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Summary

We present a methodical procedure for topology optimization under uncer-
tainty with multiresolution finite element (FE) models. We use our framework
in a bifidelity setting where a coarse and a fine mesh corresponding to low-
and high-resolution models are available. The inexpensive low-resolution model
is used to explore the parameter space and approximate the parameterized
high-resolution model and its sensitivity, where parameters are considered
in both structural load and stiffness. We provide error bounds for bifidelity
FE approximations and their sensitivities and conduct numerical studies to
verify these theoretical estimates. We demonstrate our approach on bench-
mark compliance minimization problems, where we show significant reduc-
tion in computational cost for expensive problems such as topology optimiza-
tion under manufacturing variability, reliability-based topology optimization,
and three-dimensional topology optimization while generating almost identi-
cal designs to those obtained with a single-resolution mesh. We also compute
the parametric von Mises stress for the generated designs via our bifidelity
FE approximation and compare them with standard Monte Carlo simulations.
The implementation of our algorithm, which extends the well-known 88-line
topology optimization code in MATLAB, is provided.
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1 INTRODUCTION

Topology optimization is a systematic design framework for the distribution of given material resources within a specified
spatial domain to achieve maximum stiffness. This technique spawns from a seminal paper by Bendsøe and Kikuchi1

in which the structure layout, instead of structure boundaries as done in shape optimization, is optimized. Since then,
in addition to solid mechanics,2 topology optimization has been developed and extended to various fields, such as heat
conduction, fluid dynamics, and multi-physics simulations.3-7 A majority of existing works focus on deterministic analysis
and optimization for such designs. However, the design performance varies due to inherent uncertainties in different
parameters, such as loading, boundary conditions, material properties, and geometry.

This performance deficiency can be overcome by incorporating uncertainty analysis in the optimization process;
in robust design optimization (RDO),8-14 the performance variation is minimized, and in reliability-based design
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optimization (RBDO),15-17 the failure probability is constrained. Computational complexity is the outstanding challenge
in these approaches due to requiring a considerable number of expensive simulations to capture variations in parame-
ter/stochastic space. Multiresolution and multifidelity finite element (FE) models have been used in a number of studies
to enhance the computational efficiency of topology optimization.18-22 These multiresolution/multifidelity topology opti-
mization approaches are explored within a deterministic framework, ie, when the focus is only on a limited number of
deterministic simulations throughout different mesh resolutions.

In this work, we adopt a different perspective in multiresolution topology optimization and use coarse and fine FE
meshes within a parametric/stochastic framework. We use the inexpensive low-resolution model to traverse the param-
eter space and use that information to predict the stochastic response and sensitivity of the expensive high-resolution
model. In this way, stochastic analysis is primarily performed via a low-resolution model, which drastically decreases
the computational complexity. Similar multifidelity approaches for acceleration of parametric studies have been recently
reported in different areas, such as molecular dynamics simulations, orbit-state uncertainty propagation, and combustion
and turbulence modeling.23-26

We provide theoretical discussions that motivate the success of our approach, and we show via numerical examples that
using a low-resolution model that is far coarser than necessary for any meaningful physical predictive power is able to give
substantial insight into parametric variation. Our method is nonintrusive, ie, it is implemented with minimal modification
to the existing codes for topology optimization. We present our approach in the context of a generic density–based topology
optimization; however, it is similarly applicable to a level set–based method. The implementation of our approach, which
is the extension of “Efficient topology optimization in MATLAB using 88 lines of code,”27 is provided in the work of
Keshavarzzadeh.28 We also provide error bounds for the bifidelity construction of compliance and its sensitivity, which
serves as a certificate for the convergence of our parametric topology optimization approach. We provide numerical results
to delineate the error estimate for compliance and its sensitivity.

This paper is organized as follows. Section 2 briefly describes the topology optimization including its deterministic and
parametric forms. The details of our multiresolution approach are presented in Section 3. Section 4 presents numerical
results for topology optimization under loading and manufacturing variability in conjunction with computational cost
studies. Finally, Section 5 contains concluding remarks.

2 TOPOLOGY OPTIMIZATION

2.1 Notation and setup
We use bold characters to denote matrices, vectors, and multivariate quantities, eg, x indicates a vector of variables in the
domain of a multivariate function. We denote sets with uppercase letters, eg, P is a set of sample parameters.

In this paper, we mainly focus on parameterized elastostatic problems with the general form of

{u(x,p)} = 𝑓 (x,p), x ∈ Ω, p ∈ P
u(x,p) = ub(p), x ∈ 𝜕Ω, p ∈ P,

(1)

where  denotes a linear operator, which will be replaced by the generic FE global stiffness matrix shortly, Ω is the spatial
domain, and the parameter p ∈ P later will be treated as random variables. We consider two models: low-resolution
model uL ∶ P → U L corresponding to the coarse mesh and high-resolution model uH ∶ P → U H corresponding to the
fine mesh. Here, U L and U H are Hilbert spaces equipped with inner products ⟨., .⟩L, ⟨., .⟩H, respectively. For example, if
UL is finite dimensional and two elements a and b of this space are represented as coordinates in the vectors a and b, then
one way to define an inner product is

⟨a, b⟩L = aTb
dim a

, (2)

where dim denotes dimension or the size of a vector, and dim a = dim b. We hereafter assume that U L and U H are
finite dimensional, respectively of dimensions NL

dof and NH
dof . Due to our coarse mesh/fine mesh assumptions, we have

NL
dof < NH

dof , and typically, NL
dof ≪ NH

dof .
In this paper, we seek to find accurate approximations to the high-resolution model uH by using the low-resolution

model uL in the parameter space. We use hat notation to denote approximations, eg, û is an approximation to u. The
low-resolution solution can be computed on a collection of parametric samples ΓN = {p1, p2, … , pN} ⊂ P in a relatively
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FIGURE 1 Schematic representation for bifidelity construction of parametric finite element solutions. The low- and high-resolution
important samples are denoted by × and +. To estimate the high-resolution samples on unknown locations in parameter space ⊕, we use the
identified coefficients ci from the low-resolution sample space [Colour figure can be viewed at wileyonlinelibrary.com]

small amount of time. We denote the collection of these solution samples and their span as

uL(ΓN) =
{

uL(p1),uL(p2), … ,uL(pN)
}
,

UL
ΓN

= span uL(ΓN) = span
{

uL(p1),uL(p2), … ,uL(pN)
} (3)

and use similar notation for uH. The term span above denotes the subspace that is formed with any linear combination of
the solution samples uL( pi). We view the collection of samples as a matrix, eg, uL(ΓN) = [uL(p1)uL(p2)…uL(pN)]NL

dof×N
in our matrix computations.

Once we compute the low-resolution FE responses on the entire sample space, we find important samples and identify
coefficients that “relate” the important samples to the rest of the samples in ΓN. Computing the high-resolution important
samples, which are few, we then use the identified coefficients to estimate the high-resolution responses on the rest of
the samples. Figure 1 shows the schematic representation of this bifidelity construction.

2.2 Deterministic optimization
Topology optimization in its original form is a constrained optimization problem that minimizes compliance subject
to a volume constraint. To find compliance, structural analysis is typically performed via the FE method. We consider
density-based topology optimization in which the design space is characterized with element volume fractions. The
optimization problem after FE discretization is stated as

min
𝝆

C(𝝆) = UTF

subject to V(𝝆) ≤ V̄
K(𝝆)U(𝝆) = F(𝝆)
𝜌min ≤ 𝝆 ≤ 1,

where K, U, and F denote the global FE stiffness matrix, the displacement vector, and the force vector, respectively, 𝝆 is
the vector of element volume fractions, C is the compliance, V is the volume, and 0 < 𝜌min ≪ 1 is the lower bound for
the volume fractions.

We process the design variables throughout the optimization in two ways: (i) we impose a minimum length scale by
using the filtered volume fraction to generate a well-posed topology optimization formulation, and (ii) we use Heaviside
thresholding to generate more distinct interfaces and to model geometric variabilities.

The filtered volume fractions �̂� are expressed via the cone kernel KF, ie,

�̂�(xi) =
∑n

𝑗=1 KF(xi, x𝑗)𝜌(x𝑗)∑n
𝑗=1 KF(xi, x𝑗)

, i = 1, … ,n, (4)

where

KF(xi, x𝑗) =

{
rmin − |xi − x𝑗|, if |xi − x𝑗| ≤ rmin

0, if |xi − x𝑗| > rmin.
(5)

http://wileyonlinelibrary.com
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In these expressions, rmin and xi denote the filter radius and the element i centroid.29 Ideally, the Heaviside step function is
used to threshold the filtered volume fractions to 0 and 1, eg, �̄� = H(�̂�− 0.5). However, to make the thresholding possible
for sensitivity analysis and optimization, a smooth approximation of a step function

�̄� = H𝛽,𝜏(�̂�) =
tanh(𝛽𝜏) + tanh(𝛽(�̂� − 𝜏))
tanh(𝛽𝜏) + tanh(𝛽(1 − 𝜏))

(6)

is used. In this approximation, 𝛽 controls the smoothness of transition, and 𝜏 ∈ [0, 1] serves as the threshold, ie,
lim𝛽→∞H𝛽,𝜏(x) = H(x − 𝜏) pointwise for all x ≠ 𝜏. We use the latter parameter 𝜏 to vary the boundary, ie, geometry of the
structure. It will be used as an uncertain parameter in our numerical examples to model the geometric tolerances, which
may arise in the manufacturing process.

Finally, we use the solid isotropic material with penalization method to penalize intermediate volume fractions.30,31 As
such, we compute the global stiffness matrix K by using the processed (thresholded-filtered) volume fractions �̄�, ie,

K =
n∑

i=1
𝜌i

𝜄K i, (7)

where n is the number of elements, 𝜄 = 3 is the penalization parameter, and Ki is the nominal element i stiffness matrix.

2.3 Parametric optimization
We consider uncertainties in loading and geometry in our topology optimization statement problem by introducing the
parameter p in loading and structure stiffness, ie,

K(𝝆,p)U(𝝆,p) = F(𝝆,p), p ∈ P, (8)

where the parameters are treated as random variables. Since U and, subsequently, C are therefore random, we restate the
optimization problem with a quantity of interest Q, which depends on statistical moments of C, as follows:

min
𝝆

Q(𝜆) = 𝜇(𝝆) + 𝜆𝜎(𝝆)

subject to E[V(𝝆)] ≤ V̄
𝜌min ≤ 𝝆 ≤ 1,

(9)

where 𝜇 and 𝜎 are the mean and standard deviation of the compliance C (cf Section 3.4), and 𝜆 is a weight factor associated
with the standard deviation. We note that this formulation is pertinent to the case of geometric uncertainty where we
consider the expected value for volume. In addition to the above RDO problem, we solve RBDO by constraining the
probability of failure

min
𝝆

E[V(𝝆)]

subject to Pr[C(𝝆) > C̄] ≤ 𝛿P𝑓

𝜌min ≤ 𝝆 ≤ 1,

(10)

where C(𝝆) > C̄ is a condition defining failure events, and 𝛿P𝑓
is the tolerance for failure.

We consider a Karhunen-Loeve expansion to model uncertainties in both distributed load and spatial threshold
parameters 𝜏. We assume a covariance function

Rxx′ = exp

(
−

||x − x′||2
2

2l2
c

)
, (11)

where ||x − x′||2 is the Euclidean distance between locations x and x′ and lc is the correlation length. We discretize
this covariance function with x and x′ as (i) the FE centroids in the case of spatial threshold and (ii) the FE nodes
that are under the influence of load in the case of distributed load to obtain the correlation matrix R. We use nM first
eigenvalue-eigenvector pairs (𝜂i, 𝜸i) of the covariance matrix to generate the KL decomposition of a zero-mean process as

Z(x,p) = 𝛾0 +
nM∑
i=1

√
𝜂i𝜸i(x)𝜑i(p), (12)

where 𝜑i are uniform random variables and 𝜸i are eigenvectors, and 𝛾0 > 0 is a constant that is chosen to ensure a
positive distributed load and avoid erratic distributions. We also post-process the random field Z in the case of a spatial
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threshold since Z is not necessarily in the desirable range Z ∉ [0, 1]. In this case, to generate a value in the range [0, 1], we
transform Z into its cumulative distribution function (CDF), ie, Z ← Φ(Z) ∈ [0, 1], whereΦ is the CDF of Z. For a detailed
discussion of this transformation, see the work of Keshavarzzadeh et al.12 We finally use an affine map 𝜏 i = a1Z(pi) + a2
for suitable constants a1 and a2 to map values of Z to an appropriate range.

The random processes are evaluated on Monte Carlo (MC) samples or quadrature points Z(x, pi), where each sample
corresponds to a parametric load F(pi) or stiffness matrix K(pi). For a given FE resolution, the parametric analysis is
summarized as follows.

– Loading uncertainty: for each parameter pi, solve KU = F (pi) to find the parametric U(pi), parametric compliance
C(pi) = U(pi)TKU(pi), and parametric compliance sensitivity 𝜕C(pi)∕𝜕𝝆 = 𝚲(pi)T(𝜕K(𝝆)∕𝜕𝝆)U(pi), where 𝚲 = −U
is the adjoint sensitivity solution for compliance.

– Geometric uncertainty: solve K(pi)U = F for each parameter pi to find the parametric displacement, compliance,
and its sensitivity similarly to loading uncertainty. Note that, in this case, the derivative of the stiffness matrix is
dependent on the parameter.

Remark 1. In the case of loading uncertainty, it is possible to compute the response only for the principal KL modes
and use superposition to find the total response since the structure is linear. However, as we mainly perform para-
metric analysis on the coarse mesh, solving the FE system for a large number of samples does not pose a significant
challenge.

3 MULTIRESOLUTION FRAMEWORK

Our multiresolution topology optimization framework has four major components summarized below. The detailed
description of each component is provided in the following.

– Translation: given high-resolution element density and parametric quantities, translate these data to the
low-resolution FE model (cf Section 3.1).

– Important samples: perform parametric analysis with the low-resolution FE model on a large number of samples
and determine important samples (cf Section 3.2).

– Bifidelity construction: compute interpolative coefficients in the parametric low-resolution space and use those to
estimate the parametric high-resolution response and sensitivities (cf Section 3.3).

– Primal and sensitivity analyses: compute statistical moments of compliance and their sensitivity and feed to the
optimizer (cf Section 3.4).

3.1 Transition between high- and low-resolution models
Our ultimate goal is to produce a design with fine resolution. The optimization progresses with the fine-resolution model;
however, the information from the fine resolution should be translated to the low-resolution model where the main FE
computations are performed. In particular, the KL model Z(x, pi) and densities 𝝆 associated with the fine mesh should
be translated to the low-resolution mesh. The translation of the KL model is trivial since it can be consistently generated
for two resolutions by considering coarse and fine coordinates in the generation of the covariance matrix. Similarly, the
KL modes for the low-resolution mesh can be interpolated from the high-resolution mesh. In our numerical examples,
for one-dimensional translation such as loading uncertainty in Example 4.1, we use a linear interpolation between high
and low resolutions. That is, having high-resolution data on a line, we use linear interpolation to get data on coarse
increments. For two-dimensional translation such as manufacturing uncertainty in Example 4.2, we use the averaging
approach, which is described below.

To translate densities from the fine model to the coarse model, we use simple averaging, as follows:

𝜌L = 1
nH

nH∑
i=1

𝜌H
i , (13)

where nH is the number of fine-mesh elements that can be placed in a coarse mesh considering that we only use
standard square elements. For example, four fine-mesh elements with size dx = dy = 0.5 cover a coarse element with
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FIGURE 2 Transformation of density 𝝆 from high resolution (left) to low resolution (right). Each element in the right mesh is obtained by
averaging the densities of a 10 × 10 cell in the left mesh

dx = dy = 1. Figure 2 shows the transformation of high-resolution densities (100 × 100 mesh) to low-resolution densities
(10 × 10 mesh).

3.2 Interpolation nodes
Having the density and parameters associated with the low-resolution mesh, a large number of simulations N is per-
formed. A crucial step is to determine n ≪ N points at which the fine-resolution finite element analysis (FEA)
will be performed. We determine important samples based on the fact that the span produced by the basis vectors
{uL(k1),uL(k2), … ,uL(kn)} gets as close as possible to the span UL

ΓN
, which includes N samples. To quantify closeness, we

define the standard distance between a function and a subspace as

dL(x,Y ) = inf
𝑦∈Y

||x − 𝑦||L = ||(I − PY )x||L, (14)

where PY is the orthogonal projection operator onto a subspace Y, and I is the identity operator.
The selection of important samples from a sample pool to minimize the above distance is a complex combinatorial

problem. Typically, greedy procedures, which are computationally tractable, are adopted for such problems, eg, in the
reduced basis methods.32 In particular, one may initialize the procedure with a trivial subspace Γ0 = {} and iteratively
add samples to the set to maximize the distance between the newly added sample and the existing span, ie,

pn = arg max
p∈ΓN

dL (
uL(p),UL(Γn−1)

)
, Γn = Γn−1 ∪ {pn}. (15)

We note that the distance is maximized such that the newly added samples cover more linearly independent directions
in the span. We also note that the number of subsamples n ≪ N is determined based on our computational budget.
Naturally using more samples results in more accurate reconstruction of unknown samples in parameter space, as long
as the number of samples does not exceed the numerical rank of uL(ΓN).

This greedy procedure can be performed via standard numerical linear algebra operations, as discussed in the work
of Narayan et al.33 In the aforementioned work, three different linear algebraic choices, namely, (i) column-pivoting QR
decomposition, (ii) full-pivoting LU decomposition, and (iii) pivoted Cholesky decomposition, are discussed. We adopt
the column-pivoting QR decomposition in this work and use the pivot information to select the n important samples of
U L. The pivot contains the index of columns such that the first n columns are linearly independent.34

We only need the integer-valued pivot in this paper; however, given a matrix A ∈ ℝm×n with m > n, one can use
the upper-triangular matrix R from the output of the QR decomposition (see equation 5.1.5 in the work of Golub and
Van Loan34) to compute Q. It can then be verified that A𝚷 = QR, where 𝚷 is the n × n permutation matrix that contains
the pivot indices. Equivalently, the pivoted QR factorization can be performed via a built-in function in MATLAB denoted
by qr, which we use in our numerical examples.

3.3 Bifidelity construction
We now have N low-resolution FE solutions and have identified n parameters at which we perform high-resolution
simulations {uH(pi)}n

i=1. We aim to find an approximation to uH(pi) on unknown samples pi ∈ ΓN−n.
Having uL on the entire sample space, it is possible to construct the best parametric approximation to the low-resolution

solutions {uL(pi)}N
i=n+1 as a function of important samples {uL(pi)}n

i=1 and subsequently use the same approximations
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to estimate parametric high-resolution solutions {ûH(pi)}N
i=n+1. Precisely, the best approximation is defined such that||ûL(pi) − uL(pi)||, ∀pi ∈ {pn+1, … , pN} is minimized. This can be expressed as⟨

ûL(pi), 𝛾(p)
⟩L =

⟨
uL(pi), 𝛾(p)

⟩L ∀𝛾 ∈ UL(Γn), ûL(pi) ∈ UL(Γn), (16)

which is equivalent to a projection of {uL(pi)}N
i=n+1 onto the space UL(Γn) denoted by PUL

Γn
, ie,

IL
L
(

uL(Γn)
)
∶= ûL(pi) =

n∑
𝑗=1

c𝑗uL(p𝑗), (17)

where we have defined the interpolation operator IL
L using coefficients cj obtained from low-resolution conditions (16) to

approximate low-resolution solutions on {pi}N
i=n+1.

The linear algebraic version of (16) is
GLcL = f L

, (18)

where the low-resolution Gramian GL and f L are expressed as

GL
i𝑗 =

⟨
uL(pi),uL(p𝑗)

⟩L
, ∀pi, p𝑗 ∈ {p1, … , pn},

f L =
(
𝑓 L

i
)

1≤i≤n, 𝑓 L
i =

⟨
uL(pi),uL(p𝑗)

⟩L
, p𝑗 ∈ {pn+1, … , pN}.

(19)

Note that the Gramian GL is constructed once for all important samples; however, the right-hand side f L is computed
for every parameter {pi}N

i=n+1 individually. Therefore, this analysis yields N − n coefficient vectors c. We also note that
solving the linear system (18) is not challenging since the size of GL is small.

Upon finding the coefficients c, we estimate the higher-resolution solutions {uH(pi)}N
i=n+1 by a lifting procedure, ie,

ûH(pi) = IH
L
(

uL(Γn)
)
∶=

n∑
𝑗=1

c𝑗uH(p𝑗). (20)

We now have the high-resolution response on the entire sample space, ie, we have UH(ΓN) =
{uH(p1), … ,uH(pn), ûH(pn+1), … , ûH(pN)}. Having the high-resolution response, which is equivalent to the adjoint
solution, we compute approximations Ĉ and 𝜕Ĉ∕𝜕𝝆 to the compliance and its sensitivity for the sample space ΓN:
{Ĉ(p1), 𝜕Ĉ(p1)∕𝜕𝝆, … , Ĉ(pN), 𝜕Ĉ(pN)∕𝜕𝝆} as discussed in Section 2.3.

Algorithm 1 summarizes the steps in bifidelity construction.

3.4 Primal and sensitivity analyses
To compute statistical moments in the optimization problem in Section 2.2, we use either a quadrature rule or MC inte-
gration. In either case, we compute N higher-resolution samples (or approximations to them as described previously) and
subsequently compute 𝜇 and 𝜎

𝜇 = E[C] =
N∑

i=1
C(pi)wi

𝜎 =
√

E[(C − 𝜇)2] =

√√√√ N∑
i=1

C2(pi)wi − 𝜇2,

(21)
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where wi = 1∕N in the case of MC integration. The sensitivity of statistical moments is computed similarly, ie,

𝜕𝜇

𝜕𝝆
=

N∑
i=1

𝜕C(pi)
𝜕𝝆

wi

𝜕𝜎

𝜕𝝆
= 1

𝜎

( N∑
i=1

C(pi)
𝜕C(pi)
𝜕𝝆

wi − 𝜇
𝜕𝜇

𝜕𝝆

)
,

(22)

where 𝜕C(pi)∕𝜕𝝆 is readily available from the high-resolution displacement uH(pi).
To compute the probability of failure and its sensitivity, we adopt the approach in the works of Keshavarzzadeh et al,11,12

ie, we compute

Pr[C > C̄] = 1
N

N∑
i=1

H(C(pi) − C̄)

=
nC>C̄

N
,

(23)

where nC>C̄ denotes the number of MC samples that satisfy C > C̄ and H is the Heaviside function. To compute the
sensitivity, we replace H with its smooth approximation

H𝜀(x) =
1
2

(
tanh

(x
𝜀

)
+ 1

)
, (24)

where 𝜀 > 0 is a small number that controls the width of the 0-to-1 transition such that H(x) = lim𝜀→0H𝜀(x). Taking the
derivative with respect to 𝝆 yields the sensitivity

𝜕 Pr[C > C̄]
𝜕𝝆

= 1
2𝜀N

N∑
i=1

𝜕C(pi)
𝜕𝝆

(
1 − tanh2

(
C(pi) − C̄

𝜀

))
. (25)

We use 𝜀 = 0.01𝜎(𝝆) (cf Equation (9)) in our numerical simulations according to the work of Keshavarzzadeh et al.11 As
mentioned, we need high-resolution MC samples to estimate the probability of failure and its sensitivity. The biresolu-
tion strategy in this paper significantly facilitates the approximation to high-resolution samples, as will be shown in the
numerical examples.

Algorithm 2 summarizes the steps and Figure 3 depicts the flowchart for the bifidelity topology optimization for
compliance minimization.
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FIGURE 3 Flowchart of the parametric topology optimization with multiresolution finite element (FE) models. Note that the low- and
high-resolution parameters are obtained once before the inception of optimization. FEA, finite element analysis [Colour figure can be viewed
at wileyonlinelibrary.com]

3.5 Error estimate for bifidelity compliance and its sensitivity
In this section, we first provide theoretical explanations as to why this particular multifidelity approximation is effective.
We then derive an estimate for compliance and its sensitivity, which bounds the discrepancy between the biresolution
and high-resolution approximations. Before beginning the discussion, we introduce some additional notation. Similar to
Equation (19), let

GH
i𝑗 =

⟨
uH(pi),uH(p𝑗)

⟩H
, ∀pi, p𝑗 ∈ {p1, … , pn}

𝑓H
i =

⟨
uH(pi),uH(p𝑗)

⟩H
, p𝑗 ∈ {pn+1, … , pN}

PUH
Γn

uH(pi) =
n∑

𝑗=1
cH
𝑗 uH(p𝑗)

(26)

be the high-resolution Gramian, forcing term, and interpolator. The high-fidelity coefficients cH can then be obtained
from GHcH = f H.

The first error analysis for this procedure is reported in the work of Narayan et al.33 In this paper, the authors develop
an error estimate by assuming enough proximity for low- and high-resolution Gramians GL and GH (cf theorem 4.4 in the
work of Narayan et al33). This analysis is, unfortunately, unwieldy and not easily computable. Recently, more practical
criteria for this multifidelity approximation are given in the work of Hampton et al.35 We report the main theorem of
Hampton et al35 at this juncture.

Theorem 1. Let the low- and high-resolution Gramians be denoted by GL and GH, and let 𝜖(𝜅) = 𝜆max(GH − 𝜅GL),
where 𝜆max denotes the largest eigenvalue of the matrix for some 𝜅 ≥ 0. Furthermore, let 𝜎k denote the kth singular value
of matrix UL, then the bifidelity approximation of high-resolution response is bounded via

||ûH − uH|| ≤ ⎡⎢⎢⎣1 +
√

n +
NL

dof max
i∈[1,… ,n]

||ûL(pi) − uL(pi)||
𝜎k+1

⎤⎥⎥⎦
√

𝜅𝜎2
k + 𝜖(𝜅). (27)

This bound motivates the application of the multifidelity approximation due to the following reasons: (a) the error in
the low-fidelity model ||ûL(pi) − uL(pi)|| is small since it is reasonable to assume that the low-fidelity model is of low
rank, and hence, the least squares approximation ûL(pi) (cf Equation (17)) is an accurate estimation of uL(pi); (b) in this
bound, we need also some proximity assumption between low- and high-resolution Gramians similar to the analysis in

http://wileyonlinelibrary.com
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the work of Narayan et al33 to ensure small 𝜖(𝜅). This assumption, however, is not a substantial practical limitation since it
does not assume the proximity between the low- and high-resolution responses uL and uH themselves, which are possibly
not proximal in practice. We note, however, that in the cases where responses uL and uH do converge to an asymptotic
response u by means of refining the discretization (similar to the case in this paper), a recent analysis confirms that this
multifidelity procedure is effective.36

Having the above known theoretical guarantees, we proceed with deriving estimates for each compliance sample and its
derivative. In other words, we show that the differences |C(pi) − Ĉ(pi)|, ||𝜕C(pi)∕𝜕𝝆− 𝜕Ĉ(pi)∕𝜕𝝆||2, ∀pi ∈ Γ are bounded
for an arbitrary iteration throughout the optimization. In most of our analyses, we do not show the dependence of these
quantities on parameters and optimization iteration.

To derive an estimate for compliance, we first need to analyze the difference in the displacement approximations, ie,||uH − ûH||2, which we adopt from the work of Narayan et al.33 This difference is bounded via the triangle inequality

||uH − ûH|| ≤ ‖‖‖uH − PUH
Γn

uH‖‖‖ + ‖‖‖PUH
Γn

uH − ûH‖‖‖ , (28)

where PH
UΓn

is the UH-orthogonal projector onto UH
Γn

. The first term on the right-hand side is rather abstract and is typically
bounded via a Kolmogorov n-width argument for the samples obtained from the greedy procedure (15), ie,

sup
pi∈Γ

‖‖‖uH − PUH
Γn

uH(pi)
‖‖‖ ≤ C1

√
dn∕2(u(Γ)), (29)

where dn(uH(Γ)) is the n-width of the manifold uH(Γ).33 A detailed analysis of this term is beyond the scope of this work;
however, we assume that the contribution of this error is negligible with respect to the second term on the right-hand
side. This assumption is frequently true in practice, and therefore, we assume it to be a fraction of the second error term.
This assumption will be verified in the numerical examples.

Now, let
√

GH = V
√

SV T be the square root of the positive (semi)definite Gramian GH = V
√

SV T , where S and V are
eigenvalues and eigenvectors, respectively, of GH. We need to formalize an assumption before proceeding.

Assumption 1. The low- and high-fidelity coefficients are close, ie,

||cH − cL|| ≤ 𝜖, (30)

and the ratio

𝛿 =
‖‖‖uH − PUH

Γn
uH‖‖‖‖‖‖PUH

Γn
uH − ûH‖‖‖ (31)

is small, ie, 𝛿 ≪ 1.

The following lemma bounds the error in the displacement approximation (28).

Lemma 1. Let n important samples be given via (15) and assumptions (30) and (31) hold, then

||uH − ûH|| ≤ 𝜖(1 + 𝛿)
√

𝜎max(GH), (32)

where 𝜎max(GH) is the largest singular value of GH.

Proof. The second error on the right-hand side of (28) is expressed as

‖‖‖PUH
Γn

uH − ûH‖‖‖2
=

‖‖‖‖‖‖
n∑

𝑗=1

(
cH
𝑗 − cL

𝑗

)
uH(p𝑗)

‖‖‖‖‖‖
2

= (cH − cL)GH(cH − cL) =
‖‖‖‖√GH(cH − cL)

‖‖‖‖2

≤
‖‖‖‖√GH‖‖‖‖2||cH − cL||2 ≤ 𝜎max(GH)𝜖2,

(33)
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which yields ||PUH
Γn

uH − ûH|| ≤ 𝜖
√
𝜎max(GH). Using this inequality and definition (31) in inequality (28) yields the

estimate (32).

Remark 2. As mentioned, the ratio 𝛿 is not known a priori via analytical estimates. In practice, we directly compute
it in our numerical experiments by using the first few unimportant high-resolution samples in the pivot vector and
selecting the worst ratio, ie, the largest one. We also compute f H and subsequently cH associated with that particular
unimportant sample and find an approximate value for 𝜖.

The following proposition bounds the error for the compliance and its sensitivity.

Proposition 1. Let the bifidelity approximation error in displacement be given by (32), then the error in compliance
approximation and its sensitivity is bounded by |C − Ĉ| ≤ A𝜎max(K)‖‖‖‖‖𝜕C

𝜕𝝆
− 𝜕Ĉ

𝜕𝝆

‖‖‖‖‖ ≤ A𝜎max

(
𝜕K
𝜕𝝆

)
,

(34)

where
A = 𝜖(1 + 𝛿)𝜎max(GH)

[
2||cl|| + 𝜖(1 + 𝛿)

]
, (35)

𝜎max denotes the largest singular value, and K, 𝜕K∕𝜕𝝆denote the global stiffness matrix (cf Equation (7)) and its derivative.

Proof. We use the result of Lemma 1 and the definition of compliance and its derivative, ie, C = uTKu, 𝜕C∕𝜕𝝆 =
−uT(𝜕K∕𝜕𝝆)u: |C − Ĉ| = ||uTKu − ûTKû|| = ||(uT − ûT)Ku + ûTK(u − û)||

≤ ||u − û||𝜎max(K)[||u|| + ||û||]
≤ ||u − û||𝜎max(K)[||u − û|| + 2||û||]. (36)

According to (32) and (33), we have

||u − û|| ≤ 𝜖(1 + 𝛿)
√

𝜎max(GH)

||û|| = ‖‖‖‖√GHcL‖‖‖‖ ≤
√

𝜎max(GH)||cL||. (37)

Using the above estimates in (36) yields

|C − Ĉ| ≤ 𝜖(1 + 𝛿)𝜎max(K)𝜎max(GH)
[
𝜖(1 + 𝛿) + 2||cl||]

= A𝜎max(K).
(38)

Similarly, the bound for compliance sensitivity is obtained by replacing 𝜎max(K) with 𝜎max(𝜕K∕𝜕𝝆) in the above
estimate.

4 NUMERICAL ILLUSTRATION

4.1 Loading variability
In this example, we consider variations in loading on a square carrier plate shown in Figure 4. The domain is discretized
using standard square FEs with different numbers of elements from coarse to fine meshes, ie, 4 × 4, 10 × 10, 20 × 20,
50 × 50, and 100 × 100 elements. We fix the top two layers of elements as solid elements to ensure the connectivity
between load and structure. The load consists of a deterministic distributed vertical load f2 = 2 and random horizontal
load f1(x, p), which is modeled as a random field (cf Equation (12)) with zero mean and square exponential covariance
function similarly to Equation (11) with lc = 0.2. In Equation (12), we assume𝜙(p) as uniform random variables U[ −1, 1]
and consider nM = 10 modes, which yields the ratio

∑10
i=1

√
𝜂i∕

∑100
i=1

√
𝜂i = 0.9, reasonably close to 1. The first five modes

of loading are shown in Figure 5.
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FIGURE 4 Carrier plate geometry for the simulation in Section 4.1
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FIGURE 5 First five modes of Karhunen-Loeve expansion for loading [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Decay of singular values in uL(ΓN ) for 4 × 4 and 10 × 10 meshes [Colour figure can be viewed at wileyonlinelibrary.com]

To apply these modal loads on the structure with lower resolution, we simply interpolate the high-resolution modes,
eg, the ones with 100 elements (shown in Figure 5). To compute statistical moments, we compute discretizations to the
corresponding integrals using the technique of designed quadrature, which was developed previously by the authors.37

This quadrature rule is specially designed for integration in multiple dimensions where the positivity of weights is ensured
and, in all cases, tested that the number of nodes is smaller than that in a corresponding sparse grid rule. We use N = 148
points that integrate a function with 10 variables associated with nM in (12) and the total order 𝜶 = 5, ie, this set of points
can integrate ∫ x𝛼1

1 x𝛼2
2 … x𝛼10

10 dx1dx2 … dx10 for
∑10

i=1 𝛼i ≤ 5 accurately. We deem the total order 𝜶 = 5 sufficient for our
problem.

The next two Figures show some intermediate results associated with an iteration in the middle of optimization. Figure 6
shows the decay of singular values in the low-resolution models uL(ΓN) for 4 × 4 and 10 × 10 meshes. As seen, the coarser
mesh has only numerical rank r = 6, whereas the finer mesh has r = 11. This suggests that all 10 horizontal modes and

http://wileyonlinelibrary.com
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FIGURE 7 Bifidelity actual approximation error for displacement, compliance, and compliance sensitivity with respect to different
numbers of high-resolution simulations n for 4 × 4 (top) and 10 × 10 (bottom) meshes [Colour figure can be viewed at wileyonlinelibrary.com]

the vertical load can be captured by the finer mesh whereas the coarser one does not have enough degrees of freedom
(DOFs; only 6) to capture all modal loads.

Figure 7 shows the difference between bifidelity approximation and high-fidelity solutions for the displacement,
compliance, and compliance sensitivity with respect to different values on n, number of high-resolution simulations.

Topology optimization results with different meshes are plotted in Figure 8. We use filter radius values rmin =
6, 3, 2, 1.5, 1.05, respectively, for our five different mesh sizes. (See the caption of Figure 8 for these mesh sizes.) In the case
of the two coarsest meshes, 4 × 4 and 10 × 10, we only fix the top layer instead of the top two layers. We use the same
optimality criteria algorithm27,38 to update the design parameters until the optimization converges. From these plots, it is
obvious that the single-resolution optimizations (top plots) with coarse meshes yield uninformative topology designs, but
using these coarse meshes in our biresolution framework results in designs that are almost identical to high-resolution
optimization.

FIGURE 8 Topology optimization results for different meshes: single-resolution optimization with 4 × 4, 10 × 10, 20 × 20, 50 × 50, and
100 × 100 meshes (top row) and bifidelity optimization with 4 × 4, 10 × 10, 20 × 20, and 50 × 50 meshes (bottom row). The top-right figure
is obtained with 148 high-resolution simulations (on a 100 × 100 mesh) at each design iteration, whereas the bottom plots associated with
10 × 10, 20 × 20, and 50 × 50 meshes are obtained with only 11 high-resolution simulations. The bottom-left plot associated with a 4 × 4
mesh is obtained with six high-resolution simulations

http://wileyonlinelibrary.com
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TABLE 1 Loading uncertainty: error vs cost for single-resolution and
biresolution optimizations

Resolution No. Iter. No. Hi. Res. Sim. e𝝆 eQ

Hi. Res. 100 × 100 385 56 980 – –
Bi-Res. 4 × 4 587 3522 1.09e−01 2.32e−02
Bi-Res. 10 × 10 385 4235 5.74e−05 2.01e−05
Bi-Res. 20 × 20 385 4235 5.74e−05 2.01e−05
Bi-Res. 50 × 50 385 4235 5.74e−05 2.01e−05
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FIGURE 9 Effect of 𝜆 on optimized objective function Q. Left and right figures are obtained from single high-resolution 100 × 100
optimization and bifidelity optimization with a 10 × 10 mesh, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Effect of 𝜆 on optimal design: 𝜆 = 0.001 (left), 𝜆 = 0.1 (middle), and 𝜆 = 1 (right). Top and bottom figures are obtained from
single high-resolution 100 × 100 optimization and bifidelity optimization with a 10 × 10 mesh, respectively

We compute the difference between optimal designs obtained from the biresolution approach and high-resolution
design as e𝝆 = ||𝝆B − 𝝆H||∕√nH

elem, where nH
elem = 104 in this case. Similarly, we define the error in the objective function

Q (cf Equation (9)) as eQ = |QB − QH|∕QH. Table 1 shows the number of iterations; the number of high-resolution sim-
ulations, which is 6 for the coarsest mesh and 11 for the rest of the meshes at each iteration; and e𝝆 and eQ. It is apparent
that the biresolution topology optimization with a 10 × 10 mesh yields almost the same design with much smaller cost.

To investigate the effect of standard deviation weight on the optimal design, we consider three values for 𝜆 =
0.001, 0.1, 1 (cf Equation (9)). Figure 9 shows the optimization iteration for both single-resolution and biresolution opti-
mizations, which are almost identical for different values of 𝜆. We show the corresponding designs in Figure 10, where,
again, similar topologies are obtained.

http://wileyonlinelibrary.com
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TABLE 2 Actual error vs upper-bound estimate.
Estimated values are computed as the bounding certificates
in Lemma 1 and Proposition 1||u − û|| |C − Ĉ| ||𝝏C∕𝝏𝝆𝟏 − 𝝏Ĉ∕𝝏𝝆𝟏||

Actual 3.64e−07 1.57e−08 3.18e−09
Estimate 5.76e−05 3.26e−04 3.33e−04

Finally, we compute the error bound in approximation of displacement, compliance, and compliance sensitivity. To
that end, we consider the first iteration where the densities are considered uniformly 𝝆 = 0.35. We also consider n = 11
with a 10 × 10 mesh as the full rank of the low-fidelity model. As mentioned earlier, to obtain 𝛿, we directly compute
the two norms in (28) for the first few unimportant samples. The maximum ratio is computed to be 𝛿 = 0.916 for the
third sample after n = 11 samples. The maximum norm for the stiffness matrix and its derivative with respect to the first
design variable (the element in the bottom-left corner) are 𝜎max(K) = 1.0476 and 𝜎max(𝜕K∕𝜕𝜌1) = 1.0714. We have also
computed 𝜎max(GH) = 113.384 and 𝜖 = 2.825e − 06 directly from the high-fidelity data. The actual and estimated errors
for the aforementioned sample are listed in Table 2.

From this single point, it is evident that the upper bound is relatively small. The actual error for a bifidelity sur-
rogate is even smaller, which promises almost identical designs for parametric topology optimization, as evidenced
by Figure 8.

4.2 Manufacturing tolerances
In this example, we consider uncertainty in the thresholding parameter 𝜏 (cf Equation (6)) to mimic the geometric varia-
tions in the thickness of resulting truss bars in the L-shape domain shown in Figure 11. We use lc = 0.85 in Equation (11),
which results in

∑4
i=1

√
𝜂i∕

∑100
i=1

√
𝜂i = 0.88. We also use N = 43 designed quadrature points that integrate d = 4 dimen-

sions with order 𝛼 = 6 accurately.37 The nM = 4 Karhunen-Loeve modes and four realizations of spatial threshold
𝜏 = 0.1Z + 0.45 corresponding to arbitrary quadrature nodes are shown in Figure 12.

Similarly to loading uncertainty, we consider different numbers of high-resolution simulations n in the bifidelity con-
struction and show the difference between bifidelity approximation and high-fidelity solutions for the displacement,
compliance, and compliance sensitivity (cf Figure 13). Again, as expected, as the number of high-resolution simulations
increases, more accurate bifidelity approximations are obtained.

We use filter radius rmin = 6, 3, 2.5, 2, 1.5 for different meshes in this case and set 𝜆 = 0.1. Topology opti-
mization results for single-resolution and biresolution models are shown in Figure 14. In the biresolution optimiza-
tions, only 10 high-resolution simulations are performed, whereas single-resolution optimization is performed with
43 simulations.

FIGURE 11 L-bracket geometry for the simulation in Section 4.2
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FIGURE 12 Karhunen-Loeve modes for the spatial random field (top) and different realizations of the spatial threshold on quadrature
points (bottom) [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 13 Bifidelity actual approximation error for displacement, compliance, and compliance sensitivity with respect to different
numbers of high-resolution simulations n for 4 × 4 (top) and 10 × 10 (bottom) meshes [Colour figure can be viewed at wileyonlinelibrary.com]

To quantify the differences between single-resolution and biresolution optimizations, we perform the same study as
done in the previous example. Table 3 shows the error versus the cost for single-resolution and biresolution optimizations.
We again observe that a 10 × 10 mesh is the most economical choice as it yields the small error, whereas most of the
computation is performed on its relatively coarse mesh.

As mentioned, the processed design variables �̄� are random due to the randomness in 𝜏. We define the error in
the mean and standard deviation of processed design variables between single-resolution and biresolution models as
e𝜇(�̄�) = ||𝜇(�̄�B) − 𝜇(�̄�H)||∕√nH

elem and e𝜎(�̄�) = ||𝜎(�̄�B) − 𝜎(�̄�H)||∕√nH
elem, which are computed as e𝜇(�̄�) = 2.75e − 03 and

e𝜎(�̄�) = 1.86e − 03. Figure 15 shows the mean and standard variation for the processed design variables obtained from
single-resolution and biresolution optimizations.

Now that we can obtain high-fidelity compliance values efficiently, we perform a more challenging RBDO (cf
Equation (10)), where we set C̄ = 500, 𝛿P𝑓

= 0.05. We use the method of moving asymptotes39 to solve this optimization
problem and consider N = 1000 biresolution MC samples with n = 10 to compute the probability of failure and its sen-
sitivity at each design iterate. This means we perform n = 10 high-resolution FEA and N = 1000 low-resolution FEA to
find biresolution approximations. The optimized topology is shown in Figure 16. To investigate the accuracy, we perform

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


KESHAVARZZADEH ET AL. 17

FIGURE 14 Topology optimization results for different meshes and 𝜆 = 0.1: single-resolution optimization with 4 × 4, 10 × 10, 20 × 20,
50 × 50, and 100 × 100 meshes (top row); bifidelity optimization with 4 × 4, 10 × 10, 20 × 20, and 50 × 50 meshes (bottom row). All
biresolution results are obtained with 10 high-resolution simulations, which are almost identical to the top-right plot that uses 43 simulations
at each design iterate

TABLE 3 Geometric uncertainty: error vs cost for single-resolution and
biresolution optimizations

Resolution No. Iter. No. Hi. Res. Sim. e𝝆 eQ

Hi. Res. 100 × 100 240 10 320 – –
Bi-Res. 4 × 4 283 2830 0.0236 4.24e−03
Bi-Res. 10 × 10 276 2760 0.0155 1.51e−04
Bi-Res. 20 × 20 268 2680 0.0130 1.29e−04
Bi-Res. 50 × 50 255 2550 0.0093 9.10e−05

N = 104 high-resolution MC and N = 104 biresolution MC with n = 10 on the final design to generate compliance prob-
ability density functions and CDFs. The probability of failure for high-resolution and biresolution analyses is estimated
as Pr[C > C̄] = 0.048, 0.047, which are reasonably close to each other and to the limit 𝛿P𝑓

= 0.05.
Finally, to show the effectiveness of our approach in approximating challenging quantities of interest, we compute the

parametric von Mises stress for the optimal design using the biresolution approach and compare it with MC and multi-
level Monte Carlo (MLMC) simulations.40 Figure 17 shows a realization of high- and low-resolution von Mises stresses
associated with 100 × 100 and 10 × 10 meshes on one of 43 quadrature points. It is again observed that the low-resolution
mesh provides no insight on stress distribution; however, by using it in the biresolution framework in conjunction with
10 high-resolution stress distribution samples, we can approximate the rest of the 33 high-resolution stresses.

We use the biresolution quadrature samples to compute the mean and standard deviation of spatially averaged stresses.
In addition, we perform 1000 high-resolution MC simulations (associated with 1000 samples of the threshold random
field; cf Equation (12)) to find the mean and standard deviation of the same quantity of interest. For MLMC approximation,
we use n = 10 high-resolution and N = 1000 low-resolution samples to compute the mean and standard deviation via
the multilevel strategy. That is, we compute

EMLMC[Q] = EL[QL] + EH[QH − QL]

EMLMC[Q2] = EL[QL2] + EH[QH 2 − QL2]

𝜎MLMC =
√

EMLMC[Q2] − 𝜇2
MLMC,

(39)

where 𝜇MLMC = EMLMC[Q] and EL and EH are sample averages with 1000 and 10 samples, respectively. That is, to com-
pute EH[QH − QL], we use 10 high-resolution samples as well as 10 low-resolution samples (corresponding to the same
parametric values). On the other hand, to compute EL[QL], we generate 103 low-resolution samples inexpensively and
find their sample average. To investigate the error, we use a high-level sparse grid with n = 1217 nodes as the true
solution.41 Figure 18 shows the convergence of the MC simulations and the error between the biresolution approxima-
tion and the true solution as well as the MLMC approximation and the true solution. It is seen that the biresolution
approximation of stress with only 10 high-resolution simulations outperforms MC simulations with a much larger num-
ber of high-resolution simulations and MLMC approximations. It is also worth mentioning that MLMC methods are only
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FIGURE 15 Mean (left) and standard deviation (right) of processed design variables �̄� obtained from biresolution optimization with a
10 × 10 mesh (top) and single-resolution optimization of a 100 × 100 mesh (bottom)

FIGURE 16 A nominal reliability–based design using the biresolution approximation (left), probability density functions (PDFs; middle),
and cumulative distribution functions (CDFs; right) of compliance obtained via high-resolution and biresolution finite element analyses
[Colour figure can be viewed at wileyonlinelibrary.com]

applicable to problems where the approximation of statistical moments is concerned, eg, RDO problems, whereas our
biresolution strategy is a systematic tool to generate high-fidelity samples that can be used in RBDO problems, which
require a large number of high-fidelity samples (as shown in Figure 16).

4.3 Three-dimensional topology optimization
In order to demonstrate the effectiveness of our approach in reducing computational cost, we consider three-dimensional
(3D) topology optimization in the last example. Figure 19 shows the geometry and boundary conditions of the problem.
The middle of the beam is subjected to a random vertical load similarly to the shear load in Example 4.1. We use the
symmetry and optimize half of the structure where we fix the x and z DOFs associated with the nodes in the middle
plane as well as the y DOFs associated with the nodes in the lower-right corner along the z-direction. The high- and
low-resolution FEAs consist of 60 × 20 × 10 and 24 × 8 × 4 brick elements with 42 273 and 3375 DOFs, respectively. This

http://wileyonlinelibrary.com
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FIGURE 17 A realization of high- and low-resolution von Mises stresses associated with 100 × 100 and 10 × 10 meshes [Colour figure
can be viewed at wileyonlinelibrary.com]
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FIGURE 18 Error in mean (left) and standard deviation (right) of spatially averaged von Mises stress. The abscissa n is the number of
high-resolution simulations. MLMC, multilevel Monte Carlo [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 19 Geometry and boundary condition for a three-dimensional linear elastic structure for simulations in Section 4.3 [Colour
figure can be viewed at wileyonlinelibrary.com]

results in a 92% reduction (1 − (3375∕42273) = 0.92) in DOFs in low-resolution analyses, which drastically decreases the
computational complexity of linear solves in parametric computations. We took advantage of the MATLAB code provided
in the work of Liu and Tovar42 for 3D FE computations and part of the code provided in the work of Zegard and Paulino43
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FIGURE 20 Optimized topology for a three-dimensional linear elastic beam using high-resolution approximations (top), biresolution
approximations (middle), and low-resolution approximations (bottom) [Colour figure can be viewed at wileyonlinelibrary.com]

for visualization of 3D designs. We solve the RDO problem (cf Equation (9)) with 𝜆 = 0.1 and use n = 5 high-resolution
and N = 500 low-resolution simulations throughout the optimization. Figure 20 shows the optimized designs associated
with high-resolution, biresolution, and low-resolution approximations. It is apparent that there is no significant difference
between high-resolution and biresolution robust designs, whereas the low-resolution design is again uninformative by
itself. Similar to the previous example, to investigate the accuracy of our approach, we compute the compliance probability
density functions associated with two high-resolution and biresolution designs using 104 MC samples (cf Figure 21). The
difference with the previous example is that we perform high-fidelity MC analyses on the first two designs in Figure 20,
whereas in the previous example, we performed high-fidelity and bifidelity MC analyses on the final bifidelity design. The
mean and standard deviation of compliance for these designs are 𝜇 = 212.00, 𝜎 = 28.24 and 𝜇 = 210.41, 𝜎 = 27.74,
which are again deemed sufficiently close considering significant reduction in FE computations.

http://wileyonlinelibrary.com
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FIGURE 21 Compliance probability density functions (PDFs) for a three-dimensional optimized structure associated with high-resolution
and biresolution robust designs [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSION

We have presented a systematic approach for parametric topology optimization with multiresolution FE models. The
parametric variation is identified from an inexpensive low-resolution model, where a large number of simulations can
be performed. The identified links among low-resolution samples are used to approximate the high-resolution parameter
space, which now only requires a limited number of high-fidelity simulations. We use the bifidelity surrogate of displace-
ment for compliance-based topology optimization on benchmark problems with loading and geometric variabilities. An
error estimate for bifidelity approximation of compliance is derived, which certifies the convergence of approach. Numer-
ical results are provided to delineate the convergence analysis. It is shown that the biresolution approach yields almost
identical design to single-resolution optimization with significantly smaller computational cost especially in expensive
problems, such as topology optimization under manufacturing uncertainty, reliability-based topology optimization, and
3D topology optimization.
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