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Abstract
Treating discontinuities at element boundaries is a significant problem in understanding high-
order FEMsimulation data since the physics used tomodel the simulation is often continuous.
Recently, the family of SIAC filters, especially the L-SIAC filter, has been gaining popularity
for its use in postprocessing. The computationalmath community, with its focus on improving
the theoretical aspects of the SIAC filter, has applied the filter only on simple, fairly uniform
unstructured meshes, where the largest element in the mesh is less than or equal to twice the
smallest element. In many engineering applications, the unstructured meshes have varying
orders of mesh resolution, but there is no literature for adapting the characteristic length of
the SIAC filter to address these real-world simulation data. The central contribution of this
paper is an algorithm used to calculate the characteristic length dynamically at any point in
the mesh. We demonstrate that our approach has a lower error and is computationally faster
than using maximum edge length over the mesh.

Keywords cG (continuous Galerkin) · dG (discontinuous Galerkin) · Higher order
methods · Higher order data · Smoothness increasing accuracy conserving filter (SIAC
filter) · Line SIAC (L-SIAC)

1 Introduction

The high-order FEM techniques used in applications such as Formula-1 race car design [1]
or bioengineering [2] are becoming increasingly popular to solve real-world engineering
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problems. The discontinuous Galerkin (dG) data and/or the derivative quantities output by
the FEM techniques are discontinuous at the element boundaries, but the underlying physics
often imply the data are continuous. These discontinuities are in some cases an artifact of the
simulation technique andhencemaynot hold any significance for anyoneother thannumerical
simulation experts. Moreover, most of the data extraction techniques and visualization tools
need the simulation data to be continuous to be effective. Hence, treating these discontinuities
at the element boundarywhile conserving accuracy is important tomake decisive conclusions
from the simulation. Recently, a family of SIAC filters, especially the Line SIAC filter (L-
SIAC [3]), has been introduced as a postprocessor to compute and visualize continuous
derived quantities from simulation data [4].

In the computational math community, the main focus has been to improve the theoretical
aspects of the SIAC filter, and therefore it has been applied on simple structured and unstruc-
tured meshes with small changes in resolution of the mesh, i.e., the ratio of the maximum
to minimum element is usually less than three. Almost all the meshes used in real-world
engineering simulations are unstructured, with element sizes varying possibly several orders
of magnitude. Hence, in this paper, we showcase the results for unstructured meshes due to
their interest in real-world applications. The different resolutions in the unstructured mesh
help capture essential features of the simulation while keeping the computational cost of the
simulation at a minimum. To postprocess these unstructured meshes, the current recommen-
dation is to use maximum edge length in the mesh as the characteristic length of the SIAC
filter. This technique is valid for regular unstructured meshes [5], but maximum edge length
as the characteristic length is not sufficient on meshes with resolutions varying several orders
of magnitude.

The difficulty in using theL-SIACfilter for real-world applications is selecting an adequate
characteristic length and filter orientation to reduce error on all parts of the unstructuredmesh,
withminimumcomputational overhead. In this paper,we propose an algorithm to compute the
characteristic length that adaptively scales the L-SIACfilter across different resolutions of the
mesh. The proposed adaptive characteristic length produces a lower error on the nonuniform
unstructured mesh and generates smaller if not the same error on uniform meshes. We also
show that our algorithm is computationally efficient in high-resolution regions of the mesh.

Thepaper is organized as follows: InSect. 1.1,wepresent previously suggested alternatives
for the characteristic lengthwith their drawbacks. In Sect. 2,wedefine theL-SIACfilter and its
implementation. In Sect. 3, we present our proposed algorithm to calculate the characteristic
length dynamically. We also show that using the recommended adaptive characteristic length
is computationally efficient on high-resolution regions of the mesh. In Sect. 4, we compare
our adaptive characteristic length against the maximum edge length on unstructured and
structured meshes present in the literature. We also demonstrate the effectiveness of using
adaptive characteristic length on simulations data output by Nektar++ [6]. We then conclude
in Sect. 5 by discussing the pros and cons of adaptive characteristic length as revealed through
this implementation and comparison study.

1.1 PreviousWork

In the mathematical literature, Cockburn et al. [7,8] introduced SIAC filters as a postpro-
cessing technique for increasing the accuracy of the discontinuous Galerkin (dG) solution by
exploiting superconvergence rates in their negative norm; these filters, as a secondary con-
sequence of the postprocessing, increase the continuity in the solution. In [9–11], variations
of the SIAC filter, called one-sided SIAC filters, are introduced to deal with boundaries and
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shocks. Mirzargar et al. in [12] introduced hexagonal SIAC filters, which are better suited
for hexagonal meshes. Li et al. in [13] discussed effective ways to calculate the derivative
quantities using the SIAC and one-sided SIAC filter.

To extend the work done in the mathematical literature to the field of engineering,Mirzaee
et al. [5,14] have shown effective ways to intersect the SIAC kernel and mesh geometry for
structured andunstructuredmeshes, but it is still difficult to use theSIACfilter for unstructured
meshes beyond 2D due to geometric and computational complexity. In [15], Steffen et al.
applied the SIAC filter to postprocess fields prior to streamline integration, and in [16],
Walfisch et al. proposed a one-sided SIAC filtering approach for visualizing continuous
streamlines both accurately and efficiently. Later in [3], Docampo-Sanchez et al. proved
that the L-SIAC filter could be used to achieve higher order convergence and continuity for
higher dimensional solutions. Jallepalli et al. [4] exploited the geometric simplicity of the
L-SIAC filter to calculate derived quantities for realistically sized 3D simulation data and
acknowledged that efficient application of the L-SIAC filter depends on selecting an effective
characteristic length and filter orientation.

Previous studies [5,14] have applied the SIACfilter to structured and unstructuredmeshes,
but there is no literature on applying the L-SIACfilter for thesemeshes. Hence, wewill review
the literature on choosing the characteristic length for the SIAC filter to gain insight into its
application for the L-SIAC filter.

Since it is difficult to prove the correct characteristic length for a nonuniform structured
and unstructured mesh, three approaches have been used for applying the SIAC filter:

1. Mirzaee et al. [5] used the maximum edge length of the mesh as the characteristic length.
In [17], King et al. showed that using a characteristic length equal to two or three times
the edge length produces smoother results but at the cost of increased error. Hence,
although the computational mathematics community often uses a global characteristic
length for regular and smoothly varying meshes, it is our experience that using a single
global characteristic length, however it is chosen, frequently fails formesheswith element
ratios of 1:10 or higher.

2. Curtis et al. [18] used a piecewise constant characteristic length, for which the character-
istic length is constant inside each element and discontinuous at the element boundaries
for a nonuniform mesh. For meshes with a large difference in maximum and minimum
element sizes, using a piecewise constant characteristic length for the L-SIAC filter could
produce better errors compared to the maximum edge length, but the error appears dis-
continuous at the element boundaries due to discontinuity in the characteristic length.

3. In [19], Li studied the connection between the error of the filtered solution and the
filter length used to postprocess uniform and nonuniform meshes. He sought to extend
the existing theoretical SIAC filtering estimates to nonuniform meshes and boundary
filtering by studying their theoretical building blocks such as the divided differences and
their relation to the approximation space. His experimental results (in 2D and 3D) on
general uniform and nonuniform meshes are quite promising and consistent with his
theoretical results, but it is left as an open question how to extend his theoretical results
beyond 1D.

To address the shortcomings of previous approaches, we propose an algorithm that adaptively
scales the characteristic length depending on location in themesh, whilemaintaining continu-
ity at element boundaries. Thus, the proposed algorithm has a similar or lower error compared
to the L-SIAC filter with maximum edge length, maintains the continuity of error at element
boundaries, and has a lower computational cost than the L-SIAC filter with maximum edge
length.
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2 L-SIAC

Postprocessing using an L-SIAC filter can be defined as the convolution of the given field
with a 1D SIAC filter, which is rotated along a direction (d̂) and scaled with a characteristic
length (H ). Mathematically, the L-SIAC filter can be defined as

u∗(x) =
∞∫

−∞
KH (t) ∗ uh(x − Γ (t)) dt (1)

Γ (t) = t d̂, d̂ is a unit vector (2)

where u∗ is the postprocessed solution, uh is the FEM solution of polynomial degree k, H is
the characteristic length, d̂ is the direction of the line alongwhich the L-SIACfilter is applied,
and KH (t) is the SIAC kernel defined as a linear combination of B-splines (Ψ ) along the line
Γ by the parameter t :

K 2k+1,k+1
H (t) =

k∑
γ=−k

cγ Ψ k+1
H

(
t − γ

) = 1

H

k∑
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)
,
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The B-splines used in the postprocessor are well studied and can be computed using the
recurrence relation

Ψ 1 = X[−1/2,1/2],

Ψ k+1(η) = 1

k

((
k + 1

2
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Ψ k

(
η + 1
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)
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Ψ k

(
η − 1
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))
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(4)

K ∗ xr = xr , r ∈ (0, 1, . . . , 2k). (5)

The coefficients of the kernel, cλ, can be foundbyusing the property shown inEq. 5, that the
kernel must not destroy the accuracy of the approximation (i.e., the polynomial reproduction
property). More specifically, they reproduce polynomials of degree 2k by convolution. When
using a symmetric B-spline kernel, the coefficients can be solved once and stored for reuse.
All discussions of errors described in this paper assume that a symmetric kernel fits at the
location where the L-SIAC filter needs to be applied to avoid the additional error due to the
one-sided L-SIAC filter at the boundaries; all computations are carried out in the interior of
the domain.

2.1 Implementation of the L-SIAC Filter

To apply the L-SIAC filter at any point in the field, we carry out the convolution along the
parametric line Γ (t) centered at the given point. Numerically, the FEM data and the SIAC
kernel are piecewise polynomials at element boundaries and B-spline knots, respectively.
First, the parametric line needs to be divided into line segments such that each line segment
can be represented as a polynomial function. Next, we integrate over each line segment using
the appropriate Gauss-quadrature. TheGauss-quadrature required is the average degree of the
B-splines (k) and the FEM field (k) plus one. The division of the line segments is determined
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by the knot locations of the kernel and the intersection of the element boundaries of the mesh
with Γ (t). Thus, the total number of line segments depends on the L-SIAC filter direction,
characteristic length and location at which the L-SIAC filter is applied on the mesh. Hence,
the convolution can be rewritten as the summation

u∗(x) =
Sup(Γ (t))∑

s

q∈Q∑
q

wq KH (tq,s)uh(x − Γ (tq,s)) (6)

or

u∗(x) =
Sup(Γ (t))∑

s

q∈Q∑
q

wq KH (tq,s)u(x − tq,sdx , y − tq,sdy)

tq,s = a + (b − a)q, s = [Γ (a), Γ (b)], q ∈ Q

where s are the line segments created by splitting the line Γ at the SIAC filter knot positions
and the intersection of the line (Γ ) with the mesh element boundaries; Q denotes the set of
quadrature points; wq are the weights for the quadrature point; and tq,s is a quadrature point
on the line segment s.

3 Proposed Adaptive Characteristic Length

The adaptive characteristic length (H(p)) at a point p is evaluated in the following two steps:
Preprocessing Step This step needs to be evaluated before applying the L-SIAC filter.

The step evaluates the effective characteristic length (H(vi )) at all vertices (vi ) in the mesh.
It is accomplished by first calculating the longest edge (Le j ) for each element e j and then
calculating the area-weighted longest edge of all the triangles connected at each vertex. The
area-weighted largest edge is the characteristic length at the vertex and can be described
mathematically as follows:

H(vi ) =
∑

j Le j · Area(e j )∑
j Area(e j )

(7)

where vi is the i th vertex in the given mesh (M), e j is j th the element connected to vertex vi
and Le j is largest edge length of element e j . Observe that the characteristic length definition
above is consistent with the mesh function proposed in [20,21] for facilitating convergence
proofs on unstructured meshes, further corroborating our choice of this functional form.

Postprocessing Step This step is evaluated each time the L-SIAC filter is computed at a
new point (p) in the mesh. First, we calculate the barycentric coordinates of the point (p)
with respect to the element (el ), which contains the point. Next, we interpolate the charac-
teristic length from the vertices (H(v)) of the element (el ) using the barycentric coordinates
(λ0, . . . , λk, . . . λN ) to the given point (p). This step can be described mathematically as
follows:

H(p) =
N∑
l=0

λl · Hvl (8)

where N is the number of vertices in the element (el ). From this point on, we use H for
adaptive characteristic length and H for maximum edge length as the characteristic length.
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Fig. 1 Left: visualization of adaptive scaling calculated at 1000 points on a 1D mesh. Right: time in seconds
to apply the L-SIAC filter using adaptive scaling at 1000 points. The tick marks on the x-axis indicate the
element boundaries

3.1 Cost of Applying the Adaptive L-SIAC Filter

As demonstrated in Eq. 6, the cost of applying the L-SIAC filter at a single point depends
on the number line segments in the summation, the number of quadrature points in each line
segment, and the cost of evaluating the FEM field uh(x) and kernel K (t) at a single location.
Thus, the cost of calculating the L-SIAC at a single point is given by

O

⎛
⎜⎝ N︸︷︷︸

# line segments

·
# quadrature points︷ ︸︸ ︷

(k + 1) ·
⎛
⎜⎝ B︸︷︷︸

cost of uh(x)eval

+ D︸︷︷︸
cost of K (t)eval

⎞
⎟⎠

⎞
⎟⎠ . (9)

The number of line segments required to apply the L-SIAC filter at a single location on a
mesh depends on the L-SIAC kernel knots and the intersection of the kernel with the mesh.
The length of the L-SIAC filter of degree k and characteristic length H is (3k + 1) · H .
The ratio L

el
gives the number of intersections of a line segment of length L on a mesh with

element lengths el . Hence, the total number of line segments required for applying L-SIAC
filter at given point is given by

# line segments = (3k + 1) + L

el

= (3k + 1)

(
1 + H

el

)
(10)

where 3k + 1 is the number of knots in the L-SIAC kernel and L
el

is the number of line
segments due to the intersection of the elements with the L-SIAC kernel.

Therefore, if we apply a constant scaling proportional to the maximum edge length, i.e.,
H = rel , where r >> 1, then the computational cost grows as the mesh resolution grows.
On the other hand, a local scaling, which is not proportional to the mesh, remains at a lower
cost. In Fig. 1, we evaluated the L-SIAC filter on a 1D mesh with a smooth variation in mesh
resolution to demonstrate that the local characteristic length has a lower computational cost
compared to the constant characteristic length.
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Fig. 2 Pointwise error contours for the dG and the adaptive L-SIAC filter across a horizontal line (y = 0.5) at
the center of mesh (SvMeshR10,P1) using the function described in Sect. 4.1. The tick marks along the x-axis
represent the element boundaries. Top: pointwise error contours using a logarithmic scale for the dG and the
adaptive L-SIAC filter; middle: pointwise contour of the dG solution minus the true solution to highlight the
discontinuity at element interfaces; lower: pointwise contour of the adaptive L-SIAC solution minus the true
solution to emphasize the continuity at element interfaces

3.2 Continuty of the Adaptive L-SIAC Filter

One of the primary objectives of the L-SIAC filter is to achieve continuity at element inter-
faces. In the case of the adaptive L-SIAC filter, since the characteristic length maintains C0

continuity across the element interfaces, the post-processed solution and the resulting error
are continuous across element interfaces.

To further illustrate, let us consider the mesh (SvMeshR10) and the projected solution
described in Sect. 4.1 and apply the adaptive L-SIAC filter along the dotted yellow line as
shown in Fig. 4. The error is plotted using the logarithmic scale in Fig. 2. Although the
log plot provides insight into the accuracy, the log plots are not helpful to visualize the
continuity in the solution profile. To show the continuity in the solution profile at the element
interfaces, the difference between the approximate and true solution for each element are
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Table 1 Meshes used in the
results section along with their
number of elements and time to
compute the preprocessing step
(Sect. 3)

Mesh names Elements Time (s)

Unstructured smooth variational mesh, Sect. 4.1

SvMeshR2 2127 0.02

SvMeshR10 6743 0.07

SvMeshR100 12,542 0.1

Unstructured variable-sized mesh, Sect. 4.2

VsMeshR005 2321 0.05

VsMeshR025 10,138 0.23

VsMeshR125 34,720 0.84

Unstructured uniform mesh, Sect. 4.3

UMeshR005 1107 0.03

UMeshR025 4883 0.16

UMeshR125 16,769 0.66

Unstructured diagonal variable-sized mesh, Sect. 4.4

DvsMeshR5 7378 0.07

DvsMeshR10 26,970 0.27

DvsMeshR20 93,750 1.18

Flow past cylinder example, Sect. 4.5

2DcylinderMesh 830 0.01

Counter rotating vortices example, Sect. 4.6

3DMesh 223,837 5.15

plotted individually to generate the middle and lower plots in Fig. 2. We observe the solution
is discontinuous for dG and appears continuous in the case of the adaptive L-SIAC filter.

4 Results

In this section, we present the postprocessing results for a comparison of the efficiency of
the L-SIAC filter used with adaptive characteristic length versus constant maximum edge
characteristic length. From here on, we use “L-SIAC” to refer to applying the L-SIAC filter
with constant characteristic length equal to maximum edge length in the mesh, and “adaptive
L-SIAC” to applying the L-SIAC filter with proposed adaptive characteristic length.

In Table 1, we list all the meshes used in this section along with the time to compute
the preprocessing step described in Sect. 3. The results in this paper are generated on a
machine with a 2.4GHz (Intel CPU E-7-4870) processor. In general, we observed that the
preprocessing time is negligible compared to the time to apply the L-SIAC filter; hence, we
have not included the preprocessing time while reporting the time by the adaptive L-SIAC
filter. For the examples below, unless specified, we have used symmetric L-SIAC filters, by
extending themeshes beyond [0, 1]×[0, 1]whenever possible to avoid error due to one-sided
L-SIAC filters at the boundaries.
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Fig. 3 Left: example of an unstructured triangular mesh with smooth variation in mesh resolution. Right:
adaptive characteristic length for the mesh on the left

4.1 Delaunay triangulation with a smooth variation inmesh resolution

Inmany engineering applications, mostmeshes have continuous variation inmesh resolution,
with high resolution in the area of interest to the simulation. Maintaining the accuracy of
the simulation data after postprocessing is crucial so that the interpretation of the data is
preserved. Hence, in this example, we consider meshes as shown in Fig. 3, where the mesh
has high resolution at the center and gradually coarsens toward its boundaries. We used the
Gmsh tool [22] to create three meshes with ratios of mesh resolution at the boundary and the
center of the mesh equal to 2, 10, and 100: we refer to them as SvMeshR2, SvMeshR10, and
SvMeshR100, respectively.

For the meshes with smooth variation in mesh resolution, we project the function
cos(2π(x + y)) onto the mesh with domain [0, 1] × [0, 1] using the dG methodology (i.e.,
using the L2 projection), and analyze the postprocessed solution using L-SIAC and adaptive
L-SIAC filters, with the direction parameter set along the x-axis for both filters. In Fig. 4,
we visualize the postprocessing error due to the filters using log plots for SvMeshR10 with
different polynomial orders. The line plots in this figure are created by sampling the error
plots along the dotted line, and ticks at the top and bottom of the plot indicate the intersections
of element boundaries with the dotted line. From these error plots, especially the line plots,
it is clear that the L-SIAC filter has attained a high and equal error in all parts of the mesh,
which means it has lower accuracy at high resolutions of the mesh. In contrast, the adaptive
L-SIAC filter has attained a lower error at the center of the mesh, i.e., in the finer resolution
region of the mesh.

To further understand the behavior of the postprocessing filters in the finer regions of the
mesh, in Table 2 we show L2 and L∞ errors for the projection, the L-SIAC filter, and the
adaptive L-SIAC filter, a square region indicated by the red box in Fig. 3. The adaptive L-
SIACfilter produces better accuracy than the dG projection (except forP3, L∞, SvMeshR100
Mesh). In terms of L2 error, except in the case of P1 SvMeshR2 mesh, the adaptive L-SIAC
filter has better accuracy compared to the L-SIAC filter. Regarding L∞ error, the accuracy
of the adaptive L-SIAC filter is similar accuracy to that of the L-SIAC filter. In Table 3, we
show that the adaptive L-SIAC filter is computationally more efficient than the L-SIAC filter.
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Fig. 4 Pointwise error (log10(Error)) contour plots over a smoothly varying resolution with 6743 elements
(SvMeshR10). 1st column: dG error; 2nd column: postprocessed with the L-SIAC filter; 3rd column: postpro-
cessed with the adaptive L-SIAC filter; 4th column: errors along the line y = 0.5. Top row: P1 polynomials;
middle row: P2 polynomials; bottom row: P3 polynomials

Table 2 L2 and L∞ errors over the high-resolution region of meshes described in Sect. 4.1

Mesh L2 L∞
Proj L-SIAC Adaptive L-SIAC Proj L-SIAC Adaptive L-SIAC

P1

SvMeshR2 6.1e−04 2.1e−04 2.5e−04 1.5e−02 2.6e−03 5.0e−03

SvMeshR10 1.4e−04 1.2e−04 5.6e−05 5.0e−03 7.9e−04 1.7e−03

SvMeshR100 7.8e−05 1.2e−04 3.2e−05 2.6e−03 6.3e−04 1.4e−03

P2

SvMeshR2 1.4e−05 7.2e−06 3.9e−06 6.1e−04 5.7e−05 7.3e−05

SvMeshR10 1.3e−06 6.2e−06 4.0e−07 6.6e−05 2.2e−05 1.2e−05

SvMeshR100 6.3e−07 6.3e−06 1.8e−07 4.9e−05 2.2e−05 7.0e−06

P3

SvMeshR2 2.0e−07 3.9e−07 5.6e−08 1.9e−05 2.2e−06 1.9e−06

SvMeshR10 1.4e−08 3.6e−07 3.5e−09 2.2e−06 1.3e−06 1.6e−07

SvMeshR100 4.9e−09 3.7e−07 1.3e−09 6.7e−07 1.2e−06 1.6e−06

4.2 Delaunay Triangulation with Variable-SizedMesh

In this example, we choose nonuniform unstructured meshes as shown in Fig. 5 with the
element size at the center of the mesh equal to 0.5 times that at the boundaries. Mirzaee et
al. [5] used the Gmsh tool [22] to show the performance of the SIAC filter on unstructured
meshes. We created three meshes with the largest element sizes equal to 0.05, 0.025, and
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Table 3 Cost (seconds) of
evaluating L2 and L∞ errors
over the high-resolution region of
meshes described in Sect. 4.1

Mesh L-SIAC Adaptive L-SIAC Speed-up

P1

SvMeshR2 50.25 35.89 1.4001

SvMeshR10 699.74 345.9 2.023

SvMeshR100 3192.27 1594.97 2.0015

P2

SvMeshR2 210.48 134.54 1.5644

SvMeshR10 2743.95 1365.78 2.0091

SvMeshR100 11,868.6 4641.63 2.557

P3

SvMeshR2 511.21 325.9 1.5686

SvMeshR10 6131.68 2706.05 2.2659

SvMeshR100 25,099.8 9074.14 2.7661

Fig. 5 Left: example of an unstructured, variable-sized, triangular mesh described in Sect. 4.2. Right: adaptive
characteristic length for the mesh on the left

0.0125; we refer to them as VsMeshR005, VsMeshR025, and VsMeshR125, respectively. We
then projected the function cos(2π(x + y)) over the domain [0, 1] × [0, 1] for each mesh
using the dG methodology. We postprocess the projected function using L-SIAC filters with
the direction parameter along the x-axis.

In Fig. 6, we show the postprocessing results of L-SIAC and adaptive L-SIACfilters for the
mesh with 2321 elements (VsMeshR005) and an element size of 0.05 units at the boundaries
for different polynomial orders. The line plots in this figure are created by sampling the error
plots along the dotted line, and ticks at the top and bottom of the plot indicate the intersections
of element boundaries with the dotted line. In the line plots, we can see that L-SIAC and
adaptive L-SIAC filters have similar error in coarse regions of the mesh, but the adaptive
L-SIAC filter has a lower error in the high-resolution area.

To further compare the efficiency of adaptive L-SIAC and L-SIACfilters, we have selected
a rectangular region, shown by the red box in Fig. 5, to calculate the L2 and L∞ errors in
Table 4. The adaptive L-SIAC filter and the L-SIAC filter have slightly better accuracy than
the dG approximation, the accuracy of the adaptive L-SIAC filter and the L-SIAC filter is
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Fig. 6 Pointwise error (log10(Error)) contour plots over a variable-sized mesh shown in Fig. 5 with 2321
elements (VsMeshR005). 1st column: dG error; 2nd column: postprocessedwith theL-SIACfilter; 3rd column:
postprocessed with the adaptive L-SIAC filter; 4th column: errors along the line y = 0.5. Top row: P1

polynomials; middle row: P2 polynomials; bottom row: P3 polynomials

Table 4 L2 and L∞ errors over the high-resolution region of meshes described in Sect. 4.2

Mesh L2 L∞
Proj L-SIAC Adaptive L-SIAC Proj L-SIAC Adaptive L-SIAC

P1

VsMeshR005 4.7e−04 1.8e−04 2.1e−04 8.8e−03 2.5e−03 5.0e−03

VsMeshR025 6.7e−05 1.2e−05 2.1e−05 1.2e−03 2.8e−04 8.0e−04

VsMeshR125 2.7e−05 7.5e−06 1.1e−05 5.3e−04 1.7e−04 2.8e−04

P2

VsMeshR005 7.1e−06 7.2e−06 2.2e−06 2.7e−04 3.3e−05 4.4e−05

VsMeshR025 4.5e−07 1.3e−07 1.3e−07 2.6e−05 2.9e−06 5.7e−06

VsMeshR125 1.2e−07 2.3e−08 3.7e−08 5.1e−06 2.0e−05 3.6e−05

P3

VsMeshR005 1.1e−07 4.2e−07 2.9e−08 7.3e−06 1.9e−06 1.1e−06

VsMeshR025 2.2e−09 1.7e−09 5.4e−10 1.7e−07 1.5e−08 2.8e−08

similar for polynomial degrees 1 and 2, and the adaptive L-SIAC filter has better accuracy
for polynomial degree 3. In Table 5, we observe that the adaptive L-SIAC is computationally
more efficient than the L-SIAC filter.
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Table 5 Cost (seconds) of
evaluating L2 and L∞ errors
over the high-resolution region of
meshes described in Sect. 4.2

Mesh L-SIAC Adaptive L-SIAC Speed-up

P1

VsMeshR005 81.28 47.4 1.7148

VsMeshR025 950.92 707.72 1.3436

VsMeshR125 9269.78 8904.8 1.041

P2

VsMeshR005 299.66 179.78 1.6668

VsMeshR025 4252.49 3209.35 1.325

VsMeshR125 41,464.9 36, 708.8 1.1296

P3

VsMeshR005 757.57 421.02 1.7994

VsMeshR025 8438.2 5750.8 1.4673

Fig. 7 Left: example of unstructured triangular mesh using a simple Delaunay triangulation described in
Sect. 4.3. Right: adaptive characteristic length for the mesh on the left

4.3 Simple Delaunay Triangulation

In this example, we compare the performance of L-SIAC filters on simple unstructured
triangularmeshes.We show a samplemesh in Fig. 7with theGmsh tool [22] using aDelaunay
triangulation. We created three meshes with the largest element sizes equal to 0.05, 0.025,
and 0.0125; we refer to them as UMeshR005, UMeshR025, and UMeshR125, respectively.
We then projected the function cos(2π(x + y)) over the domain [0, 1]× [0, 1] for each mesh
using the dGmethodology, and analyzed the postprocessing results using L-SIAC filters with
the direction parameter set along the x-axis.

In Fig. 8, we show the contour plot for pointwise errors on the mesh with 1107 elements
(UMeshR005) using L-SIAC filters for different polynomial orders. We observe that L-
SIAC and adaptive L-SIAC filters have similar errors, but the L-SIAC filter displays slightly
smoother results than the adaptive L-SIAC filter with the same overall accuracy. In general,
when there is no significant variation in resolution of the mesh, the L-SIAC filter produces
slightly smoother results than the adaptive L-SIAC filter. This variation in smoothness is
due to differences in the adaptive characteristic length as a consequence of the element sizes
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Fig. 8 Pointwise error (log10(Error)) contour plots over the unstructured Delaunay triaglular mesh shown in
Fig. 7 with 1107 elements (UMeshR005). 1st column: dG error; 2nd column: postprocessed with the L-SIAC
filter; 3rd column: postprocessed with the adaptive L-SIAC filter; 4th column: errors along the line y = 0.5.
Top row: P1 polynomials; middle row: P2 polynomials; bottom row: P3 polynomials

Table 6 L2 and L∞ errors for the simple Delaunay triangular meshes described in Sect. 4.3

Mesh L2 L∞
Proj L-SIAC Adaptive L-SIAC Proj L-SIAC Adaptive L-SIAC

P1

UMeshR005 4.3e−03 1.6e−03 1.8e−03 3.2e−02 1.6e−02 1.8e−02

UMeshR025 9.1e−04 3.6e−04 4.2e−04 7.9e−03 4.8e−03 5.5e−03

UMeshR125 2.7e−04 9.7e−05 1.1e−04 2.4e−03 1.3e−03 1.4e−03

P2

UMeshR005 1.4e−04 4.1e−05 4.2e−05 1.9e−03 3.3e−04 3.6e−04

UMeshR025 1.5e−05 3.9e−06 4.4e−06 3.8e−04 5.8e−05 6.3e−05

UMeshR125 2.3e−06 6.1e−07 6.7e−07 4.3e−05 9.2e−06 9.7e−06

P3

UMeshR005 3.9e−06 1.3e−06 9.5e−07 1.0e−04 1.6e−05 1.8e−05

UMeshR025 2.0e−07 5.0e−08 5.5e−08 7.5e−06 1.2e−06 1.3e−06

UMeshR125 1.6e−08 3.8e−09 4.3e−09 5.8e−07 6.8e−08 7.4e−08

in the unstructured mesh. In Tables 6 and 7, the overall accuracy for L-SIAC and adaptive
L-SIAC filters is very close, and in most cases, the adaptive L-SIAC takes slightly less time
to compute.
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Table 7 Cost (seconds) of
evaluating L2 and L∞ errors for
the simple Delaunay triangular
meshes described in Sect. 4.3

Mesh L-SIAC Adaptive L-SIAC Speed-up

P1

UMeshR005 46.75 36.09 1.2954

UMeshR005 487.68 481.58 1.0127

UMeshR125 7505.23 6693.08 1.1213

P2

UMeshR005 194.04 194.17 0.99933

UMeshR025 3327.84 3007.23 1.1066

UMeshR125 50,888.5 48, 079.7 1.0584

P3

UMeshR005 615.75 548.37 1.1229

UMeshR025 7125.95 6075.18 1.173

UMeshR125 98,615.8 70, 847.9 1.3919

Fig. 9 Left: example of an unstructured, diagonally variable-sized, triangular mesh described in Sect. 4.4.
Right: adaptive characteristic length for the mesh on the left within the dotted red lines (Color figure online)

4.4 Delaunay Triangulation for Diagonally Variable-SizedMesh

In this example, we choose a nonuniform mesh as shown in Fig. 9, such that the mesh has
high resolution until a distance 0.2 units from the diagonal and low resolution away from the
diagonal. We perform a L2 projection of sin(2π(x + y)) and advect it using the following
equation:

ut + ux + uy = 0, (x, y) ∈ (− 0.5, 1.5) × (− 0.5, 1.5), T = 1.5

We obtain the simulation results over three different meshes, where the ratios of elements
are 2:1, 5:1, and 10:1; we refer to them as DvsMeshR2, DvsMeshR5, and DvsMeshR10,
respectively. We postprocess the simulation results using the L-SIAC filters, with the direc-
tion parameter along the diagonal, i.e., 45◦ with the x-axis. In Fig. 10, we visualize the
postprocessing error caused by the filters using log plots for DvsMeshR5 for different poly-
nomial orders. The line plots in this figure are created by sampling the error plots along the
dotted line. The ticks at the top and bottom of the plot indicate the intersections of element
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Fig. 10 Pointwise error (log10(Error)) contour plots over a mesh(DvsMeshR5) shown in Fig. 9 and described
in Sect. 4.4. 1st column: dG error output by the simulation; 2nd column: postprocessed with the L-SIAC filter;
3rd column: postprocessed with the adaptive L-SIAC filter; 4th column: errors along the line y = 0.5. Top
row: P1 polynomials; middle row: P2 polynomials; bottom row: P3 polynomials

Table 8 L2 and L∞ errors for the simple diagonally variable-sized meshes described in Sect. 4.4

Mesh L2 L∞
dG L-SIAC Adaptive L-SIAC dG L-SIAC Adaptive L-SIAC

P1

DvsMeshR2 3.3e−04 4.5e−04 2.1e−04 8.9e−03 4.4e−03 3.2e−03

DvsMeshR5 7.2e−05 3.2e−04 5.5e−05 3.3e−03 2.0e−03 1.9e−03

DvsMeshR10 5.4e−05 3.0e−04 5.2e−05 2.6e−03 2.2e−03 1.9e−03

P2

DvsMeshR2 8.6e−06 4.5e−05 5.1e−06 4.5e−04 2.6e−04 1.6e−04

DvsMeshR5 2.1e−06 3.7e−05 1.2e−06 3.4e−04 2.2e−04 1.1e−04

DvsMeshR10 1.45e−06 3.84e−05 9.9e−07 2.1e−04 2.0e−04 7.4e−05

P3

DvsMeshR2 1.0e−07 5.7e−06 8.1e−08 7.0e−06 3.09e−05 2.5e−06

DvsMeshR5 1.1e−08 4.7e−06 9.1e−09 1.4e−06 2.7e−05 7.8e−07

boundaries with the dotted line. From these error plots, especially the line plots, it is clear
that the adaptive L-SIAC filter has high accuracy in high-resolution areas.

In Table 8, the L2 and L∞ errors for the L-SIAC filters are calculated in a rectangular
region shown by the orange box in Fig. 9. The dG, L-SIAC filter, and adaptive L-SIAC
filter have similar accuracy for P1 polynomials, and the adaptive L-SIAC filter has better
accuracy compared to the dG and the L-SIAC filter for P2 and P3 polynomials. Regarding

123



Journal of Scientific Computing

Table 9 Cost (seconds) of
evaluating L2 and L∞ errors for
the diagonally variable-sized
meshes described in Sect. 4.4

Mesh L-SIAC Adaptive L-SIAC Speed-up

P1

DvsMeshR2 48.4 12.8 3.78

DvsMeshR5 1288.4 79.9 16.12

DvsMeshR10 17,821.8 287.9 60.02

P2

DvsMeshR2 245.2 59.3 4.13

DvsMeshR5 6625.75 362.17 18.29

DvsMeshR10 96,539.7 1339.97 72.04

P3

DvsMeshR2 740.29 181.85 4.07

DvsMeshR5 19,646.1 1113.35 17.64

Fig. 11 Left: mesh file used for simulating flow past the cylinder. Right: visualization of adaptive characteristic
length in the area shown by the red box on the left (Color figure online)

the computational cost, Table 9 shows the speed-up for the adaptive L-SIAC filter increases
with the increase in the resolution of the mesh.

4.5 2D simulation of flow past a cylinder

The incompressible Navier–Stokes solver from the Nektar++ [6] suite is used to create the
fluid flow data used in this example. The flow past a circular cylinder at constant viscosity
is a transient problem. The simulation is created on the mesh shown in Fig. 11, which has
been provided as a part of the Nektar++ suite. The mesh consists of 500 triangles and 330
quadrilaterals of polynomial degree 2 (P2) with 81 as the ratio of the largest to the smallest
edge. The continuous Galerkin methodology is used, which guarantees C0 continuity at the
element boundaries. The simulation (input) parameterswere set to use theVelocityCorrection
Scheme outlined in [23], the convective form of the nonlinear terms, and IMEX order one.
The Reynolds number is set to Re = 500, and the shedding behind the cylinder generates
consistently shaped vortices. A single snapshot of the simulation data inside the rectangular
box in Fig. 11 is used to calculate the vorticity.

The contours of vorticity calculated using the element derivatives (cG derivatives) are
shown in the left-hand portion of Fig. 12. The right-hand portion is computed by sampling
the data along the dotted line. The line segments are colored differently for each element to
highlight the discontinuities. The discontinuities at the element boundaries are due to applying
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Fig. 12 Left: contours for vorticity using element derivatives in the wake of the 2D cylinder. Right: line plot
of the vorticity extracted along the dashed line shown in the contour image

Fig. 13 Left: contours for vorticity using the L-SIAC filter in the wake of the 2D cylinder. Right: line plot of
the vorticity extracted along the dashed line shown in the contour image

the derivative on cG simulation data. The ticks along the x-axis show the intersection of the
element boundaries with the dotted line.

To calculate the vorticity using the L-SIAC filter, we used the approach of Jallepalli
et al. [4], with the characteristic length equal to largest element in the rectangular box in
Fig. 11 (H = 1.45). The contours of the vorticity thus obtained are shown in Fig. 13;
they are continuous, but the magnitude of vorticity along the dotted line is diminished (over
smoothed) at the peak.

Again, by applying the technique of Jallepalli et al. [4] to calculate the vorticity, but
this time using the adaptive L-SIAC filter, we show the contours for vorticity in Fig. 14.
These contours have a pronounced peak and are continuous, in contrast to the contours in
Fig. 13, using the L-SIAC filter, which are also continuous but have a diminished peak. This
pronounced peak is recovered due to adaptively reducing the characteristic length equal to the
element length in the high-resolution region of the mesh. The time to compute the vorticity
using the L-SIAC filter on the 2D plane at 104 locations is 42 seconds compared to 31.4
seconds for the adaptive L-SIAC filer.

4.6 3D Simulation of Counter-RotatingVortices

To qualitatively show the use of the adaptive L-SIAC filter on an unstructured nonuniform
3D mesh, we give another Nektar++ simulation example. An incompressible Navier–Stokes
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Fig. 14 Left: contours for vorticity using the adaptive L-SIAC filter in the wake of the 2D cylinder. Right: line
plot of the vorticity extracted along the dashed line shown in the contour image

Fig. 15 Left: mesh file used for simulating counter-rotating vortices. Middle: visualization of counter-rotating
vortices. Right: adaptive characteristic length across the mesh on the left

solver with cG discretization is used to generate the two primary vortices and their secondary
counter-rotating vortices shown in Fig. 15. The simulation (input) parameters were set to use
the Velocity Correction Scheme outlined in [23], the convective form of the nonlinear terms
with SVV de-aliasing, and IMEX order two. Further details on the simulations are given
in [24]. The simulation mesh is adaptively refined for high resolution at the location of the
vortices, i.e., the region of interest, and gradually coarsened to increase the efficiency of the
simulation. The simulation mesh contains 223,837 polynomial degree five (P5) tetrahedra,
with the ratio of the largest to the smallest edge equal to 22.

The red cube shown on the vortices in the right-hand portion of Fig. 15 indicates the
selected region we used to more closely examine the vorticity field. To produce the left
image of Fig. 16, the box is sampled, and the vorticity using the element derivatives is
computed at a resolution of 100 × 100 × 100. This 3D lattice is then iso-surfaced (value
= 12 units) to generate the vortex tubes; the iso-surface suffers from discontinuity at the
element boundaries. The right-hand portion of the Fig. 16 shows the data from a 2D slice,
which in this case is computed from the data on an 102 × 102 lattice. This image shows
the discontinuities at the element boundaries. At the chosen iso-value, we can identify the
primary vortex and secondary vortex, but it is difficult to distinguish between them due to
the discontinuities in the iso-surface and the contours.
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Fig. 16 Left: an iso-contour of vorticity extracted using the element derivatives. Right: contour lines showing
the vorticity field extracted over the plane in the left image

Fig. 17 Left: an iso-contour of vorticity extracted using the L-SIAC filter. Right: contour lines showing the
vorticity field extracted over the plane in the left image

We calculate the vorticity of the field in the same subset using the L-SIAC methodology
proposed in Jallepalli et al. [4]. All the derivatives required—u∗

y , u
∗
z , v∗

x , v∗
y , w∗

x , w∗
z—

are computed using the L-SIAC filter, where u, v, w are the components of the velocity
in the given vector field. The parameters used for the L-SIAC filter are B-splines of order
seven (D1K (11, 7), where D1 represents the total derivative), and the characteristic length
is H = 0.034, which is the maximum edge length in the box. In Fig. 17, we calculate the
magnitude of vorticity at all the sampled points, generate the iso-surface of the vorticity at
the same value used for the cG derivatives (12 units), and draw the contours at the same plane
we selected for the cG derivatives. The iso-surface and the contours using the L-SIAC filter
in Fig. 17 are continuous, but the secondary vortex is undetectable due to the error introduced
by a characteristic length that is too large.

Following the technique proposed by Jallepalli et al. [4], using the adaptive L-SIAC filter
with B-splines of order seven (D1K (11, 7)), and the adaptive characteristic length discussed
in this paper we can calculate the magnitude of vorticity. In Fig. 18, we show the iso-surface
and contours of vorticity using the adaptive L-SIAC filter. Unlike the L-SIAC filter in Fig. 17,
the iso-surface and contours are continuous, and both the primary and secondary vortices are
detected.
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Fig. 18 Left: an iso-contour of vorticity extracted using the adaptiveL-SIACfilter. Right: contour lines showing
the vorticity field extracted over the plane in the left image

5 Conclusion

The motivation for this work was to produce an algorithm for adaptively scaling the L-SIAC
filter to maintain the accuracy of simulations obtained using engineering applications; in
particular, to focus on postprocessing simulation data obtained from unstructured meshes
with the resolution varying over several orders of magnitude. The paper shows that the
algorithm presented herein displays similar or better accuracy and lower computation time
on general unstructured meshes, through a quantitative analysis of analytical examples and
qualitative results for the simulation data. In both cases, the adaptive L-SIAC filter is similar
to or more accurate than the L-SIAC filter with maximum edge length as the characteristic
length. We also acknowledge that choosing the direction parameter for the L-SIAC filters in
the case of unstructuredmeshes is still an open issue and needs to be addressed in future work.

One of the drawbacks of this algorithm is that it does not take into account the anisotropy
of elements in the mesh; future work needs to include the anisotropy of the mesh as an input
to the algorithm to help estimate the best direction(s) and scaling for the L-SIAC filter. An
additional area of future research is to further develop the mathematical connections between
our work, the mesh function proposed in [20,21] and the characteristic length scaling factor
proposed in [13,19].
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