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Abstract DiscontinuousGalerkin (DG)methods are a popular class of numerical techniques
to solve partial differential equations due to their higher order of accuracy. However, the inter-
element discontinuity of a DG solution hinders its utility in various applications, including
visualization and feature extraction. This shortcoming can be alleviated by postprocessing
of DG solutions to increase the inter-element smoothness. A class of postprocessing tech-
niques proposed to increase the inter-element smoothness is SIAC filtering. In addition to
increasing the inter-element continuity, SIAC filtering also raises the convergence rate from
order k+1 to order 2k+1. Since the introduction of SIAC filtering for univariate hyperbolic
equations by Cockburn et al. (Math Comput 72(242):577–606, 2003), many generalizations
of SIAC filtering have been proposed. Recently, the idea of dimensionality reduction through
rotation has been the focus of studies in which a univariate SIAC kernel has been used to
postprocess a two-dimensional DG solution (Docampo-Sánchez et al. in Multi-dimensional
filtering: reducing the dimension through rotation, 2016. arXiv preprint arXiv:1610.02317).
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However, the scope of theoretical development of multidimensional SIAC filters has never
gone beyond the usage of tensor product multidimensional B-splines or the reduction of the
filter dimension. In this paper, we define a new SIAC filter called hexagonal SIAC (HSIAC)
that uses a nonseparable class of two-dimensional spline functions called hex splines. In
addition to relaxing the separability assumption, the proposed HSIAC filter provides more
symmetry to its tensor-product counterpart. We prove that the superconvergence property
holds for a specific class of structured triangular meshes using HSIAC filtering and provide
numerical results to demonstrate and validate our theoretical results.

Keywords B-splines · Hex splines · Box splines · Smoothness-Increasing Accuracy-
Conserving (SIAC) filtering · Quasi-interpolation · Approximation theory · Discontinuous
Galerkin

1 Introduction

Discontinuous Galerkin (DG) methods are heavily used for numerical solutions of partial
differential equations (PDE). DG methods solve a variational form of a partial differen-
tial equation without a global continuity requirement over the domain (i.e., a collection
of elements). A DG solution is continuous only inside an element whereas discontinuities
are allowed across the element boundaries. The inter-element discontinuity of a DG solu-
tion presents challenges when using DG in applications. Hence, postprocessing of the DG
solution is often required. B-spline-based postprocessing techniques are among the most
well-accepted filtering techniques to enhance the smoothness and accuracy of a DG solution.

A class of postprocessing techniques proposed to increase the inter-element smoothness
is Smoothness-Increasing Accuracy-Conserving (SIAC) filtering. SIAC filtering of a DG
solution of order k + 1 increases the inter-element continuity up to Ck−1 and also raises the
convergence rate from order k+1 to order 2k+1. Since the introduction of SIAC filtering for
univariate hyperbolic equations byCockburn et al. [7],many generalizations of SIACfiltering
have been proposed in both one-dimensional andmultidimensional cases [4,7,13,15–17,20].
However, the scope of theoretical development of multidimensional SIAC filters has never
gone beyond the usage of tensor product multidimensional B-splines. In this paper, we use a
geometric approach and define a new SIAC filter called hexagonal SIAC (HSIAC) that uses
a nonseparable class of two-dimensional spline functions called hex splines.

The main motivation for using hex splines for postprocessing of DG solutions is that they
provide a well-defined spline space, containing a polynomial space exactly matching the
spline space a tensor-product B-spline counterpart defines, but in a nonseparable fashion.
That is, hex splines relax the tensor product assumption. This property provides a natural
extension of the superconvergence results of two-dimensional SIAC filters on quadrilateral
meshes to structured triangle meshes generated from the subdivision of a hexagonal lattice.
We provide the proof of superconvergence properties of HSIAC on these specific structured
triangular meshes (i.e., from subdivision of a hexagonal lattice).

In addition to going beyond a tensor-product construction of SIAC filtering, the HSIAC
filter will be more (radially) symmetric compared to its B-spline counterpart. This property
is especifically important when SIAC filtering is used for feature extraction [10,12,34].

The paper proceeds as follows. After an introduction to the notation used in Sect. 2.1,
we provide a brief introduction to B-splines and their generalization, namely the hex splines
in Sect. 2.2. We introduce the HSIAC filter and its superconvergence property in Sect. 3.
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Section 4 discusses somenumerical results and error contour plots to demonstrate and validate
the theoretical results presented and to compareHSIACwith itsB-spline counter-part. Finally,
we present our conclusions in Sect. 5.

2 Background

2.1 Notation

We start by introducing the notation used in the remainder of the paper. The superconvergence
properties of the SIAC kernel are studied in terms of various error norms. Hence, we provide a
brief introduction to the appropriate norms. The interested reader can refer to [4,7,13,15,25]
for more details.

Let H �(Ω) denote a Sobolev space over a bounded open set Ω ∈ R
d as the domain. We

use ‖ · ‖0,Ω to represent the usual L2-norm overΩ and ‖ · ‖−�,Ω to denote the negative-order
norm over the dual space of H �(Ω) or H−�(Ω) [4] as

‖u‖−�,Ω = sup
φ∈C∞

0 (Ω)

∫
Ω
u(x)φ(x)dx

‖φ‖�,Ω

, (1)

where C∞
0 (Ω) denotes the space of infinitely differentiable functions with compact support

on Ω . The negative order norm as Cockburn et al. noted in [7] can be used to quantify the
oscillatory nature of a function and is often used to prove the superconvergence property of
SIAC filtering via the following relation [4, Lemma 4.2]

‖u‖0,Ω ≤ C
∑

|α|≤�

‖Dαu‖−�,Ω, (2)

where Dα is used to denote the differentiation operator of degree α. Since the focus of this
paper is on linear hyperbolic equations, we use u(·) to denote the true solution to a linear
hyperbolic equation and uh(·) its DG solution of order k + 1.

Where appropriate, we use ∂α to denote the partial derivative, and ∂α
h to denote the central

difference operator of orderαwith spacing h. Similarly, we use ∂α and ∂α
h to denote the partial

derivative in the multidimensional case where α is a multi-index (e.g., a two-dimensional ∂α

is defined as ∂
α1
x ∂

α2
y where |α| = α1 + α2).

2.2 B-Spline and Its Generalization to Hexagonal Lattice

Thefirst-order univariate centralB-spline (Basis splines)b1 is defined as the indicator function
over the interval, T = [−1

2 , 1
2 ]1:

b1(x) = XT (x) =
{
1 x ∈ [−1

2 , 1
2

]

0 otherwise.
(3)

Higher order central B-splines can be constructed using self-convolution

bn+1(x) = (b1 ∗ bn)(x), n ≥ 0. (4)

For the rest of the discussion, we simply use the term B-splines to denote a central B-
splines unless otherwise stated. B-splines define a basis for an approximation space called

1 In spline theory, the first-order central B-spline is often denoted as b0(x).
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a spline space. A typical spline space is defined as the spanning space of translations of the
basis function (i.e., B-splines), denoted as

Sn := span(bn(· − k))k∈Z. (5)

Sn+1 is Cn−1 continuous and contains polynomials up to degree n [8,9,28].
An arbitrary function can be approximated with an element from the spline space, s ∈ Sn ,

by finding the unique set of spline coefficients, cγ , that best represents that function:

s =
∑

γ∈hZ
cγ bn(· − γ ), (6)

where cγ represents the spline coefficient and h denotes the distance between the B-spline
centers. In addition to their approximation power, B-splines are attractive from a computa-
tional point of view and provide an efficient approximation technique due to their compact
support.

To use B-splines for an approximation in higher dimensions, we need to define higher
dimensionalB-spline functions.A two-dimensionalB-spline can be defined using the concept
of tensor product:

bn(x, y) = bn(x)bn(y). (7)

The two-dimensional spline space can now be defined as

Sn := span(bn(· − k))k∈Z2 . (8)

The spline space defined using two-dimensional B-splines of order n+1 as the basis function
is Cn−1 continuous and contains polynomials up to (total) degree 2n [8,9,28]. Note that the
definition of a spline space as presented in Eq. 8 has the implicit assumption that k ∈ Z

2 is
a tensor product of k ∈ Z in the univariate case and formally represents a two-dimensional
Cartesian lattice.

A lattice is a subset of Euclidean space that is formed by periodic arrangement of discrete
points and is required to include origin. A lattice is fully characterized using the lattice
directions, usually denoted in terms of a matrix. For example, the lattice directions for a
two-dimensional Cartesian lattice are

C = [
e1, e2

] =
[
1 0
0 1

]

. (9)

For any lattice there exists a region in which origin is the only lattice point. This region is
called a Voronoi region or a Voronoi cell [33]. A lattice is closed under addition and negation,
and hence, this region can be considered for any other lattice point via a translation. Therefore,
the Voronoi cell of a lattice is unique.

We can use the geometry of the Cartesian lattice to define the first order of a two-
dimensional B-spline directly as follows

b1(x) =
{
1 x ∈ Voronoi cell
0 otherwise

, (10)

where x denotes a 2Dpoint, and theVoronoi cell in this case corresponds to a two-dimensional
Cartesian lattice. A two-dimensional Cartesian lattice along with its Voronoi cell (i.e., the
support of the first order B-spline in 2D) is depicted in Fig. 1a. It is easy to show that the
higher order B-splines can still be defined using self-convolution analogous to Eq. 4. The
first three orders of two-dimensional B-splines are demonstrated in Fig. 2.
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Fig. 1 a A two-dimensional Cartesian lattice along with its Voronoi cell (the shaded region). The first order
of a two-dimensional B-spline is defined as the indicator function of the Voronoi cell. b A hexagonal lattice
along with its Voronoi cell (the shaded region). The first order of hex spline is defined as the indicator function
of the Voronoi cell

Fig. 2 First (a), second (b), and third (c) order two-dimensional tensor product B-splines

In comparison to the formulation of B-splines provided in Eq. 7 that hinders the capability
of defining spline-type functions for nonseparable structures, the formulation of B-splines
provided in Eq. 10 allows us to define spline spaces for any lattice in any dimensions [26]. In
this paper, we focus on only the two-dimensional case, i.e., the definition of spline functions
for a hexagonal lattice. Equivalent spline families for (arbitrary) higher dimensions can be
defined using the idea behind Eq. 10 that are referred to as Voronoi splines [26,27].

2.3 An Introduction to Hexagonal Splines

The only other lattice in two dimensions that tessellates a two-dimensional Euclidean space
is a hexagonal lattice [33], whose lattice directions can be defined as

H = [
u1, u2

] =
⎡

⎣

√
3
2

−√
3

2

1
2

1
2

⎤

⎦ . (11)

We can now define a two-dimensional hex spline as follows

η1(x) =
{
1 x ∈ Voronoi cell
0 otherwise

, (12)

where x denotes a 2D point, and the Voronoi cell in this case represents the Voronoi cell
of a hexagonal lattice. A hexagonal lattice along with its Voronoi cell (i.e., the support of
the first-order hex spline) is depicted in Fig. 1b. The higher order hex splines can still be
defined using self-convolution analogous to Eq. 4. The first three orders of hex splines are
demonstrated in Fig. 3.

123



J Sci Comput

Fig. 3 First (a), second (b), and third (c) order hex splines

A spline space can also be defined as the spanning space of the translations of hex splines

Sη
n := span(ηn(· − k))k∈HZ2 . (13)

Note that in this case the translations of the basis function belong to a hexagonal lattice. The
spline space defined using the hex spline of order n + 1 as the basis function has the exact
same properties as the spline space defined using the two-dimensional B-spline of order n+1
[28,35]. That is, Sη

n+1 is C
n−1 continuous and contains polynomials up to (total) degree 2n

[28,35].
The definition of a hex spline is intuitive from a geometric point of view, yet evaluation of

higher order hex splines based on the self-convolution of the first order are hard to evaluate
due to the complexity of the boundaries of the hex spline. Therefore, for evaluation, we use
the definition of hex splines in terms of a more generic class of splines called box-splines [9].
Box-spline representation of hex splines provides a compact representation and an efficient
and tractable computational procedure. For brevity of discussion, we have summarized the
box-spline formulation of hex splines in the “Appendix”.

Similar to a two-dimensional B-spline, a hex spline of order n + 1 can be represented as
a Cn−1 piecewise continuous function where each piece is a polynomial of (total) degree 2n
[27,28,35]. As discussed in the “Appendix”, one can use box-spline representation of a hex
spline in order to show that the partial derivatives of a hex spline can be exactly computed
using finite differences of the same order [9,35]. This property will be used in Sect. 3 to
prove superconvergence properties of hexagonal SIAC.

From an approximation theory point of view, a hexagonal lattice has multiple advan-
tages over a Cartesian lattice, and hence, the use of hex splines has been studied in the
context of signal processing, image processing, and visualization [27,28,35]. A thorough
discussion of the advantages of hexagonal lattice and hex splines is beyond the scope of the
current manuscript; interested readers can consult [11,35] for further discussion. However,
we would like to emphasize that the main motivation for using hex splines for filtering is that
hex splines provide awell-defined spline space, containing a polynomial space, on a nonsepa-
rable structure (i.e., hexagonal lattice). Aswewill discuss in the sequel, this property provides
a natural extension of the superconvergence results of tensor-product SIAC filters on quadri-
lateral meshes to structured triangle meshes generated by subdividing a hexagonal lattice.
In addition, hex splines provide a 12-fold symmetry in comparison to the 8-fold symmetry
of two-dimensional B-splines. Hence, the HSIAC filter introduced in Sect. 3 will be more
(radially) symmetric compared to its Cartesian counterpart. This property is especifically
important when the SIAC kernel is used for feature extraction [10,34]. In the next section,
we introduce the hexagonal SIAC filter (HSIAC) that uses hex splines as the underlying
spline kernel.
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3 HSIAC: Hexagonal Smoothness-Increasing Accuracy-Conversing Filter

The construction of hexagonal SIAC (HSIAC) mimics the construction of the (original)
SIAC filter using a geometric approach. For brevity of discussion, we first introduce the
SIAC filter, and then a geometric approach for SIAC filter construction. We then use this
geometric construction to introduce the hexagonal SIAC filter (HSIAC).

3.1 SIAC Filter Review

The SIAC filter is a B-spline-based kernel designed for postprocessing a DG solution. The
main motivation for introducing the SIAC filter is defining a compactly supported filter
that would preserve the superconvergence properties of the underlying DG solution while
enhancing the inter-element smoothness. The SIAC kernel is defined as

K (2k+1,k+1)(x) =
2k∑

γ=0

cγ bk+1(x + k − γ ), (14)

where cγ denotes the kernel coefficients. Using 2k+1 B-splines to construct the SIAC kernel
is motivated by the fact that a component of the error of a DG solution converges with order
2k + 1 in the L2 norm [7]. The kernel coefficients cγ are fully specified by enforcing that the
kernel reproduces polynomials up to degree 2k

K (2k+1,k+1)(x) ∗ x p = x p, 0 ≤ p ≤ 2k. (15)

In the relation above, the kernel coefficients can be computed numerically [24] or theoretically
[29]. The finite number of B-splines used in the construction of the symmetric SIAC kernel
results in the compactness of its support, which provides a balance between the computational
cost of the filtering and the approximation properties.

The SIAC filtering increases the inter-element continuity up to Ck−1 and raises the con-
vergence rate of the DG solution from order k+1 to order 2k+1 (i.e., superconvergence) for
linear [7] and nonlinear [16,18,19] hyperbolic equations solved over a uniform mesh, and
variable coefficient euqations [18,25]. The proof has also been extended for local derivative
computation [31] and boundary filtering [3,14,32]. Convergence properties of SIAC filtering
and its effectiveness have been widely studied in the literature [4,7,13,15,17,20]. Numerical
results have shown promising results for the application of a two-dimensional SIAC filter on
structured triangular meshes [25], unstructured [22] triangular meshes, tetrahedral meshes
[25], and streamline extraction [34,36].

Conventionally, higher dimensional SIAC filters have been defined using the concept of
tensor product. For instance, the two-dimensional SIAC kernel can be defined using the
one-dimensional version as

K (2k+1,k+1)(x) =
2k∑

γ1=0

2k∑

γ2=0

cγ1cγ2bk+1(x + k − γ1)(y + k − γ2). (16)

The proof of the superconvergence for multidimensional SIAC on quadrilateral meshes fol-
lows the univariate case trivially using the concept of tensor product [7].

3.2 Geometric Construction

Similar to B-splines, the tensor-product formulation of higher dimensional SIAC filters
restricts the definition of this class of B-spline-based filters to separable structures. Hence,
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Fig. 4 The direct and indirect neighbors of a two-dimensional evaluation point on a Cartesian lattice and b
a hexagonal lattice. The evaluation point, at the center, is colored in blue. The direct neighbors are the green
circles in both cases and the indirect neighbors are the red squares (Color figure online)

we resort to a geometrical approach that enables us to define SIAC for nonseparable struc-
tures, in particular on a hexagonal lattice. A similar idea can be used for higher dimensional
cases and other lattice structures. Without loss of generality, we demonstrate the geometric
approach for the first order SIAC. Higher order SIAC filters can be constructed similarly.

Considering a 2D evaluation point x = (x, y), the two-dimensional SIAC kernel defined
in Eq. 16 can be considered as centering nine B-splines kernels as follows: one kernel on the
evaluation point and eight more B-splines on direct and indirect neighbors of the evaluation
point on a Cartesian lattice. Figure 4a demonstrates the B-spline centers constituting the
first order of a two-dimensional SIAC kernel. Using this geometrical approach, we can now
rewrite the two-dimensional SIAC kernel as

K (r+1,k+1)(x) =
∑

γ
−k≤γ1,γ2≤k

cγ bk+1(x − γCT ), (17)

where C denotes the matrix including the lattice direction of a Cartesian lattice presented in
Eq. 9, and r = 8 × (2k − 1). It is easy to show the equivalence between Eqs. 17 and 16.
One can also show that the kernel coefficients, cγ , can still be computed as cγ1cγ2 which,
coincide with the kernel coefficients in Eq. 16. The kernel coefficients can also be computed
directly (i.e., without using the tensor product concept) by considering the multidimensional
polynomial reproduction property

K (r+1,k+1)(x) ∗ xp = xp, 0 ≤ |p| ≤ 4k, (18)

where |p| = p1 + p2 is a multi-index and represents the total degree of a two-dimensional
polynomial. Note that unlike the univariate case, the total number of kernel coefficients in
the two-dimensional case does not match the number of (total) degree polynomials that the
kernel requires to reproduce. For instance, the first-order two-dimensional SIAC kernel has
nine kernel coefficients (see Fig. 4a) whereas the kernel is required to reproduce polynomials
up to (total) degree four. There exist 15 such polynomials: 1, x, y, x2, y2, xy, . . . , x4, y4.
However, considering the symmetry, we need to consider only nine polynomials: 1,
x, x2, xy, x3, x2y, x3y, x2y2, x4. The system can be further reduced to three equations by
considering the symmetry of the kernel. Therefore, we obtain a square system of size 3 × 3
to determine the three distinct coefficients.
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3.3 HSIAC Filter Construction

Wecan nowuse the same geometrical approach to define the hexagonal SIACkernel (HSIAC)
on a hexagonal lattice; that is, we can use the direct and indirect neighbors of an evaluation
point on a hexagonal lattice to position translations of hex spline kernels. Figure 4b demon-
strates the position of centers of hex splines for the first-order HSIAC. Note that even though
the hexagonal lattice requires only two lattice directions for its definition, navigation of the
points on this lattice can be better represented using three directions (demonstrated in Fig. 4b)

H3 = [
u1, u2, u3

] =
⎡

⎣

√
3
2

−√
3

2 0

1
2

1
2 −1

⎤

⎦ . (19)

The first two columns in the relation above represent the lattice directions of the hexagonal
lattice and the third column is u3 = −u1 − u2. We can now formally define HSIAC as

K (r+1,k+1)
η (x) =

∑

γ=(γ1,γ2,γ3)−k≤γ1,γ2,γ3≤k

cγ ηk+1(x − γHT
3 ), (20)

where ηk+1 denotes the (k + 1)th order hex spline, and r = 12 × (2k − 1). Similar to the
previous case, the polynomial reproduction property can be used to find the kernel coefficients

K (r+1,k+1)
ν (x) ∗ xp = xp, 0 ≤ |p| ≤ 4k. (21)

Note that in comparison to Eq. 16, HSIAC requires a larger number of hex splines (see
Fig. 4b). Similar to the Cartesian case, let us consider the first-order two-dimensional HSIAC
kernel. This kernel has 13 kernel coefficients (see Fig. 4a) and is required to reproduce
polynomials up to (total) degree four. Similar to the Cartesian case, using the symmetry of
the polynomials and the fact that the number of unique coefficients stays the same, one ends
up with a square system of size 3×3 to determine the three distinct coefficients. The squares
and circles in Fig. 4b demonstrate the equivalent kernel coefficients for the first order of
both kernels as well as the distinction between direct and indirect neighbors of an evaluation
point on each lattice, respectively. The geometric construction based on direct and indirect
neighbors as proposed in this section can be used to define higher dimensional nonseparable
SIAC filters using Voronoi splines [26,27].

In the next section,we provide ourmain theoretical result that proves the superconvergence
of HSIAC on structured triangular meshes constructed using a hexagonal lattice.

3.4 HSIAC Filter Superconvergence

In this section, we prove that the HSIAC kernel has superconvergence properties for postpro-
cessing of a DG solution for a linear hyperbolic equation using an upwind flux and periodic
boundary conditions on structured triangular meshes based on a hexagonal lattice.

There are two main components to the proof: the approximation power of the kernel
in terms of polynomial reproduction and superconvergence of the DG solution. The mesh
structure has a significant impact on both factors. Note that the spline space formed by
the translations of the constituent spline kernel is the basis of the SIAC kernel polynomial
reproduction properties. Therefore, we can prove the superconvergence of hexagonal SIAC
kernel only on a mesh structure that is consistent with a hexagonal lattice.

A natural choice for the mesh structure when using the HSIAC kernel for postprocessing
of a DG solution is a uniform hexagonal mesh where each element is constructed using a
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Fig. 5 a A hexagonal mesh structure, b a triangular mesh constructed by subdividing each hexagonal in a
into six triangles

linear combination of column vectors of H. A hexagonal mesh of this form is demonstrated
in Fig. 5a. A hexagonal mesh requires the DG solution to be computed on six-sided elements
(i.e., the hexagons), which is unconventional. Even though the DG solution on triangular
and quadrilateral meshes has been well studied, generalization of DG solutions on generic
polygons has only recently received some attention [5,6], and the proof of superconvergence
of the DG solution for generic polygons is yet to be developed. Therefore, we consider the
subdivisions of the hexagonal mesh into structured triangles. An example of subdivision of a
hexagonal mesh into a triangular mesh is shown in Fig. 5b. This type of structured triangular
mesh has consistent geometry with a hexagonal lattice. In addition, the superconvergence
of the DG solution has been well studied for triangular meshes [1,2,20]. Other choices of
subdivision of a hexagonal mesh will be discussed further in Sect. 4.

The following theorem provides the proof for superconvergence of hexagonal SIAC on a
structured triangular mesh that is constructed using a hexagonal lattice:

Theorem 1 Let uh(x)denote theDGsolution of order k+1 to the true solution u(x) ∈ H2k+1

(Sobolev space), which solves a linear hyperbolic equation (usinganupwindfluxandperiodic
boundary conditions) on a structured triangular mesh constructed using a hexagonal lattice.
Let K (r+1,k+1)

η denote the HSIAC kernel of the form introduced in Eq. 20. For n ≥ 1, and
sufficiently smooth u(x), we have the following relation for the approximation error bound
of the postprocessing of uh(x) using K (r+1,k+1)

η at T > 0:

‖u(x) − (K (r+1,k+1)
η,h ∗ uh)(x)‖0,Ω ≤ Ch2k+1, (22)

where r = 12 × (2k − 1).

Proof The proof of superconvergence for HSIAC follows the proof by Cockburn et al. [7].
That is, we first decompose the left-hand side of Eq. 22:

‖u(x) − (K (r+1,k+1)
η,h ∗ uh)(x)‖0,Ω

≤ ‖ u(x) − (K (r+1,k+1)
η,h ∗ u)(x)

︸ ︷︷ ︸
filter error

‖0,Ω + ‖ (K (r+1,k+1)
η,h ∗ (u − uh))(x)

︸ ︷︷ ︸
approximation error

‖0,Ω . (23)
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As shown before in [7], the first term is entirely dependent on the polynomial reproduction
property. Hence, this term can be bounded by C1h4k+1 (see Eq. 21) where C1 is a constant
value independent of h [29]. However, we are limited by the error bound of the second term.

The error bound for the second term (i.e., approximation error) in Eq. (23) depends on
the order of the constituting hex spline and its derivatives. We use the negative-order norm
analysis proposed by Cockburn et al. [7] and shown in [4,15,25] to compute the error bound
for the second term

‖(K (r+1,k+1)
η,h ∗ (u − uh))(x)‖0,Ω

≤ C2

∑

|α|≤k+1

‖Dα
(
Kr+1,k+1

η,h ∗ (u − uh)
)‖−(k+1),Ω,

(24)

where Dα is a multidimensional derivative where

Dα = Dα1
x Dα2

y and |α| = α1 + α2. (25)

As discussed in Sect. 2 and the “Appendix”, unlike B-splines, the derivatives of a hex spline
cannot bewritten in terms of lower order hex splines.However, given the equivalent properties
of both kernels [28,35], the derivatives of a hex spline up to degree k+1 can still be computed
exactly using a finite difference operator of the same degree. Hence, we have

∑

|α|≤k+1

‖Dα
(
Kr+1,k+1

η,h ∗ (u − uh)
)‖−(k+1),Ω

=
∑

|α|≤k+1

‖αKr+1,k+1
η,h ∗ ∂α

h

(
u − uh

)‖−(k+1),Ω,
(26)

where αKr+1,k+1
η,h refers to the αth derivative of the hexagonal SIAC kernel. Furthermore,

we can write
∑

|α|≤k+1

‖αKr+1,k+1
η,h ∗ ∂α

h

(
u − uh

)‖−(k+1),Ω

≤
∑

|α|≤k+1

(‖αKr+1,k+1
η,h ‖L1(Rd )‖∂α

h

(
u − uh

)‖−(k+1),Ω
)
.

(27)

The first term on the right-hand side is a direct result of hex splines being piecewise poly-
nomials of (total) degree 2k. Therefore, we can replace the first term by a constant C3, and
write

‖(K (r+1,k+1)
η,h ∗ (u − uh))(x)‖0,Ω ≤ C2C3

∑

|α|≤k+1

‖∂α
h

(
u − uh

)‖−(k+1),Ω, (28)

which is the same as in [7]. This completes the proof. 	


4 Numerical Results

In this section, we provide numerical results to show the superconvergence of HSIAC filter
in practice and compare it with (Cartesian) SIAC filtering. For our first set of experiments,
we use the DG projection of the initial condition for the following linear transport equation

∂u

∂t
+ a∇ · u = 0, u(x, 0) = sin

(
2π

(
x + y

0.989

))
, x ∈ [0, 1.0] × [0, 0.989], (29)
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Table 1 The approximation error for postprocessing of the DG projection. For the SIAC kernel, the largest
element size was used for kernel scaling

No. of elements DG projection SIAC HSIAC

L2 L∞ L2 L∞ L2 L∞

P1 336 1.20e−02 5.16e−02 1.30e−03 1.96e−03 3.15e−04 5.22e−04

1344 3.02e−03 1.30e−02 8.59e−05 1.39e−04 2.63e−05 4.03e−05

3024 1.34e−03 5.78e−03 1.83e−05 3.19e−05 7.26e−06 1.07e−05

5376 7.55e−04 3.25e−03 6.48e−06 1.19e−05 2.99e−06 4.34e−06

8400 4.83e−04 2.08e−03 3.10e−06 5.79e−06 1.51e−06 2.18e−06

12,096 3.36e−04 1.45e−03 1.79e−06 3.31e−06 8.72e−07 1.25e−06

16,464 2.47e−04 1.06e−03 1.17e−06 2.10e−06 5.47e−07 7.83e−07

21,504 1.89e−04 8.13e−04 8.33e−07 1.44e−06 3.66e−07 5.23e−07

P2 336 5.88e−04 4.27e−03 8.95e−05 1.28e−04 8.43e−05 6.02e−04

1344 7.38e−05 5.36e−04 1.45e−06 2.11e−06 7.22e−07 1.03e−06

3024 2.19e−05 1.59e−04 1.29e−07 1.91e−07 6.31e−08 9.01e−08

5376 9.24e−06 6.71e−05 2.32e−08 3.53e−08 1.12e−08 1.60e−08

8400 4.73e−06 3.44e−05 6.29e−09 9.84e−09 2.94e−09 4.20e−09

12,096 2.74e−06 1.99e−05 2.28e−09 3.68e−09 9.86e−10 1.41e−09

16,464 1.72e−06 1.25e−05 1.04e−09 1.86e−09 3.92e−10 5.59e−10

21,504 1.16e−06 8.40e−06 5.73e−10 1.16e−09 1.76e−10 2.52e−10

where a = 1.0i + 0.989j. In the second set of experiments, we perform postprocessing
of the DG solution of the same equation at the final time T = 1.0 (one periodic cycle).
We used Nektar++ [30] in order to compute the DG projection and the DG solution on
the structured triangular mesh introduced in the previous section (see Fig. 5b). Note that
in order to have periodic boundary conditions, we had to consider a jagged boundary as
depicted in Fig. 5b. The postprocessing using SIAC (or HSIAC) kernel has been carried
out using the quadrature approximation proposed in [23]. The approximation error for all
the examples has been computed as the difference between the postprocessing of the DG
projection (or the DG solution) and the true solution using L2 and L∞ norms. The kernel
scaling for (Cartesian) SIAC considered to be the largest element size as proposed in [21,22]
for structured triangular meshes and the kernel scaling for the HSIAC filter is based on the
edge length of the underlying hexagonal lattice.

Table 1 presents the L2 and L∞ norms of the approximation error of the postprocessing
of the DG projection using both SIAC and HSIAC filters. In this case, the HSIAC postpro-
cessing has lower error values compared to the SIAC filter. Figure 6 also presents the order
of convergence of both filters for DG projection. The dashed line represents the expected
convergence rate (i.e., 2k + 1). Both SIAC and HSIAC postprocessing follows the dashed
line as the mesh size increases. In some cases, the low resolution meshes are not resolving
the supercovergence property numerically. Figure 7 shows the contour plot of the L2 approx-
imation error over the whole domain in base−10 logarithmic scale where 90k uniform points
have been sampled to produce the error contour plots and the jagged part of the mesh has
been trimmed before sampling.

Similarly, Table 2 and Fig. 8 demonstrate the approximation error of the postprocessing
of the DG solution of the advection equation presented in Eq. 29 at the final time T = 1.0.
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Fig. 6 A base−10 logarithmic-scale plot of the approximation error versus the number of elements to demon-
strate the order of convergence of the postprocessor compared to the order of convergence of theDGprojection.
The dashed line represents 2k + 1 (i.e., the expected order of convergence)

The approximation error in this case is higher compared to the DG projection counter-
parts. This behavior is expected and is the result of the addition of the advection errors
such as the upwinding and time-stepping error. Table 2 and Fig. 9 also demonstrate that
HSIAC in this case provides only marginal improvement compared to the SIAC kernel.
This behavior suggests that even though HSIAC performs better than SIAC in improv-
ing the projection error, it was not able to resolve the unwinding error or stepping error
better that the SIAC kernel. One potential cause might be the fact that HSIAC has not
been applied on a true hexagonal mesh. However, further investigation of this behavior is
beyond the scope of this manuscript and is considered as a future research question to be
investigated.

In addition to understanding the error reduction and superconvergence properties, it is
interesting to study the effect of subdivision of a hexagonal mesh into a triangular mesh on
the profile of the error (i.e., the patterns of jaggedness in contour plots). The mesh presented
in Fig. 5b is the simplest way one can subdivide a hexagonal mesh into a triangular mesh.
However, there are other options that can be considered. Figure 10 shows another example
where the mesh presented in Fig. 5b has been subdivided further. Notice that compared to
Fig. 5b, Fig. 10 allows one to define an axis-aligned rectangular replicating pattern. We used
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Fig. 7 The contour plot of base−10 logarithmic-scale L2 approximation error of SIAC and HSIAC for
postprocessing of the DG projection of Eq. 29 using the mesh structure presented in Fig. 5b (number of mesh
elements: 3024). The jagged part of the meshes is trimmed and the error is computed at 90k uniformly spaced
points

Table 2 The approximation error for postprocessing of the DG solution. For the SIAC kernel, the largest
element size was used for kernel scaling

No. of elements DG solution SIAC HSIAC

L2 L∞ L2 L∞ L2 L∞

P1 336 2.12e−02 4.10e−02 1.76e−02 2.51e−02 1.66e−02 2.37e−02

1344 3.99e−03 1.29e−02 2.19e−03 3.13e−03 2.12e−03 3.02e−03

3024 1.63e−03 6.28e−03 6.46e−04 9.21e−04 6.31e−04 8.98e−04

5376 8.90e−04 3.67e−03 2.71e−04 3.87e−04 2.66e−04 3.79e−04

8400 5.61e−04 2.40e−03 1.38e−04 1.97e−04 1.36e−04 1.94e−04

12,096 3.86e−04 1.69e−03 8.00e−05 1.14e−04 7.89e−05 1.12e−04

16,464 2.82e−04 1.25e−03 5.03e−05 7.20e−05 4.97e−05 7.07e−05

21,504 2.15e−04 9.70e−04 3.36e−05 4.82e−05 3.33e−05 4.73e−05

P2 336 6.62e−04 4.62e−03 1.57e−04 2.24e−04 1.28e−04 6.16e−04

1344 8.13e−05 5.89e−04 3.59e−06 5.18e−06 2.86e−06 4.07e−06

3024 2.40e−05 1.75e−04 4.11e−07 5.98e−07 3.46e−07 4.92e−07

5376 1.01e−05 7.38e−05 9.02e−08 1.32e−07 7.84e−08 1.11e−07

8400 5.18e−06 3.78e−05 2.82e−08 4.16e−08 2.50e−08 3.55e−08

12,096 3.00e−06 2.19e−05 1.11e−08 1.66e−08 9.98e−09 1.42e−08

16,464 1.89e−06 1.38e−05 5.29e−09 8.51e−09 4.83e−09 6.87e−09

21,504 1.26e−06 9.24e−06 3.11e−09 5.56e−09 2.91e−09 4.14e−09
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Fig. 8 A base−10 logarithmic-scale plot of the approximation error versus the number of elements to demon-
strate the order of convergence of the postprocessor compared to the order of convergence of the DG solution.
The dashed line represents 2k + 1 (i.e., the expected order of convergence)

the new mesh to postprocess the DG projection and solution using similar setup as presented
at the beginning of this section.

As shown in [17,21], when a structured triangular mesh admits an axis-aligned replicating
pattern, the characteristic length of the replicating pattern should be used for scaling of the
SIAC kernel (instead of the largest element size).2

The contour plot of the base−10 logarithmic-scale L2 approximation error of both kernels
are presented in Figs. 11 and 12. Notice that compared to Figs. 7 and 9 where the SIAC kernel
shows patterns of jaggedness in the vertical direction, the new contour plots are smooth. This
behavior can be associated with the fact that the new mesh is better suited for SIAC kernel
(i.e., the presence of a rectangular replicating pattern). On the other hand, the HSIAC filtering
contour plots showmore jaggedness compared to Figs. 7 and 9. It is important to note that the
newmesh in less suitable for the HSIAC filter, as it provides (horizontal) element boundaries
that do not fit the kernel structure. In addition to studying the profile of the error in the contour
plots,we also performednumerical experiments confirming that the order of accuracyofSIAC
and HSIAC stays similar for the new meshes.

2 The scaling of the HSIAC filter in this case does not change since the underlying hexagonal mesh has not
changed.
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Fig. 9 The contour plot of base−10 logarithmic-scale L2 approximation error of SIAC and HSIAC for
postprocessing of the DG solution of Eq. 29 at the final time using the mesh structure presented in Fig. 5b
(number of mesh elements: 3024). The jagged part of the meshes is trimmed and the error is computed at 90k
uniformly spaced points

Fig. 10 A triangular mesh constructed by subdividing the mesh in Fig. 5b
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Fig. 11 The contour plot of base−10 logarithmic-scale L2 approximation error of SIAC and HSIAC for
postprocessing of the DG projection of Eq. 29 using the mesh structure presented in Fig. 10 (number of mesh
elements: 6048). The jagged part of the meshes is trimmed and the error is computed at 90k uniformly spaced
points

5 Conclusion

In this paper, we used a geometric approach to design a new multidimensional SIAC kernel
called hexagonal SIAC (HSIAC) that goes beyond the conventional tensor-product assump-
tion. HSIAC uses a nonseparable class of two-dimensional spline functions called hex splines
as the underlying spline kernel. Hex splines have approximation and continuity properties
equivalent to those of their tensor-product B-spline counterparts but they are nonseparable
and more radially symmetric. The nonseparability of hex splines can be employed to prove
the superconvergence property of HSIAC filtering for a specific class of structured triangular
meshes (i.e., from subdivision of a hexagonal lattice). The introduction of this family of
kernels and the geometric construction idea behind it will pave the way for the design of new
SIAC kernels with proven superconvergence properties for more complicated geometries and
DG solutions with more complicated features (e.g., DG solutions with shocks or disconti-
nuities). An interesting line of future research is to investigate the utility of HSIAC filtering
for postprocessing of DG solutions on generic polygons from the numerical and theoretical
points of view. Themore radially symmetric nature of HSIAC kernel should prove to be more
appropriate for streamlining applications.
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Fig. 12 The contour plot of base−10 logarithmic-scale L2 approximation error of SIAC and HSIAC for
postprocessing of the DG solution of Eq. 29 using the mesh structure presented in Fig. 10 (number of mesh
elements: 6048). The jagged part of the meshes is trimmed and the error is computed at 90k uniformly spaced
points
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Appendix

In this appendix, we provide some details for the box-spline-based formulation of hex splines.
This formulation provides a compact and efficient mechanism to evaluate and study the
properties of higher order hex splines. We start the discussion with a brief introduction to
box splines as one of the most generic spline functions.

A box spline Rd is defined by a set of n vectors ξ1, . . . , ξn ∈ R
d . Geometrically, a box

spline is the shadow of a hypercube in R
n that has been projected onto R

d where n > d .
Each ξ denotes the shadow of an edge of the hypercube inRn . The simplest box spline inRd
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corresponds to the case where d = n. In this case, a box spline is defined as the (normalized)
indicator function of the parallelepiped formed by the d vectors in R

d .

MΞ(x) =
{

1
| det(Ξ)| x = ∑d

i=1tiξi for 0 ≤ ti ≤ 1
0 otherwise

, (30)

where Ξ := [ξ1, . . . , ξn] denotes the matrix of directions. For n > d , a box spline can be
defined recursively as

MΞ∪ξk (x) =
∫ 1

0
MΞ(x − tξ)dt, (31)

whereΞ ∪ξk denotes the addition of ξk to the matrix of directionΞ ∪ξk := [ξ1, · · · , ξn, ξk].
The convolution in the relation above can be considered as smearing the original box spline
MΞ along the new direction ξk . Consequently, the support of the new box spline MΞ∪ξk

can be considered as the Minkowski sum of the vectors in Ξ ∪ ξk . Figure 13 demonstrates
the idea behind the convolution in Eq. 31 graphically. Similarly, the convolution of two box
splines together results in a new box spline

MΞ1 ∗ MΞ2 = M[Ξ1∪Ξ2]. (32)

Note that the vectors can appear with some multiplicity in the matrix of directions of a
box spline.

Thematrix of directions fully specifies all the properties ofMΞ but the order of the vectors
inΞ does not have any effect on its properties. For instance, let κ denote theminimumnumber
of directions whose removal from Ξ makes the remaining directions not span Rd . The value
of κ specifies the order of continuity of a box spline. That is, a box spline formed by Ξ is

Fig. 13 The support of M[ξ1,ξ2] (a). The support of M[ξ1,ξ2,ξ3] can be considered as smearing the support
of M[ξ1,ξ2] along ξ3 (b). The support of M[ξ1,ξ2,ξ3] can be considered as the Minkowski sum of ξ1, ξ2, and
ξ3 (c)

Fig. 14 First-order hex spline can be decomposed into three box splines
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Cκ−2 continuous [9]. A box spline is a piecewise polynomial function and can be efficiently
evaluated using the recursive definition in Eq. 30 or using a Fourier transform analysis [9].
It is worth mentioning that the derivatives of MΞ in any direction Z ∈ Ξ can be exactly
evaluated using a differencing operator

DZMΞ = ∂Z MΞ\Z for Z ⊆ Ξ, (33)

where Ξ\Z denotes removal of direction Z from the matrix of direction and ∂Z denotes a
backward difference operator in the direction of Z . In general, the derivative of MΞ in any
arbitrary direction can still be rewritten in terms of (a linear combination of) the derivatives
in the direction Z where Z ∈ Ξ [9, Lemma 34]. The interested reader can consult [9] for a
thorough discussion of box splines and it properties.

Both B-splines and hex splines can be written in terms of box splines. For example, the
first-order hex spline can be written and evaluated as a summation of the indicator function
of three parallelepipeds that constitute the Voronoi cell of the hexagonal lattice (i.e., the
hexagon presented in Fig. 1b). Each parallelepiped can be represented using a box spline

η1 = 1

3

(
M[ξ1,ξ2] + M[ξ1,ξ3] + M[ξ2,ξ3]

)
, (34)

where ξi represents the i th column of matrix H3. Figure 14 demonstrates the decomposition
of the first-order hex spline into three box splines.We can now use the box spline convolution
rule in order to write the higher order hex splines as

ηn = (
η1

)∗n = 1

3n
(
M[ξ1,ξ2] + M[ξ1,ξ3] + M[ξ2,ξ3]

)∗n
, (35)

where (η1)
∗n is a short-hand notation for n-times self-convolution.

For example, the second-order hex spline can be written in terms of six box splines

η2 = 1

32
(
M[ξ1,ξ2] + M[ξ1,ξ3] + M[ξ2,ξ3]

)∗2

= 1

9

(
M[ξ1,ξ1,ξ2,ξ2] + M[ξ1,ξ1,ξ3,ξ3] + M[ξ2,ξ2,ξ3,ξ3]

)

+ 2

9

(
M[ξ1,ξ1,ξ2,ξ3] + M[ξ1,ξ2,ξ2,ξ3] + M[ξ1,ξ2,ξ3,ξ3]

)
.

(36)

Not that unlike B-splines, the derivatives of a hex spline cannot be written in terms of
lower order hex splines. However, the derivatives of hex splines can be written compactly in
terms of the derivative of its constituent box splines (see Eq. 33), and be exactly evaluated
using difference operators [9, Lemma 34].
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