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Abstract—Multigrid is one of the most effective methods for
solving elliptic PDEs. It is algorithmically optimal and is robust
when combined with Krylov methods. Algebraic multigrid is
especially attractive due to its blackbox nature. This however
comes at the cost of increased setup costs that can be significant
in case of systems where the system matrix changes frequently
making it difficult to amortize the setup cost. In this work,
we investigate several strategies for performing lazy updates to
the multigrid hierarchy corresponding to changes in the system
matrix. These include delayed updates, value updates without
changing structure, process local changes, and full updates. We
demonstrate that in many cases, the overhead of building the
AMG hierarchy can be mitigated for rapidly changing system
matrices.

Index Terms—Algebraic Multigrid, AMG, Iterative Solver,
Sparse, Preconditioned Conjugate Gradient, Preconditioner

I. INTRODUCTION

Elliptic operators are ubiquitous in science and engineering,
and solving elliptic PDEs efficiently is a fundamental problem
in computational science and engineering. For large-scale
systems that need to be solved in parallel, iterative solvers
with O(n) complexity and mesh-independent convergence are
preferred. A good example of a mesh-independent solver
and preconditioner is the multigrid methods when applied to
matrices generated from the discretizations of elliptic operators
[1]–[3]. The mathematical predictability of the benefits of
the multigrid approach combined with the ability to exploit
the regularity of the data structures (in terms of indexing,
coarsening, etc.) has made multigrid, especially in conjunction
with preconditioned conjugate gradient (PCG) [4], [5], the
solver of choice when solving engineering applications that
require large-scale parallel solution approaches.

Algebraic Multigrid (AMG) in particular is extremely at-
tractive due to its ability to work directly with the discretized
operator without additional knowledge about the discretization
or meshing. While AMG is very attractive due to its black-
box nature [6]–[8], it does have significantly higher setup costs
compared to its geometric counterpart [9]. For many problems,
this added setup cost is not a problem as this is amortized
over several solves. However in many problems, such as our
target problem §II, the operator changes with time and we only
perform a single solve for a given operator. In such cases, the
added cost of setup and a single solve is inefficient and highly
wasteful. In this work, we consider several strategies to address
this problem. Specifically, we consider variants that are able
to amortize the cost of AMG setup across multiple solves for

cases where the operator changes frequently. We consider both
sequential and distributed scenarios and demonstrate effective
amortization of the AMG setup.

The rest of the paper is organized as follows. In the next
section, we motivate our methods by a brief description of our
target problem, requiring the development of our methods and
describe our methods in §III followed by experiments demon-
strating the effectiveness of our approach in §IV. Finally, we
conclude with directions for future research in §V.

II. TARGET PROBLEM

Chemical transport is a highly interesting phenomenon in
a variety of fields like environmental pollutants tracking, bio-
logical processes like blood clotting and industrial applications
like solvent manufacturing. To study this effectively, we need
accurate models that track and predict these chemicals. Many
of these applications often involve more than one chemical
species which move and interact among themselves. As such,
modeling of these processes highly depend on the accuracy
with which we can track the interplay between these chemi-
cals. Variation in the chemical population often occurs because
of movement and reactions among themselves, thus creating
more chemical species or destroying the existing ones. Due
to the complex nature of the problem, the advection-diffusion
equation

∂c

∂t
= −U ∂c

∂x
+D

∂2c

∂x2
, (1)

is often used to obtain a numerical approximation of the exact
location and population of the chemical species. Here, D refers
to the diffusion coefficient and U refer to the flow velocity. It
is equally important that we track the accuracy of these models
while tracking the chemical species. One of the most common
ways to ensure accuracy is to compare the numerical solution
against the analytical solution. The advection-diffusion equa-
tion is being extensively studied and analytically solved for the
case of constant diffusion coefficient, with uniform flow [10],
[11]. However, many naturally occurring processes are more
involved than the constant diffusion coefficient or uniform flow
can model. One such process is described in the next section.

A. Variable Diffusion case in Elliptic PDE

We build the model problem of variable diffusion and
motivate the application of multigrid preconditioning methods
to numerically solve the resulting equation. Consider the set of
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equation that arise out of the modeling of chemical transport
and interactions resulting from the biological process of blood
clotting (specifically, thrombosis), popularly knows as the
Leiderman-Fogelsen model [12], [13].

Depending on the roles they play in the process, the
interesting quantities of this model can be divided into the
following classes:

1) Mobile unactivated (Pm,u),
2) Mobile activated (Pm,a),
3) Platelet-bound activated (P b,a)
4) Subendothelium-bound activated (P se,a)

∂Pm,u

∂t
= −∇ · {W (φT )(uPm,u −D∇Pm,u))}︸ ︷︷ ︸

Transport by advection and diffusion

− kadh(x){Pmax − P se,a}Pm,u︸ ︷︷ ︸
Adhesion to subendothelium

−{A1(e2) +A2([ADP ])}Pm,u︸ ︷︷ ︸
Activation by thrombin or ADP

(2)

∂Pm,a

∂t
= −∇ · {W (φT )(uPm,a −D∇Pm,a)}

−kadh(x){Pmax − P se,a}Pm,a

+{A1(e2) +A2([ADP ])P
m,u

− kcohg(η)PmaxP
m,a︸ ︷︷ ︸

Cohesion to bound platelets

. (3)

kadh(x) is assumed to be a positive constant for points
x within one platelet diameter of subendothelium and zero
elsewhere. We define W (φT ) as follows:

W (φT ) = tanh(π(1− φT )), (4)

where, φT = P se,a + P b,a + P0

Pmaxse
(Pm,u + Pm,a), Pmaxse

and Pmax are a constants for maximum number density for
platelets as per [12].

In order to numerically solve the model equations of the
kind given by Equations (2) and (3), we need to vary the
diffusion coefficient (depicted by W (φT )D) per time-step.
The resulting elliptical PDEs can be solved using the Finite
Element Method (FEM). We use the high-order finite element
software package Nektar++ [14] version 4.4.1 to solve the
continuous Galerkin problem arising out of the changing diffu-
sion coefficient per time-set. It provides an unsteady diffusion
solver that expects the mesh file describing the geometry of
the domain and the related solver parameters.

While multigrid methods, specifically algebraic multigrid
(AMG) methods in conjunction with Krylov methods are very
effective in solving Equations (2) and (3), the high setup cost
associated with AMG makes it less attractive when the opera-
tor changes very rapidly (due to varying diffusion coefficient).
In this work, we explore different strategies for mitigating
the high setup cost, while still retaining the efficiency of
multigrid. We find that by performing lazy updates for the

AMG preconditioner, we can amortize the high setup costs
without adversely affecting the convergence rate. We now
describe our lazy-update variant to AMG preconditioners.

III. METHODS

We start with a brief description of our AMG framework.
Algebraic multigrid (AMG) has been a popular method for
solving linear systems of elliptic partial differential equations,
especially for large sparse systems. AMG can be used as either
a solver or a preconditioner to solve the linear system

Ax = b (5)

where, A ∈ Rn×n, x and b ∈ Rn.
AMG consists of a setup and a solve phase. During the

setup phase, aggregation is applied to the equivalent graph G
of the matrix A. Every row of the matrix A is considered as
a node in the graph G and there is an edge between nodes
i and j if entry (i, j) is nonzero in A. Let us say there are
n nodes in the graph G. By doing the aggregation on them,
m nodes will be chosen as roots such that m < n and the
rest of the nodes of the graph will be assigned to them. For
our implementation, we have used the maximal independent
set approach (similar to [15]) as the aggregation method.

The prolongation matrix P ∈ Rn×m will then be defined
based on this aggregation. If node i is assigned to root j,
then P (i, j) = 1, otherwise it is 0. The restriction operator
R ∈ Rm×n is then made by transposing P . The prolongation
operator is used in two ways. It interpolates a vector v ∈ Rm

to v′ ∈ Rn, such that m < n. In other words, it takes vectors
from a coarser grid to a finer one. The restriction operator does
the reverse task; it takes w ∈ Rn to Rm. The other purpose
of P and R is creating a smaller version of the left-hand side
matrix A:

Ac = R ∗A ∗ P (6)

such that Ac ∈ Rm×m. This is called coarsening.
Progressively coarser versions of the matrix are created

during the setup phase. An AMG hierarchy of L + 1 levels
consists of three categories of operators:

1) Coarse Matrices (As),
2) Prolongation Matrices (Ps), and
3) Restriction Matrices (Rs).

The coarse matrices are created similar to Ac for each level:

As[l + 1] = Rs[l] ∗As[l] ∗ Ps[l], l = 0, 1, 2, ..., L− 1. (7)

For this paper, smoothed aggregation AMG (SA-AMG) is
used from [16], for which the prolongation (Pt) and restriction
operators (Rt) are smoothed by

P = (I − ωQAF )Pt, R = Rt(I − ωAFQ) (8)

where Q is a the inverse of the diagonal of A and ω is the
damped Jacobi parameter and AF is the filtered matrix of A.
Smoothing the operators improves the convergence of AMG.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE 

Authorized licensed use limited to: The University of Utah. Downloaded on July 31,2020 at 17:20:18 UTC from IEEE Xplore.  Restrictions apply. 



The second step of AMG is the solve phase. To solve the
linear system Ax = b, we start with an initial guess for x.
Then, we use two methods to approximate the solution:

1) Relaxation (Jacobi, Chebyshev, ...), and
2) Coarse-grid Correction.
The setup phase is usually more expensive than the solve

phase. We want to avoid doing at least some parts of the setup
phase whenever it is possible, at the cost of a low increase in
the solve time. This will be our goal in the three strategies
that are explained in the next section.

A. AMG as a preconditioner

While AMG can be used directly as a solver for our
target problem, using it as a preconditioner for the Conjugate
Gradient method makes it far more robust, especially given the
complexity of our target meshes. The pseudocode for using
AMG as a preconditioner with CG is given in Algorithm 1.

Algorithm 1 Multigrid-preconditioned CG
Input: rhs and guess
Output: solution

1: while not converged do
2: h = Ap
3: ρr = (ρ, r)
4: α = ρr/(p,h)
5: u = u+ αp
6: r = r − αh
7: Convergence Test
8: ρ =Mr . AMG V-cycle
9: β = (ρ, r)/ρr

10: p = ρ+ βp
11: end while

As previously mentioned, the main downside of using
AMG–with or without PCG–for our target problem is the
variation of the diffusion coefficient. This effectively means
that the high cost of the AMG setup is not offset by a
sufficiently high number of corresponding solves. By using
AMG as a preconditioner along with PCG, we can update
the preconditioner–the multigrid hierarchy–in a lazy fashion,
effectively lowering the effective cost of AMG setup. Of
course using a stale preconditioner can be less efficient and
can increase the number of iterations needed for convergence.
We study this trade-off and consider three different strategies
in order to get the overall best runtime. Note that the overall
runtime will involve both the AMG setup as well as the cost
of the PCG solves, therefore there is an incentive to reduce
the number of AMG setups, even if it marginally increases
the number of PCG iterations for convergence. We will now
discuss the different strategies for lazy updates of the AMG
hierarchy.

1) Strategy 1: Reuse the same AMG hierarchy: The first
and simplest strategy is to simply use the same AMG hierarchy
and only update the input matrix As[0] with the updated matrix
(Fig. 1). One can see from Algorithm 1 that the multigrid
hierarchy (M ) from the previous matrix can be reused. In

this scenario, PCG will use the updated matrix A and so
will the fine-grid of the AMG hierarchy. But the coarse grid
operators along with the restriction and prolongation operators
will not be recomputed. Effectively we will not incur an
additional setup cost. We only create the updated matrix. The
number of iterations taken by PCG will be higher, especially
as the diffusion coefficients start to vary significantly from the
original operator. However marginal increase in the number
of iterations is still cheaper than the cost associated with the
AMG setup, so this is likely to be faster. For long-running
simulations, our heuristic is to update the AMG hierarchy by
a fresh setup when the total time of updating the hierarchy and
solving the linear system gets more expensive than the total
time of setup and solve time for the initial matrix. Then, we
consider the matrix in that step as the initial matrix, i.e. we
repeat the setup phase completely and create a new multigrid
hierarchy and repeat the previous process. In practice this
approach works reasonably well, and the number of solves
per setup is increased sufficiently to keep the overall runtime
low.

Rs[0]
As[0] Ps[0]

Rs[1] As[1] Ps[1]

As[2]

x x

x x

Fig. 1. This figure shows the multigrid hierarchy with 3 levels. The parts
that are being updated are green. For Strategy 1 we only update As[0].

2) Strategy 2: Keep the same structure, only update As:
While the previous case works well for many problems, it
does not perform very well when there is large variation
in the diffusion coefficients. We observe that variations in
the diffusion coefficients do not affect the overall structure
of the matrix. Therefore, we can use the aggregation from
the previous AMG setup and simply update the coarse grid
operators. In other words, we will keep the same aggregations,
and therefore the restriction and prolongation operators, but
update the coarse grid operators (Fig. 2). Unlike the previous
case, we do have to pay a cost for re-computing the coarse-
grid operators but this is not as expensive as a full AMG setup.
At the same time, the convergence for this approach is better
than Strategy 1, especially for problems with large variations.

3) Strategy 3: Only update local: No Communication:
While Strategy 2 works well in the sequential case, it may
not be the most efficient while computing in parallel. This is
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Rs[0]
As[0] Ps[0]

Rs[1] As[1] Ps[1]

As[2]

x x

x x

Fig. 2. Strategy2: update all coarse matrices (As). The parts that are being
updated are green.

mainly due to the need to perform matrix multiplications in
parallel to compute the coarse grid operator Ac = RAP . The
communication required can become a bottleneck, especially
as the coarser operators start to become dense. Therefore, as
a final approximation, in the parallel case, we only update the
local block of the coarse grid operators and do not incur any
communication costs (Fig. 3). The finest level As[0] is updated
completely because it can simply be replaced by the updated
matrix and does not require any matrix-matrix product. While
this can affect convergence slightly, for the most part this
simply behaves like Strategy 2, but is more efficient for large-
scale parallel cases.

Rs[0]
As[0] Ps[0]

Rs[1] As[1] Ps[1]

As[2]

x x

x x

Fig. 3. Strategy3: Update the diagonal blocks of coarse matrices (As) to avoid
the communication required for matrix-matrix product while performing the
coarsening operation (Ac = RAP ). The parts that are being updated are
green. As[0] is updated completely because it can just be replaced by the
update matrix.

IV. NUMERICAL RESULTS

A. Experimental Setup

All experiments were conducted on a 12-node cluster at
the Center for High Performance Computing (CHPC) at the

University of Utah. Each node consists of a dual-socket Intel
Xeon Haswell processors with 14 cores each for a total of 28
cores and 128GB per node.

To simulate the target problem discussed in §II, we use
HoMG [17], which is a geometric multigrid library in MAT-
LAB, to generate a set of matrices that have the same nonzero
structure but with slightly different values. We start with a
simple 2D-mesh, and transform it to generate a set of matrices
Ai’s. Then we solve the linear systems Aix = b, for all Ai’s,
using our lazy-update strategies.

First, we create the AMG hierarchy based on an initial
matrix A1. Then we use HoMG to generate A2 which is
slightly different from A1. Similarly, matrix A3 which is again
slightly different from A2 gets generated and so on.

After generating the matrices, we solve the linear system
A1x = b. The right-hand side b is randomly generated. We
use one iteration of Chebyshev for both pre-smoothing and
post-smoothing for our AMG preconditioner.

Then, we update the AMG hierarchy for A2 using one of
our three strategies and then again solve the linear system
A2x = b. We repeat this process to solve the linear system
for all Ai’s.

To study our update methods, we record three numbers:

• AMG Setup Time
• AMG Solve Time
• Number of Vcycle Iterations

and based on them show the effectiveness of our update
methods.

B. Results

For our first experiment, we assemble a diffusion operator
(A1) using 4th-order finite elements on a 64 × 64 2D quad-
mesh. A1 is of size 66049×66049 with 2.3M nonzeros. Then,
we create 9 other matrices by stretching the mesh that was
used for creating A1, in the x direction. The stretching of the
mesh is equivalent to an anisotropic diffusion and allows us
to consider various scenarios in a convenient manner. Fig. 4
shows a smaller version of the starting mesh (left) and how it
gets transformed to the final mesh (right).

Fig. 4. This figure shows how we change the initial mesh to generate the
new matrices Ai’s. The left mesh shows (a smaller version of) the starting
mesh that was used to generate A1. The middle one is the transformed mesh
for A5. And, the last one is A10’s mesh.

Table I shows the number of vcycle iterations that it takes
to solve the linear systems Aix = b. Strategy 2 takes less
number of iterations, and the trade-off is a higher setup time.
The result for Strategy 3 is almost identical to Strategy 1. The
experiments of this section are done on 56 MPI tasks.
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TABLE I
NUMBER OF VCYCLE ITERATIONS FOR SOLVING THE LINEAR SYSTEMS.

A1 IS THE ORIGINAL MATRIX.

A1 41
Strategy1 Strategy2 Strategy3

A2 44 45 44
A3 50 50 50
A4 59 57 59
A5 69 63 69
A6 80 70 80
A7 92 76 92
A8 106 84 106
A9 118 91 118
A10 132 98 133

Figures 5-7 show the setup, solve and total time for the
update strategies 1-3 respectively. The first point in each figure
is the initial matrix A1, so we choose its total time as the
threshold. After reaching that threshold, we repeat the AMG
setup phase and create a new hierarchy and repeat this process.

Fig. 5 shows the improvement that we gain by using
Strategy 1 up to update-step 9. For matrix A10 we need to
recreate the AMG hierarchy and use that instead. Fig. 6 shows
that the setup time for Strategy 2 is less than the complete
AMG setup time (the first point on the same figure) but it is
significantly higher than the other two update methods. What
we gain from that is a better solve time than Strategy 1 and 3.
Up to matrix A6 we gain speed-up using Strategy 2. Strategy
3 (Fig. 7) has a higher setup time than Strategy 1 but the same
solve time, so Strategy 1 is preferred. For Strategy 3, up to
matrix A8 we have the time improvement using the updated
hierarchy.

Fig. 5. Strategy 1: The lowest setup time but the highest slope for the solve
time. For up to A9 we have a lower total time if we use Strategy 1 to update
the AMG hierarchy instead of creating the whole hierarchy for each matrix.

For the next experiment, we try a more complicated trans-
formation to see if our update methods are still valid in a more
complex situation. This time the operator is assembled using

Fig. 6. Strategy 2: The highest setup times but the lowest solve times for the
updated systems.

Fig. 7. Strategy 3: The setup time is in the middle but the solve time is
almost identical to Strategy 1.

4th-order finite elements on a 128× 128 quad-mesh. A1 is of
size 263169×263169 with 9.3M nonzeros. We create 19 other
matrices by transforming the mesh that was used for creating
A1 (Fig. 8).

Table II shows the number of vcycle iterations that it takes
to solve the linear systems Aix = b and the results of the first
experiment is again seen for this experiment.

Figures 9-11 confirm the same result about using our update
methods that we observed in the first experiment. Fig. 9 shows
the improvement that we gain by using Strategy 1 up to update-
step 18. We see the speed-up using Strategy 2 and also For
Strategy 3 up to matrix A16.
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Fig. 8. This figure shows how we change the initial mesh to generate the
new matrices Ai’s for the second experiment. The left mesh show (a smaller
version of) the starting mesh that was used to generate A1. The middle one
is the transformed mesh for A10. And, the last one is A20’s mesh.

TABLE II
NUMBER OF VCYCLE ITERATIONS FOR SOLVING THE LINEAR SYSTEMS.

A1 IS THE ORIGINAL MATRIX.

A1 79
Strategy1 Strategy2 Strategy3

A2 92 81 92
A3 95 82 96
A4 98 82 98
A5 100 82 100
A6 103 84 103
A7 106 85 106
A8 110 86 109
A9 113 87 113
A10 116 89 115
A11 119 91 119
A12 124 92 124
A13 127 94 127
A14 132 95 132
A15 133 97 133
A16 137 97 137
A17 139 100 140
A18 145 101 145
A19 150 103 150
A20 155 105 155

Fig. 9. Strategy 1: Similar to the first experiment, we see the lowest setup time
but the highest slope for the solve time. For up to A18 we have a lower total
time if we use Strategy 1 to update the AMG hierarchy instead of creating
the whole hierarchy for each matrix.

Fig. 10. Strategy 2: The highest setup times but the lowest solve times for
the updated systems.

Fig. 11. Strategy 3: The setup time is in the middle but the solve time is
almost identical to Strategy 1.

V. CONCLUSION

To avoid repeating the whole setup time of AMG for linear
systems that have a similar left-hand side matrix, we studied
three strategies to create the multigrid hierarchy once and only
update that for solving linear systems of the similar matrices.
By performing two different transformations, one simple and
one more complicated, we generated similar matrices and
showed how much time we can save using the mentioned
update strategies. For future research, we want to try bigger
experiments on higher number of MPI tasks to see if we
gain any advantage of Strategy 3, which is the local update
approach, over the complete update method (Strategy 2).
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