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Abstract. This paper presents a data-driven model reduction algorithm
to reduce the computational complexity of diffeomorphic image registra-
tion in the context of large deformation diffeomorphic metric mapping
(LDDMM). In contrast to previous methods that repeatedly evaluate a
full-scale regularization term governed by partial differential equations
(PDEs) in the parameterized space of deformation fields, we introduce
a reduced order model (ROM) to substantially lower the overall com-
putational cost while maintaining accurate alignment. Specifically, we
carefully construct the registration regularizer with a compact set of
data-driven basis functions learned by proper orthogonal decomposition
(POD), based on a key fact that the eigen spectrum decays extremely
fast. This projected regularization in a low-dimensional subspace nat-
urally leads to effective model order reduction with the underlying co-
herent structures well preserved. The iterative optimization involving
computationally expensive PDE solvers is now carried out efficiently in
a low-dimensional subspace. We demonstrate the proposed method in
neuroimaging applications of pairwise image registration and template
estimation for population studies.

1 Introduction

Diffeomorphic image registration has been successfully applied in the field of
medical image analysis, as it maximally maintains the biological correctness of
deformation fields in terms of object topology preservation. Examples of appli-
cations include alignment of functional data to a reference coordinate system [8,
27], anatomical comparison across individuals [24, 21], and atlas-based image
segmentation [3, 15]. The problem of image registration is often formulated as
constrained optimization over the transformation that well aligns a source im-
age and a target image. A plethora of transformation models to today fit into
various categories of parameterizations, e.g., stationary velocity fields that re-
main constant over time [2], and time-varying velocity fields in the framework
of LDDMM [6]. We focus on the latter as it supports a distance metric in the
space of diffeomorphisms that is critical for deformation-based statistical shape
analysis, such as least squares mean estimator [15], geodesic regression [19, 23],
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anatomical shape variability quantification [21], and groupwise geometrical shape
comparison [24].

Despite the aforementioned advantages, one major challenge that hinders
the widespread use of LDDMM is its high computational cost and large memory
footprint [8, 6, 25]. The algorithm inference typically requires costly optimiza-
tion, particularly on solving a full-scale regularization term defined on a dense
image grid (e.g., a brain MRI with size of 1283). Prior knowledge in the form
of regularization is used to enforce the smoothness of transformation fields, also
known as geodesic constraints in the space of diffeomorphisms, by solving a set of
high-dimensional PDEs [17, 25]. This makes iterative optimization approaches,
such as gradient descent [6], BFGS [20], or the Gauss-Newton method [4], com-
putationally challenging. While improved computational capabilities have led
to a substantial run-time reduction, such solution of a single pairwise image
registration still takes tens of minutes to finish on dense 3D image grids [23].

In this paper, we aim at an approximate inference method that significantly
lowers the computational complexity with little to no impact on the alignment
accuracy. Our solution is motivated by the observation that smooth vector
fields in the tangent space of diffeomorphisms can be characterized by a low-
dimensional geometric descriptor, including a finite set of control points [10], or
Fourier basis functions representing low frequencies [28, 29]. As a consequence, we
hypothesize that the solution to high-dimensional PDE systems can be effectively
approximated in a subspace with much lower dimensions. We develop a data-
driven model reduction algorithm that constructs a low-dimensional subspace to
approximate the original high-dimensional dynamic system for diffeomorphic im-
age registration. We employ proper orthogonal decomposition (POD), a widely
used technique for PDE systems, in which the approximating subspace is ob-
tained from a discretized full-order model at selected time instances. A reduced-
order model can then be constructed through Galerkin projection methods [9],
where the PDEs are projected onto a compact set of POD eigen-functions.

To the best of our knowledge, this method has not yet been applied to large
systems of PDEs such as the one employed in diffeomorphic registration. While
we focus on the context of LDDMM, the theoretical tools developed in this paper
are broadly applicable to all PDE-constrained diffeomorphic registration models.
To evaluate the proposed method, we perform image registration of real 3D MR
images and show that the accuracy of our estimated results is comparable to the
state of the art, while with drastically lower runtime and memory consumption.
We also demonstrate this method in the context of brain atlas building (mean
template estimation) for efficient population studies.

2 Background: PDE-constrained Diffeomorphic Image
Registration

In this section, we briefly review the LDDMM algorithm with PDE-constrained
regularization [6, 25]. Let S be the source image and T be the target image
defined on a d-dimensional torus domain Γ = Rd/Zd (S(x), T (x) : Γ → R).
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The problem of diffeomorphic image registration is to find the shortest path to
generate time-varying diffeomorphisms {ψt(x)} : t ∈ [0, 1] such that S ◦ ψ1 is
similar to T , where ◦ is a composition operator that resamples S by the smooth
mapping ψ1. This is typically solved by minimizing an explicit energy function
over the transformation fields ψt as

E(ψt) = Dist(S ◦ ψ1, T ) + Reg(ψt), (1)

where the distance function Dist(·, ·) measures the image dissimilarity. Com-
monly used distance functions include sum-of-squared difference of image in-
tensities [6], normalized cross correlation [5], and mutual information [26]. The
regularization term Reg(·) is a constraint that enforces the spatial smoothness
of transformations, arising from a distance metric on the tangent space V of dif-
feomorphisms, i.e., an integral over the norm of time-dependent velocity fields
{vt(x)} ∈ V ,

Reg(ψt) =

∫ 1

0

(Lvt, vt) dt, with
dψt
dt

= −Dψt · vt, (2)

where L : V → V ∗ is a symmetric, positive-definite differential operator that
maps a tangent vector vt ∈ V into its dual space as a momentum vector mt ∈ V ∗.
We typically write mt = Lvt, or vt = Kmt, with K being an inverse operator of
L. The notation (·, ·) denotes the pairing of a momentum vector with a tangent
vector, which is similar to an inner product. Here, the operator D denotes a
Jacobian matrix and · represents element-wise matrix multiplication.

A geodesic curve with a fixed end point is characterized by an extremum
of the energy function (2) that satisfies the Euler-Poincaré differential (EPDiff)
equation [1, 17]

∂vt
∂t

= −K
[
(Dvt)

T ·mt +Dmt · vt +mt · div vt
]
, (3)

where div is the divergence. This process in Eq. (3) is known as geodesic shooting,
stating that the geodesic path {φt} can be uniquely determined by integrating
a given initial velocity v0 forward in time by using the rule (3).

Therefore, we rewrite the optimization of Eq. (1) equivalently as

E(v0) = Dist(S ◦ ψ1, T ) + (Lv0, v0), s.t. Eq. (3). (4)

As suggested in (4), solving the time-dependent and nonlinear registration prob-
lem requires a large number of time steps and iterations. A full-order model is
not affordable in many-query or real-time context of clinical problems. For ex-
ample, an image-guided navigation system that employs registration algorithms
to identify residual brain tumor during the surgery [16].

3 Our Model: Data-driven Model Order Reduction of
Diffeomorphic Image Registration

We develop a POD-based model order reduction algorithm, particularly for the
registration regularization term governed by high-dimensional PDEs (EPDiff in
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Fig. 1: An example eigenvalue plot of velocity fields generated from 2D synthetic data.

Eq. (4)), to approximate a subspace via a given set of velocity fields in an optimal
least-square sense. We then derive a Galerkin projection (orthogonal projection)
of EPDiff equations onto the subspace to obtain a reduced-order model.

3.1 Low-dimensional Subspace of Velocity Fields

Given a set of full-dimensional velocity fields {vt} ∈ Vq, e.g., q = 3 × 1283

for a 3D discretized image grid with the size of 1283, we are seeking an ap-
proximated subspace Ur = span{u1, · · · ,ur} ⊂ Vq (r � q), where ui is the
basis, to best characterize our data. A projection from such low-dimensional
subspace to the original space can be effectively performed by vt = Uαααt, where
Uq×r = [u1, · · · ,ur] and αt is a r-dimensional vector representing factor coef-
ficients. Here, we require the basis vectors to be orthonormal, i.e., UTU = I.
The inverse projection can thus be written as αααt = UTvt. Our objective is to
minimize the projection error defined in the tangent space of diffeomorphisms

arg min
U

∫
(L(vt −Uαααt),vt −Uαααt) dt. (5)

where L is the discrete operator of L defined in Eq.(2). The minimization prob-
lem of Eq. (5), is the classic problem known as Karhunen-Loève decomposition or
principal component analysis, and holds an equivalent solution to the following
eigen decomposition problem of a covariance matrix Cq×q [18, 22],

Cui = λiui, with C =

∫
L(vt − v̄)(vt − v̄)T dt,

where v̄ =
∫
vtdt is the mean field, and the basis ui, i ∈ {1, · · · , r} corresponds

to the i-th eigenvector of C with associated eigenvalue λi. In practice, the co-
variance is empirically computed by a finite set of M observations (snapshots)

over the full-scale dynamic system of vt, i.e., C ≈ 1
M

∑M
t=1 L(vt − v̄)(vt − v̄)T .

Due to a key fact that the spectrum of eigenvalues decays incredibly fast (as
shown in Fig. 1), we propose to use an optimal set of eigen-functions to form
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the projected subspace of velocity fields. An explicit way thus to formulate the
projection error in Eq. (5) is

q∑
i=r+1

λi, with λ1 > · · · > λr · · · > λq.

This closed-form solution provides an elegant way to measure the projection loss
e = 1− (

∑r
i=1 λi/

∑q
i=1 λi), where r is typically chosen such as e < 0.01 [12, 18].

3.2 Reduced-order Regularization via Galerkin Projection

As introduced in the previous section, we developed a method to estimate a low-
dimensional subspace of velocity fields that uniquely determines the geodesics of
diffeomorphisms. We are now ready to construct a reduced-order model of image
registration, subject to complex regularizations governed by high-dimensional
PDEs (i.e., EPDiff). This procedure is known as Galerkin projection and has
been widely used to reduce the high computational complexity of PDEs, or
ODEs [13, 12, 18].

Consider the EPDiff in Eq. (3), we characterize a velocity field vt by project-
ing it onto a finite-dimensional subspace Ur with much compact basis {u1, · · · ,ur}.
To simplify the notation, we drop the time index t of velocity fields in remain-
ing sections. A discretized formulation of EPDiff equation in terms of matrix
multiplication is

∂v

∂t
= −K

(
diag(Lv)DTv + diag(v)D(Lv) + diag(Lv)div v

)
,

= −K
q∑
i=1

(
diag(li)viD

Tv + viDLv + diag(li)vi div v
)
,

= −K
q∑
i=1

(
diag(li)D

T + DL + diag(li)div
)
viv, (6)

where v is a q-dimensional vector, and diag(·) converts a vector to a diagonal
matrix. The matrices Lq×q, Kq×q, Dq×q, and divq×q denote discrete analogs of
the differential operator L with its inverse K, Jacobian matrix D, and divergence
div obtained by finite difference schemes respectively. Here, li is the i-th column
of the matrix L and vi is the i-th element of vector v.

By defining a composite operator Aq×q
i , K(diag(li)D

T +DL+diag(li)div),
we write Eq. (6) as

∂v

∂t
=

q∑
i=1

Aiviv. (7)



6 Wang et al.

Next, we derive a reduced-order model of EPDiff via Galerkin projection by
plugging v = Uq×rααα into Eq. (7). We then have

∂Uααα

∂t
=

q∑
i=1

Ai(Uααα)iUααα,

∂ααα

∂t
= UT

q∑
i=1

Ai(

r∑
j=1

Uijαj)Uααα =

r∑
j=1

q∑
i=1

UTAiUUijαjααα ,
r∑
j=1

Ãjαjααα, (8)

where Uij the element of U in the i-th row and j-th column. Here, we define

Ã
r×r
j =

∑q
i=1 U

TAiUUij as a reduced-order model operator of Aj . It is worthy

to mention that the computation of Ãi is a one-time cost accomplished offline.
No further update is needed once a proper subspace is sought. Solution to this
reduced-order model can be found by employing commonly used temporal dif-
ferential schemes, e.g., Euler or Runge-Kutta Method, with an initial condition
ααα0 = UTv0.

4 ROM for Diffeomorphic Image Registration

In this section, we present a reduced-order model of LDDMM algorithm with
geodesic shooting for diffeomorphic image registration. We run gradient descent
on a projected initial velocity, represented by the loading coefficient ααα0, entirely
in a low-dimensional subspace. A geodesic path consequently generates a flow of
diffeomorphisms by Eq. (2) after constructing the time-dependent velocity fields
back in its original space using vt = Uαααt.

The redefined energy function of LDDMM in Eq. (4) with sum-of-squared
dissimilarity between images is

E(ααα0) =
1

2σ2
‖S ◦ ψ1 − T‖22 + (Lααα0,ααα0), s.t. Eq. (8). (9)

Here, we adopt a commonly used Laplacian operator L = (−β∆+ I)c, where
β is a positive weight parameter, c controls the level of smoothness, and I is an
identity matrix.

Analogous to solving the optimal control problems in [28], we compute the
gradient term by using a forward-backward sweep scheme. Below are the general
steps for gradient computation (please refer to Alg. 1 for more details):

(i) Compute the gradient ∇ααα1
E of the energy (9) at t = 1 by integrating both

the diffeomorphism ψt and the projected velocity field αt forward in time,
i.e.,

∇ααα1 E = K

(
1

σ2
(S ◦ ψ1 − T ) · ∇(S ◦ ψ1)

)
. (10)

(ii) Bring the gradient ∇ααα1
E back to t = 0. We obtain ∇ααα0

E by integrating
reduced adjoint Jacobi field equations [7] backward in time as

dα̂

dt
= −ad†αĥ,

dĥ

dt
= −α̂− adαĥ+ ad†

ĥ
α, (11)
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where ad† is an adjoint operator and ĥ, α̂ ∈ V are introduced adjoint vari-
ables with an initial condition ĥ = 0, α̂ = ∇ααα1

E at t = 1.

Algorithm 1: Optimization of Reduced order model for diffeomorphic
image registration

Input: source image S, target image T
/* Online optimization */

1 Initialize ααα0 = 0 ;
2 repeat

/* Forward shooting of ααα0 */

3 forward integrate the reduced-order model of EPDiff equation (8) to
generate {αααt} at discrete time points;

/* Compute the diffeomorphic transformations ψt */

4 integrate the transformation fields ψ by using (2) after constructing velocity

fields back to the original space via vt = UTαααt ;
/* Compute gradient at time point t = 1 */

5 compute the gradient ∇ααα1E by (10);
/* Propagate gradient back to time point t = 0 */

6 integrate the reduced adjoint Jacobi field equations (11) backward in time
to obtain ∇ααα0E.

7 Update ααα0 ← ααα0 − ε∇ααα0E, where ε is the step size;

8 until convergence;

5 Experimental Evaluation

To demonstrate the effectiveness of our proposed model, we compare its perfor-
mance with the state-of-the-art vector momentum LDDMM [23] in applications
of pairwise image registration and atlas building. For fair comparison, we use
β = 3, c = 6 for the L operator, and σ = 0.01 with 10 time-steps for Euler
integration across all baseline algorithms.

Data. We applied the algorithm to 3D brain MRI scans from a public released
resource Open Access Series of Imaging Studies (OASIS) for Alzheimer’s dis-
ease [11]. The data includes fifty healthy subjects as well as disease, aged 60
to 96. To better evaluate the estimated transformations, we employed another
fifty 3D brain MRI scans with manual segmentations from Alzheimer’s Disease
Neuroimaging Initiative(ADNI) [14]. All MRIs are of dimension 128× 128× 128
with the voxel size of 1.25mm3. The images underwent downsampling, skull-
stripping, intensity normalization, bias field correction and co-registration with
affine transformation.
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Experiments. We first tested our algorithm for pairwise image registration at
different levels of projected dimension r = 43, 83, 123, 203 and compared the total
energy formulated in Eq. (9). In order to find an optimal basis, we ran parallel
programs of the full-scale EPDiff equation in (3) and generated a collection
of snapshots to perform POD effectively. Since the learning process of basis
functions were conducted offline with one-time cost for all experiments, we only
focused on the exact runtime, memory consumption, and convergence rate of
our model after the fact.

We validated registration results by examining the accuracy of propagated
delineations for cortex (Cor), caudate (Caud), and corpus collusum (CC). After
aligning all volumes to a reference image, we transformed the manual segmenta-
tion from the reference to other volumes by using the estimated deformations.
We evaluated dice similarity coefficient (volume overlap) between the propagated
segmentation and the manual segmentation for each structure.

We also ran both our method and the baseline algorithm to build an atlas
from a set of 3D brain MRIs. We initialized the template image as an average
of image intensities, and set the projected dimension as r = 203 as that was
shown to be optimal in our eigen plots. In this experiment, we used a message
passing interface (MPI) parallel programming implementation for all methods,
and distributed data on four processors in total.

Results. Fig. 2 reports the total energy in formulation (9) averaged over 10
random selected pairs of test images for different values of projected dimensions.
Our method arrives at the same solution at r = 123 and higher, which indi-
cates that the estimated subspace has fairly recovered the result of full-scale
registration algorithms. Fig. 2 also provides runtime and memory consumption
across all three methods, including the baseline algorithm vector momemtum
LDDMM. Our algorithm has substantially lower computational cost than vector
momentum LDDMM performed in a full-dimensional space.

Fig. 2: Left: average total energy for different values of projected dimensions r =
43, 83, 123, 163, 203. Right: exact runtime and memory consumption for all methods.
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Fig. 3 reports segmentation volume overlap on different brain structures, es-
timated from both our method and the baseline algorithm. It show that our
algorithm is able to achieve comparable results, while offering significant im-
provements in computational efficiency. The right panel of Fig. 3 illustrates
results for an example case from the study. We observe that the delineations
achieved by transferring manual segmentations from the reference frame to the
coordinate system of the target frame align fairly well with the manual segmen-
tations. The left panel of Fig. 4 shows the axial and coronal slices from 12 of

Fig. 3: Left: volume overlap between manual segmentations and propagated segmen-
tations of three important regions cortex (Cor), caudate (Caud), and corpus col-
lusum (CC); Middle: example ground truth segmentation; Right: propagated segmenta-
tion with three structures obtained by our method. 2D slices are shown for visualization
only, all computations are carried out fully in 3D.

the selected 3D MRI dataset. The right panel demonstrates the atlas image es-
timated by our algorithm, followed by the atlas estimated by vector momenta
LDDMM. The difference image between the two atlas results shows that our
algorithm generated a very similar atlas to vector momenta LDDMM, but at a
fraction of the time and memory cost (as illustrated on the right bottom panel
of Fig. 4).

Fig. 5 shows the eigenvalue spectrum and convergence plot for both image
registration (top) and atlas building (bottom). It is clear to see that our method
conducted in a low-dimensional space is able to arrive at the same solution
as the full dimensional scenario. We outperform the baseline algorithm vector
momentum LDDMM, i.e., lower energy at the optimal solution.

6 Conclusion

We presented a data-driven model reduction algorithm for diffeomorphic image
registration in the context of LDDMM with geodesic shooting. Our method is
the first to simulate the high-dimensional dynamic system of diffeomorphisms in
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Fig. 4: Left: axial view and coronal view of twelve example brain MRIs selected from
dataset. Right top: atlas images estimated by our method and vector momentum LD-
DMM with difference map shown by side. Right bottom: a comparison of exact runtime
and memory consumption.

Fig. 5: Top to bottom: results of pairwise image registration vs. atlas building. Left to
right: eigenvalue spectrum of velocity fields vs. total energy with an optimal projected
dimension, a full dimension of our method, and vector momemtum LDDMM.
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an approximated subspace via proper orthogonal decomposition and Galerkin
projection. This approach substantially reduces the computational cost of dif-
feomorphic registration algorithms governed by high-dimensional PDEs, while
preserving comparative accuracy. The theoretical tools developed in this paper
are broadly applicable to all PDE-constrained diffeomorphic registration models
with gradient-based optimization.
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