatibility of the fields across elements 2 and 3, which is physically correct. Additionally,
RXFEM correctly uses an enriched cohesive connection between elements 1 and 2, across the bi-material interface.
This results in a cohesive law that independently governs the opening, firstly, between element 1 and the field on
the negative side of the crack in element 2 and, secondly, between element 1 and the field on the positive side of the
crack in element 2. RXFEM correctly maintains compatibilities and captures the interaction between the embedded
crack and delamination of the bi-material interface; additionally, it is implemented for 3D in BSAM, through a
joint effort of AFRL, UDRI, and UTARI [53,65]. However, the approach currently requires cohesive bi-material
interfaces to lie along element boundaries and does not allow cracks to intersect.

Fig. 12 shows the case of a cohesive bi-material interface and matrix crack embedded within an element and
shows the corresponding enrichment diagrams for both the method proposed in this paper, HHE, and the floating-
node method (FNM) [30,58]. Both methods correctly maintain compatibility of connected fields across elements,
which FNM accomplishes by connecting “floating nodes” introduced during local remeshing that lie at the same
global coordinate in adjacent elements and HHE accomplishes through the DoF enumeration algorithm described
earlier. Additionally, both methods correctly capture the interaction between the matrix crack and delamination
by effectively using an enriched cohesive zone, which both methods accomplish through different types of local
remeshing. FNM remeshes the domain of the element within the global coordinate system to accommodate three

cohesive subelements, two along the embedded delamination and one along the embedded matrix crack, which Chen
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Fig. 11. Enrichment diagram of a crack intersecting a bi-material interface for RXFEM. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Enrichment diagram of a crack intersecting a bi-material interface for the floating-node method (FNM) and hierarchical Heaviside
enrichment (HHE).

et al. [30] discuss in detail. On the other hand, HHE remeshes the polygonal discretization for the enriched element
within the parametric coordinate system of the element. The enrichment diagram does not show this difference
along with several other variations, such as the method used to integrate over the physical domain of each basal
field and the location of DoFs. These subtle distinctions can lead to a different solution error and/or condition
number of the system of equations, but these two methods both correctly capture the interelement compatibilities
and the interaction between multiple enrichments within an element.

Finally, consider the collection of approaches derived from the augmented finite element method (AFEM), which
all into three categories: classical AFEM, AFEM with augmented cohesive zones (ACZ-AFEM), and conforming-
FEM (C-AFEM). Implementations of AFEM in the literature have focused on embedding discontinuities and have

equired bi-material interfaces to lie along element boundaries, but in theory, it would not require much effort to
lleviate this restriction. Additionally, all AFEM implementations have been for 3D. Fig. 13a illustrates the locations
f elements, the bi-material interface, which lies between elements 1 and 2, and the crack, which is embedded in
lements 2 and 3. For the situation depicted in Figs. 13a, b shows the corresponding enrichment diagrams for
hese AFEM models. Classical AFEM was developed based on Hansbo and Hansbo and PNM to account for the
xistence of embedded discontinuities that do not conform to the mesh, but the major modification was statically
ondensing additional degrees of freedom [33]. In this sense, AFEM may not fall into the genre of extrinsic XFEM.
owever, the element level static condensation introduces interelement incompatibilities. In the example shown, this

trategy results in the field on the negative side of the crack not being continuous across the boundary of elements
and 3, which is not physical, as shown in Fig. 13b. Similarly, the field on the positive side of the crack is not

ontinuous across the same element boundary. This nonphysical artifact of the method will result in unrealistic
tresses near the boundary between elements 2 and 3. Additionally, classical AFEM employs a standard cohesive
24
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Fig. 13. Enrichment diagram of a crack intersecting a bi-material interface for augmented finite element methods.

one between elements 1 and 2, which misses the proper coupling between the cohesive zone along the crack
nd along the interface. To capture the coupling between intersecting cohesive zones, Fang et al. developed the
ugmented cohesive zone, which this work generally refers to as an enriched cohesive zone, and the corresponding
xtension of AFEM (ACZ-AFEM) [63]. Finally, very recently, Ma et al. amended the incompatibility introduced
cross elements in AFEM in what is called conforming-AFEM (C-AFEM) [36]. To maintain compatibility across
lements, Ma et al. proposed solving a PDE at the level of an enrichment surface and then solving the global PDE,
imilar to a local–global approach. This strategy still avoids the need to introduce additional degrees of freedom into
he system, which can reduce the computational cost compared to extrinsic XFEM approaches, but a distributed
mplementation becomes more complex. Figure 13b shows the corresponding enrichment diagram for all three

ethods.

. Discussion and conclusions

In this article, we presented an extrinsic, continuous-Galerkin extended finite element method for accounting for
iscontinuities in the solution field. Similar to methods proposed by Hansbo and Hansbo [24] and Iarve [53,64],
e account for discontinuities within elements by introducing new sets of nodal DoFs for the enriched elements.
owever, we generalize the approach to support an arbitrary number of Heaviside enrichments within a single

lement in a hierarchical fashion. This hierarchical view naturally allows for representing element-wise enrichments
s a binary tree and enables visual description via enrichment diagrams. The purpose of this work was to lay the
roundwork for a CG-XFEM approach that can accommodate evolving, complex enrichment surfaces, which is a
ignificant step towards a method for modeling progressive fracture. Towards this end, we made the following novel
ontributions to the community:

1. We carefully crafted a set of terminology and a lexicon for enrichment diagrams to describe hierarchical
Heaviside enrichment (HHE) that clarifies the nuanced concepts within HHE.

2. We introduced a method to construct a basal field compatibility graph and an algorithm to incrementally
update the graph as enrichment surfaces evolve.

3. We developed a DoF enumeration algorithm that naturally maintains a continuous solution across elements
and allows cheap updates to the enumeration based on the information in the basal field compatibility graph.

4. We described the structure of enrichments in an element using enrichment diagrams for several existing
extrinsic, XFEM methods in the literature to highlight several subtle differences between the various methods.

We described a derivation of a finite element model for HHE, a hybrid implicit/explicit representation of
nrichments, an algorithm to evolve enrichment surfaces, a numerical integration method suitable for volume
ntegrals, an algorithm for constructing a basal field compatibility graph, and a degree-of-freedom enumeration
lgorithm. Finally, we provided two verification problems to illustrate that the method allows enrichment surfaces
o separate as expected for two situations that are challenging for CG-XFEM, including a case demonstrating that

he method supports unstructured, mixed-element meshes.
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Since this work aims to lay the foundation for a progressive fracture model, we restricted the discussion in
his paper to modeling open cracks within the context of static 3D linear elasticity. We intend to follow this work
ith a description of how cohesive crack models may be implemented within our proposed framework and how

nrichment surfaces may be used to model bi-material interfaces in heterogeneous materials. Subsequently, we plan
o apply the framework to modeling complex materials for which it is often difficult to obtain conforming meshes,
uch as 3D textile composites. Additionally, we intend to simulate the progressive failure of other composites that
re known to develop complex networks of cracks, such as ceramic-matrix composites. Our algorithms inherently
reserve locality, making them ideally suited to both distributed and shared memory parallelization. We expect to
resent the details of such a parallelization soon, which will be needed to tackle problems involving progressive
racture in advanced composite materials. Though not described in this paper, our strategy synergizes well with
ngoing work in matrix-free methods for linear systems arising from FEM discretizations, enabling very efficient
pdates of the element contributions to the system of equations as cracks evolve [66,67].
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