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Abstract

Learning compact representations for shapes (binary images)
is important for many applications. Although neural network
models are very powerful, they usually involve many parame-
ters, require substantial tuning efforts and easily overfit small
datasets, which are common in shape-related applications.
The state-of-the-art approach, ShapeOdds, as a latent Gaus-
sian model, can effectively prevent overfitting and is more
robust. Nonetheless, it relies on a linear projection assump-
tion and is incapable of capturing intrinsic nonlinear shape
variations, hence may leading to inferior representations and
structure discovery. To address these issues, we propose In-
finite ShapeOdds (InfShapeOdds), a Bayesian nonparametric
shape model, which is flexible enough to capture complex
shape variations and discover hidden cluster structures, while
still avoiding overfitting. Specifically, we use matrix Gaus-
sian priors, nonlinear feature mappings and the kernel trick
to generalize ShapeOdds to a shape-variate Gaussian process
model, which can grasp various nonlinear correlations among
the pixels within and across (different) shapes. To further dis-
cover the hidden structures in data, we place a Dirichlet pro-
cess mixture (DPM) prior over the representations to jointly
infer the cluster number and memberships. Finally, we exploit
the Kronecker-product structure in our model to develop an
efficient, truncated variational expectation-maximization al-
gorithm for model estimation. On synthetic and real-world
data, we show the advantage of our method in both represen-
tation learning and latent structure discovery.

Introduction
Many applications, such as in computer vision, biology and
medical imaging (Pohl et al. 2007; Liu et al. 2018), involve
shapes represented by binary images. In contrast to popu-
lar RGB images, shape images lack detailed texture infor-
mation, and the data often include a limited number of in-
stances (e.g., anatomical and tumor shapes). These present
more challenges for learning low-dimensional representa-
tions, which are critical for fundamental image processing
tasks such as object recognition and segmentation.

Although (deep) neural network based methods, such
as variational auto-encoders (VAE) (Kingma and Welling
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2013) have achieved a great success in learning image repre-
sentations (Higgins et al. 2017; Tomczak and Welling 2017),
they usually include massive parameters, require much
hand-tuning labor, and are prone to overfitting, especially on
small datasets, which is often the case for shapes. To over-
come this problem, Elhabian and Whitaker (2017) proposed
ShapeOdds, a latent Gaussian model that uses sparse pro-
jections to prevent overfitting, and Gaussian Markov Ran-
dom fields (GMRFs) to capture the local/global shape prop-
erties. Empirically, ShapeOdds is more robust against miss-
ing regions and background clutter and exhibits smaller re-
construction errors, as compared with the shape Boltzman
machine (ShapeBM) (Eslami et al. 2014) (a stochastic neu-
ral network) and the classical LogOdds based methods (Pohl
et al. 2007).

However, a severe limitation of ShapeOdds is that it as-
sumes an oversimplified, linear projection from the latent
representations to the shape images. Despite its robustness,
ShapeOdds cannot capture the intrinsic nonlinear variations
in shapes (Bengio, Courville, and Vincent 2013), and hence
may obtain inferior representations that fail to reflect the un-
derlying structures of the data.

To overcome this limitation, we propose infinite
ShapeOdds (InfShapeOdds), a Bayesian nonparametric
shape representation model that can flexibly capture vari-
ous nonlinear variations and discover hidden cluster struc-
tures. InfShapeOdds includes only a small number of pa-
rameters, can effectively avoid overfitting and does not re-
quire fine tuning. InfShapeOdds hybridizes latent Gaussian
processes (GPs) and Dirichlet processes (DPs) to jointly es-
timate nonlinear shape representations and discover hidden
clusters so as to render the two tightly coupled tasks to bene-
fit each other. Specifically, we first use matrix Gaussian pri-
ors, nonlinear feature transformations and the kernel trick
to generalize ShapeOdds to a shape-variate GP model that
can account for the complex spatial correlations of the pix-
els within and across shape images so as to capture vari-
ous nonlinear shape variations. The covariance matrix turns
out to be a Kronecker product that enables efficient inverse
and log determinant computation. GPs are known to be flex-
ible, robust to noises and resist overfitting (Rasmussen and
Williams 2006). We then place a Dirichlet process mixture



(DPM) prior over the latent representations. As a nonpara-
metric mixture prior, DPM allows joint inference of the clus-
ter number and memberships, and hence can discover a va-
riety of cluster structures within the data. Finally, we ex-
ploit the Kronecker product properties to efficiently compute
the model likelihood and its gradient, based on which we
develop a truncated variational expectation-maximization
(EM) algorithm for scalable model estimation.

For evaluation, we compared InfShapeOdds with
ShapeOdds, GP latent variable model (GPLVM) (Lawrence
2005), and VAEs with different architectures. On real-
world benchmark datasets, InfShapeOdds outperforms all
competing methods in terms of reconstruction and shape
generation/interpolation. For structure discovery, the simu-
lation shows that InfShapeOdds recovers the ground-truth
structures much better than ShapeOdds. In real-world
datasets, InfShapeOdds often returns more structured and
interpretable low-dimensional representations.

Background
Suppose we are given a collection of N shapes, Y =
[y1, . . . ,yN ]>, where each shape is represented by an I×J
binary image, yn = [yn11, . . . , yn1J , . . . , ynI1, . . . , ynIJ ]T

where 1 ≤ n ≤ N , ynij ∈ {0, 1} is the pixel (i, j) of the
image yn. We aim to learn a low-dimensional representa-
tion zn ∈ Rr for each image yn, where r � D = I ×J . To
this end, ShapeOdds uses a latent Gaussian model to gener-
ate the image. First, the representation zn is sampled from
a Gaussian prior, p(zn) = N (zn|µ,Σ). Then a continuous
field fn ∈ RD is generated from a linear projection of zn,

fn = Wzn + w0, (1)

where W is theD×r projection (or loading) matrix, and w0

the bias. To encode both the local and global spatial prop-
erties, w0 and each column of W is assigned a Gaussian
Markov random field (GMRF) prior,

p(wj) = βjN (wj |0, γS), (2)

where wj is the j-th column of W when j > 0, {βj , γ} ≥ 0,
and S is the stencil of the negative bi-Laplacian operator. To
prevent overfitting, a sparse, ARD prior (Neal 2012) is fur-
ther assigned on βj to enable the pruning of these columns.
Finally, given the latent field fn, the observed image yn is
sampled from p(yn|fn) =

∏I
i=1

∏J
j=1 p(ynij |fnij), where

p(ynij |fnij) = 1/
(
1 + exp(−(2ynij − 1)fnij)

)
.

Model
In spite of its success, ShapeOdds may suffer from the sim-
ple linear projection in (1). The linear projection can prevent
ShapeOdds from grasping more subtle, nonlinear shape vari-
ations (that are ubiquitous in practice), and hence result in
low-quality shape representations. To address this issue and
to further improve the discovery of the hidden structures,
we propose InfShapeOdds, a Bayesian nonparametric shape
model, described in the subsequent section.

Shape-Variate Gaussian Process
We first generalize ShapeOdds to construct a shape-variate
Gaussian process, which can flexibly model the complex
spatial correlations of the pixels and hence capture all possi-
ble nonlinear shape variations. Specifically, to enable non-
linear projections in ShapeOdds, we perform a nonlinear
feature mapping on the latent representation zn, and then
substitute the mapped feature vector φ(zn) for zn in (1). To
be succinct, we rewrite the projection as fn = Wφ(zn), be-
cause we can always assume the bias w0 is folded into W
and φ(zn) augmented with a constant feature 1. To account
for all possible correlations, we can in general place a matrix
Gaussian prior distribution over the loadings W,

p(W) =MN (0,KD,Kl) = N (vec(W)|0,Kl ⊗KD)

=
exp

(
− 1

2 tr[K−1D WK−1l W>]
)

(2π)Dl/2|KD|D/2|Kl|l/2
(3)

where l is the dimension of the mapped feature vector, KD ∈
RD×D is the row covariance matrix and describes the spatial
correlations of the pixels, and Kl ∈ Rl×l is the column co-
variance matrix and describes the correlations of the mapped
features. Note that the prior distribution of W in ShapeOdds
(see (2)) is a special case of (3), where KD = λ−1S and
Kl = diag([β1, . . . , βl]).

Now, let us consider the collection of N fields, F =
[f1, . . . , fN ]>. Obviously, we have F = ΦW where Φ =
[φ(z1), . . . ,φ(zN )]>. Because F is a linear transformation
of W, according to (3), the distribution of F is matrix Gaus-
sian as well, p(F) = MNN×D(0,ΦKlΦ

>,KD). We can
further view the row covariance matrix comes from another
(nonlinear) feature transformation, ψ(zn) = K

1
2

l φ(zn) and
ΦKlΦ

> = ΨΨ>, where Ψ = [ψ(z1), . . . ,ψ(zN )]>.
Hence, we have p(F|Z) = MNN×D(0,ΨΨ>,KD).
Note that each element in ΨΨ> is an inner product of
two mapped feature vectors, [ΨΨ>]ij = 〈ψ(zi),ψ(zj)〉.
Explicitly working with the nonlinear feature mapping is
costly, especially when the mapping is high dimensional or
even infinite dimensional. To reduce the cost, we apply the
kernel trick and replace each inner product 〈ψ(zi),ψ(zj)〉
by a kernel function κz(zi, zj), which is equivalent to per-
forming the feature mapping on the inputs first and then cal-
culating the inner product of the mapped feature vectors.
A commonly used kernel function is the SE-ARD kernel,
κz(zi, zj) = θ0 exp(−(zi − zj)

>diag( 1
θ )(zi − zj)) where

{θ0,θ} are the kernel parameters. Now, the distribution of
the fields F is given by

p(F|Z) =MNN×D(F|0,KZ ,KD)

= N
(
vec(F)|0,KZ ⊗KD

)
, (4)

where KZ is a kernel matrix on the latent representations Z
and [KZ ]ij = κz(zi, zj).

The distribution in (4) defines a Gaussian process (Ras-
mussen and Williams 2006) for shapes. Each variate of the
process is a continuous field for a shape image. Given a finite
set of locations Z, the projected variates of the GP, namely,
F, follow a multivariate Gaussian distribution given in (4).



The GP essentially maps the low-dimensional representa-
tions to the shape images. We can model any (nonlinear)
mapping via choosing an appropriate (nonlinear) covariance
(or kernel) function κz(·, ·). We refer to this GP as a shape-
variate GP.

Although the GP endows us with nonlinear shape model-
ing power, learning this GP is problematic because we need
to estimate the D × D correlation matrix KD. Since D is
the number of pixels, KD can be tremendous, even with
small-sized shape images, e.g., 32 × 32. To reduce the pa-
rameters while keeping the flexibility of capturing complex
spatial correlations between the pixels, we for each dimen-
sion of the images introduce a set of latent spatial variables,
S = {s1, . . . , sI} and T = {t1, . . . , tJ} (the image size
is I × J). These variables characterize the spatial proper-
ties of the shapes at different positions or coordinates. We
then define KD as a kernel matrix on the spatial variables
to capture the spatial correlations, and the kernel function
has a composite form, [KD]dd′ = κs(sid , sid′ )κt(tjd , tjd′ ),
where κs(·, ·) and κt(·, ·) are arbitrary kernels that measure
the similarity of the spatial variables in each dimension (and
can be different), and (id, jd) and (id′ , jd′) are the coordi-
nates for the d-th and d′-th pixel, respectively. It is easy
to see that KD = KS ⊗ KT where KS and KT are the
kernel matrices on S and T, respectively. The Kronecker
structure reduces the number of parameters from O(D2) to
O(I + J). Meanwhile, the complex spatial correlations can
be fully grasped by the spatial variables and rich (nonlinear)
kernel functions.

Now, with the spatial latent variables S and T, the finite
probability of our shape-variate GP is given by

p(F|Z,S,T) = N (vec(F)|0,KZ ⊗KS ⊗KT ). (5)

The covariance between any two outputs (i.e., pixels) fnij
and fn′i′j′ is

cov(fnij , fn′i′j′) = κz(zn, zn′)κs(si, si′)κt(tj , tj′).

The covariance integrates the (nonlinear) spatial correlations
within shapes and the cross-correlations between different
shapes (i.e., κz(zn, zn′)). In this way, our model is flexible
enough to capture a variety of nonlinear shape variations to
obtain high-quality compact representations.

Dirichlet Process Mixture Prior

Next, to uncover the hidden structures within the shapes,
we place a Dirichlet process mixture (DPM) prior (Anto-
niak 1974) over each latent representation zn. As a nonpara-
metric mixture prior, DPM can sample an unbounded num-
ber of mixture components (i.e., cluster centers), through
which we can identify both the cluster number and mem-
berships from posterior inference. Specifically, to sam-
ple zn, we first sample an infinite collection of random
variables v = {v1, v2, · · · } and cluster centers ηηη =
{η1, η2, · · · } from p(v|α) =

∏∞
m=1 Beta(vm|1, α), and

p(ηηη) =
∏∞
m=1N (ηηηm|0, I) where α > 0 is the concentration

hyper-parameter. Then we sample a cluster membership un,

and then sample zn according to the assigner cluster center,

p(zn, un|v,η) = p(zn|un,η)p(un|v)

=
∏∞

m=1
πm(v)δ(un=m)N (zn|ηun

, λI), (6)

where πm(v) = vm
∏m−1
m′=1(1 − vm′), λ is the variance pa-

rameter that controls the distance from zn to the cluster cen-
ter, and δ(·) is the indicator function.

Finally, given the continuous field fn, we sample the
observed binary shape image yn from a probit regression
model, p(yn|fn) =

∏
n,i,j Φ(fnij)

ynij (1− Φ(fnij))
1−ynij ,

where Φ(·) is the standard Gaussian CDF function.
Given (5) and (6), we can obtain the joint prob-
ability of our model by p(Z,S,T,F,Y,u,v,η) =∏N
n=1 p(zn|un,η)p(un|v)p(v|α)p(F|Z,S,T)p(S)p(T)

p(η)
∏N
n=1 p(yn|fn), where u = {u1, . . . , uN} are the clus-

ter memberships, and p(S) and p(T) are standard Gaussian
prior distributions for the spatial latent variables S and T.

Model Estimation
We now present the model estimation algorithm. In a
Bayesian framework, the estimation amounts to computing
the posterior distributions of the latent variables. However,
exact posterior computation is infeasible since we cannot
calculate the normalization constant. Hence, we resort to a
variational expectation-maximization (EM) approach: in the
E step, we approximate the posterior distributions for a set
of latent variables, such as the fields F and the cluster mem-
berships u; in the M step, based on these posteriors, we op-
timize the representations Z and other parameters.

Specifically, for a closed-form update, we first introduce
an augmented variable hnij for each pixel ynij and de-
compose each likelihood p(ynij |fnij) into p(hnij |fnij) =
N (hnij |fnij , 1), where p(ynij |hnij) = δ(ynij =
1)δ(hnij > 0) + δ(ynij = 0)δ(hnij ≤ 0). This is equiv-
alent to the original probit model (Albert and Chib 1993).
Denote all the augmented variables {hnij} by H. The joint
probability now is

p(Z,S,T,F,H,Y,u,v,η) =

N∏
n=1

p(zn|un,η)p(un|v)p(S)

p(T)p(η)p(v|α)p(F|Z,S,T)
∏
n,i,j

p(hnij |fnij)p(ynij |hnij).

Variational Approximation
We then, in the E step, use variational inference to ap-
proximate the posterior distributions of the latent fields F,
the augmented variables H, the cluster memberships u and
the DPM-related variables v and η. Specifically, we use a
factorized distribution, q(F)q(H)q(u)q(v)q(η) to approx-
imate the true posterior p(F,H,u,v,η|Y). To obtain the
optimal approximation, we minimize the Kullback-Leibler
(KL) divergence between the approximate and exact poste-
rior. Each time, we update one posterior, say, q(v), while
fixing the others, and cyclically refine each posterior until
convergence. To handle the infinite supports in v, η and the
cluster memberships u, we use a truncated variational pos-
terior (Blei, Jordan, and others 2006). Specifically, we set



a truncation level M and enforce q(vM = 1) = 1 so that
q(un > M) = 0 (1 ≤ n ≤ N). The truncated variational
posteriors for v, u and η are updated by

q(un) = Multinomial(un|ζn1, · · · , ζnM ),

q(vm) = Beta(vm|γm1, γm2),

q(ηηηm) = N (ηηηm|µµµm, smI),

where

ζnm ∝ exp(Eq [log(vm)] +

m−1∑
m′=1

Eq [log(1− vm′)]

− 1

2λ
Eq
[
||ηηηm||2

]
+

1

λ
znTEq [ηηηm]),

γm1 = 1 +

N∑
n=1

ζnm, γm2 = α+

N∑
n=1

M∑
m′=m+1

ζnm′ ,

sm =
1

1 + λ−1
∑N
a=1 ζnm

, µµµm =

∑N
n=1 ζnmzn

λ+
∑N
n=1 ζnm

.

The moments are calculated by Eq[log(1 − vm)] =
ψ(γm2) − ψ (γm1 + γm2), Eq[log vm] = ψ(γm1) −
ψ (γm1 + γm2), Eq[ηηηm] = µµµm, and Eq[‖ηηηm‖2] = ‖µm‖2+

Lsm where ψ(·) = d
dx ln Γ(·). The variational posteriors

q(F) and q(H) are updated by

q(F) = N (vec(F)|vec(Eq[H]),ΣΣΣf ),

q(H) ∝ N (vec(H)|vec(Eq[F]), I)� δ(vec(H) ≥ 1),

where Σf = ΣΣΣ(I + ΣΣΣ)−1, � is the Hadamard (or element-
wise) product, and

vec(Eq[H]) = vec(Eq[F]) +
Ȳ �N (vec(Eq[F])|0, I)

Φ(Ȳ � vec(Eq[F]))
.

Here Ȳ = 2vec(Y) − 1 and Σ = KZ ⊗KS ⊗KT is the
covariance marix of the shape-variate GP.

Estimating Shape Representations
In the M step, we optimize the low-dimensional representa-
tions Z, the spatial variables S and T and the kernel parame-
ters based on the variational posteriors updated in the E step.
Specifically, we maximize the expected log joint probability
L under these variational posterior distributions,

L = Eq [log p (Z,S,T,F,H,Y,u,v,η)]

= log |ΣΣΣ|+ tr(ΣΣΣ−1ΣΣΣf ) + vec(Eq[F])TΣΣΣ−1vec(Eq[F])

−
N∑
n=1

λ

2
Eq[‖zn −

M∑
m=1

δ(zn = m)ηηηm‖2] + const. (7)

The major computational challenge in (7) is the ND ×
ND covariance matrix Σ. Since D is the number of pix-
els, even a small collection (e.g., 100) of images (e.g.,
32 × 32) can lead to a huge Σ (over 100K × 100K)
and prohibitive cost to compute its inverse, log determi-
nant and the gradient. To overcome this problem, we uti-
lize the properties of the Kronecker product in Σ. Specif-
ically, since Σ = KZ ⊗ KS ⊗ KT , we have |Σ| =

|KZ |IJ |KS |NJ |KT |NI where the exponent of each deter-
minant is the product of the ranks of the other two ker-
nel matrices. Then, we have log |Σ| = IJ log |KZ | +
NJ log |KS | + NI log |KT |. To compute the gradient of
log |Σ|, we need only to take the gradient of the log deter-
minant of each kernel matrix, which is much cheaper. Next,
to compute Σ−1 related terms, say, tr(Σ−1Σf ), we first
perform eigendecomposition for each kernel matrix: ΣZ =
UZΛZU>Z , ΣS = USΛSU>S and ΣT = UTΛTU>T ,
where {UZ ,US ,UT } are egienvectors, and {ΛZ ,ΛS ,ΛT }
diagonal matrices with eigenvalues in the diagonal. Hence,
we have Σ = UΛU> where U = UZ⊗US⊗UT and Λ =
ΛZ⊗ΛS⊗ΛT . Since Σf = Σ(I+Σ)−1, we can derive that
tr(Σ−1Σf ) = tr

(
(I + Σ)−1

)
= tr

(
U(I + Λ)−1U>

)
=

tr
(
(I + Λ)−1

)
. Since I + Λ is a diagonal matrix, the in-

verse and trace computation is trivial. For the gradient of
tr(Σ−1Σf ), let us take KZ as an example. We observe
that ∇KZ = UZ(U>Z∇KZUZ)U>Z . Therefore, ∇Σ =
∇KZ⊗KS⊗KT = UZ(U>Z∇KZUZ)U>Z⊗USΛSU>S ⊗
UTΛTU>T = U(U>Z∇KZUZ ⊗ ΛS ⊗ ΛT )U>. With
this in hand, we can derive that ∇tr(Σ−1Σf ) =
tr
(
∇(I + Σ)−1

)
= −tr

(
(I + Σ)−1∇Σ(I + Σ)−1

)
=

−tr
(
Λ−1Λ−1

(
diag(U>Z∇KZUZ) ⊗ ΛS ⊗ ΛT

))
. Now,

since the computation is taken place on diagonal matrices
again, it becomes much easier and cheaper. We then can use
the chain rule to calculate the gradient w.r.t the representa-
tions Z and the kernel parameters. Computing the gradient
regarding KS and KT is accomplished the same way. Fi-
nally, we use L-BFGS to maximize the expected log joint
probability L due to its excellent performance.

Backward and Forward Mapping
Suppose we have conducted the variational EM algorithm
to estimate our model on a collection of shape images Y.
Now, if we see a new image y∗, how can we estimate its
compact representation z∗? This estimation is called back-
ward mapping. To utilize the previous learning results, we
can run the same variational EM algorithm, but fixing the
variational posteriors for the DPM related variables v and
η, the spatial latent variables S and T and the kernel param-
eters that have already been estimated. Then, we obtain the
representation z∗ and the cluster membership u∗ that align
with the existing shape representations.

Conversely, given an arbitrary compact representation z∗,
how can we generate the shape image y∗? This is called for-
ward mapping. First, we can obtain a conditional distribution
of the continuous field f∗ by

p(f∗|z∗,Z,S,T,Y) = N (vec(f∗)|µ∗,Σ∗),
where µ∗ = KT

∗ (ΣΣΣ + I)−1vec(H), Σ∗ = K∗∗ −
KT
∗ (ΣΣΣ + I)−1K∗, K∗ = kn∗ ⊗ KS ⊗ KT , kn∗ =

[κz(z∗, z1), . . . , κz(z∗, zN )]T , and K∗∗ = κz(z∗, z∗)(KS ⊗
KT ). Then, we compute the predictive distribution of y∗ by

p(y∗|z∗) =

∫
p(y∗|h∗)p(h∗|f∗)p(f∗|z∗,Z, S,T,Y)dh∗df∗

= Φ
(
(2y∗ − 1) ◦ µ∗√

1 + diag(Σ∗)

)
.



Algorithm Complexity
The naive implement of our variational EM approach will in-
cur a bottleneck in the calculation related to Σ (see (7)), i.e.,
the covaraince matrix of the shape-variate GP, and leads to
O
(
(NIJ)3

)
time and O

(
(NIJ)2

)
space complexity. How-

ever, using the Kronecker-product properties, we can reduce
the time complexity toO(N3+I3+J3) and the space com-
plexity to O(N2 + I2 + J2), and we need to compute and
maintain the kernel matrices only for the representations and
spatial variables, which are much smaller.

Related Work
InfShapeOdds hybridizes a shape-variate Gaussian process
(GP) and Dirichlet process (Antoniak 1974) to fulfill the
nonlinear shape modeling and latent structure discovery. A
closely related approach is the classical Gaussian process la-
tent variable model (GPLVM) (Lawrence 2005) that uses
vanilla GPs and assumes all the outputs (i.e., pixels) are
independent given the representations. Hence, GPLVM ig-
nores the spatial coherence within the shape images, and
might be less capable of finding good representations. We
can reduce InfShapeOdds to GPLVM by setting the spa-
tial covariance matrices (see (5)) KS = I and KT = I.
The computational benefit of the Kronecker product has
been realized in the GP community and exploited in quite
a few models (Saatcci 2012; Luttinen and Ilin 2012; Rak-
itsch et al. 2013; Flaxman et al. 2015; Yu, Li, and Liu 2018;
Zhe, Xing, and Kirby 2019). Although often being utilized
to enable exact inference, the Kronecker product recently
has also been used for efficient approximate inference with
factorized kernels (e.g., RBF) (Wilson and Nickisch 2015;
Izmailov, Novikov, and Kropotov 2018). These excellent
works lay inducing points/variational posteriors on the grids
over input dimensions to construct Kronecker products and
combine with interpolations to accelerate the computation.

Experiments
Evaluating Compact Shape Representations
We first evaluated the quality of the learned representations
by our method in the tasks of reconstruction and shape in-
terpolation.
Datasets. For a fair comparison, we used the same bench-
mark datasets as in the ShapeOdds paper (Elhabian and
Whitaker 2017): the Weizmann horse dataset (Borenstein
and Ullman 2008), including 328 silhouettes of horses fac-
ing to the left with different poses, and the Caltech-101 mo-
torcycle dataset (Fei-Fei, Fergus, and Perona 2007), con-
taining 798 silhouettes of different motorcycles facing to
the right. Following (Eslami et al. 2014), we cropped and
normalized Weizmann horse and Caltech-101 motocycle to
32× 32 and 64× 64 images, respectively.
Competing methods. We compared InfShapeOdds with the
original ShapeOdds (Elhabian and Whitaker 2017), Gaus-
sian process latent variable model (GPLVM) (Lawrence
2005) (modified and equipped with a probit link function)
and VAE (Kingma and Welling 2013). Note that we did
not compete against other methods, such as Shape Boltz-
mann Machines (ShapeBM) (Eslami et al. 2014), because
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Figure 1: Reconstruction error: horses (top row) and mo-
torcycles (bottom row). Training sample ratios are N =
35%, 55%, 75%.
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Figure 2: Running test and training errors on the horse
dataset with N = 75% and r = 10.

they have been shown inferior to ShapeOddes (Elhabian
and Whitaker 2017) for these datasets. For our method and
GPLVM, we used the SE-ARD kernel and ran a maximum
of 300 iterations for model estimation. Both methods were
based on the L-BFGS optimization algorithm. We compete
with two VAEs: VAE-1, which has two fully connected hid-
den layers in the encoder, each layer with half of the num-
ber of neurons in the previous layer, and the decoder with
the same structure in the reverse direction; VAE-2, which is
similar to VAE-1 but includes 3 fully connected hidden lay-
ers. We applied a ReLU activation function for all the hidden
layers, except for the last layer of the decoder, for which we
used a Sigmoid activation function to match the binary out-
puts (i.e., pixels). The Adam (Kingma and Ba 2014) algo-
rithm was used for training. To ensure the best performance
for VAEs, we held 20% of the training data for validation.
At each epoch, we examined the validation error and stored
the model. After running 1000 epochs, the model with the
lowest validation error was chosen for testing.
Reconstruction. To evaluate the quality of the compact rep-
resentations, we first examined how well they can recon-
struct the original shape images. To this end, for each test
shape image y∗, we estimated the representation z∗ (from
backward mapping), and then used z∗ to generate an im-
age ŷ∗ (via forward mapping). We then computed the cross-
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Figure 3: Reconstruction details for the horse and motorcycle datasets (N = 75% and r = 10). The rows from top to bottom:
ground truth, InfShapeOdds, VAE-1, VAE-2, GPLVM, and ShapeOdds. Numbers are cross-entropies.
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Figure 4: Estimated latent clusters

entropy between y∗ and ŷ∗ to measure the reconstruction
error. We varied the portion of the training images from
{35%, 55%, 75%} and reconstructed the remaining images.
The average cross-entropies and their standard deviations
are reported in Fig. 1. As we can see, InfShapeOdds nearly
always obtains the smallest reconstruction errors and in par-
ticular significantly outperforms ShapeOdds. GPLVM and
VAEs outperform ShapeOdds as well, confirming the ad-
vantages of nonlinear shape modeling. Although we used
early stopping to prevent VAEs from overfitting, their per-
formance in most cases are still inferior to our method. This
demonstrates the advantage of our nonparametric models on
small datasets. We also tried the dropout regularization (Sri-
vastava et al. 2014) in training VAEs but obtained similar
comparison results. Furthermore, we examined how the re-
construction error varies along with the epochs/iterations for
InfShapeOdds and VAEs. From Fig. 2, we can see that In-
fShapeOdds never overfits the data — the test and training
errors vary almost in the same trend and converge quickly
in 100 iterations. In contrast, for VAEs, the training errors
keep decreasing while at some stage the test error starts to
increase, which exhibits a typical overfitting behaviour.

To examine the reconstruction details, we randomly show
a set of reconstructed images from all the methods (training
portion 75%, r = 10) and the ground-truth in Fig. 3. It can
be seen that InfShapeOdds recovered the images better than
all competitors, especially on the edges of abrupt changes.

The images reconstructed by ShapeOdds are blurred, espe-
cially in the horse dataset (see the last row of Fig. 3), im-
plying that ShapeOdds failed to capture the nonlinear varia-
tions of the shapes. The reason for the inferior performance
of GPLVM might be that it ignores the spatial correlations
inside the images, despite its nonlinear modeling capability.
Visually, the VAE results are close to our method, but the
images are more blurred on edges, e.g., horse legs and mo-
torcycle shells.

Shape interpolation. Good representation learning ap-
proaches should find a latent space in which most valid
shapes can reside. To evaluate this point, we examined all the
methods through the shape interpolation. Specifically, from
the training set, we randomly selected a pair of shape im-
ages that are significantly different (in terms of Hamming
distance). After training, we obtained the compact repre-
sentations of the two shapes, based on which we produced
18 intermediate representations from a linear interpolation.
we then generated the shape images for those intermedi-
ate representations. Again, we set r = 10 and chose 75%
of the examples in the horse dataset to train each method.
The interpolated shapes are shown in Figure 5. As we can
see, the horse shapes interpolated from InfShapeOdds are
clear, valid and smooth (see the top row), which is consis-
tent with our previous results. The horse shapes interpolated
by ShapeOdds, however, are very fuzzy and overlapping, in-
dicating that ShapeOdds failed to find a good latent space to
accommodate valid shapes. The results of GPLVM are in-
between, but still contain many artifacts around the edges
(see the fourth row). VAEs produced quite a few sharp im-
ages on the left. However, the interpolated images from the
middle to the right are more blurred than our approach, es-
pecially on the horse legs. We also tested all the methods on
the motorcycle dataset and observed similar results. Due to
the space limit, we include the results in the supplementary
material.



Figure 5: Shape interpolation between the left and right shapes. From top to bottom: InfShapeOdds, VAE-1, VAE-2, GPLVM
and ShapeOdds.

Latent Structure Discovery
Shapes in many applications exhibit strong multi-
modality (Trinh and Kimia 2011), implying rich underlying
structures. Therefore, we also evaluated InfShapeOdds
in uncovering the hidden structures. To this end, we first
generated a synthetic dataset of ellipse shapes. Each ellipse
is 128 × 128. We first sampled shape representations
in a two-dimensional space. Each representation was
sampled from a Gaussian mixture model (GMM), with
three components of equal weights (i.e., 1

3 ) and centers
(64, 0), (0, 64), (64, 64). The covariance matrix of each
component is 64I. Given a representation z = [z1, z2], each
pixel (i, j) of the corresponding ellipse y was generated by
yij = δ(exp(−(i− 64)2/z21 − (j − 64)2/z22) > 0.5).

We then ran InfShapeOdds, ShapeOdds, GPLVM and
VAE-2 to estimate the representations. For InfShapeOdds,
we set the truncation level for the DPM prior to 10, and it
automatically returned the correct number of clusters and
the cluster membership of each representation. For GPLVM,
ShapeOdds and VAE-2, we ran k-means to cluster their
learned representations. We set the number of clusters to
3. Note, however, that in practice we usually do not know
the ground-truth cluster number. We computed the purity of
the estimated clusters. The purity is defined as P (T,C) =
1
N

∑
j max|tk∩cj |where T = {t1, . . . , tK} are the ground-

truth classes and C = {c1, . . . , cJ} the clusters found by the
algorithm. Higher purity indicates better performance. The
results are shown in Fig. 4. The cluster regions are filled
with different background colors, and the markers indicate
the ground-truth class. As we can see, both InfShapeOdds
and VAE-2 recovered well the ground-truth structure and
achieved the highest purity (Fig. 4c and d). Although VAE-
2 obtains a slightly better purity, its clusters are more ex-
panded. Furthermore, InfShapeOdds can jointly infer the
number of clusters and memberships but VAE-2 cannot. In
Fig. 4b, although the clusters of the representations learned
by GPLVM also align with the ground truth, those clusters
are much more expanded, as compared with InfShapeOdds,
and tends to spread out to the boundaries. In Fig. 4c, the
representations from ShapeOdds severely deviate from the
ground-truth structure and has a much worse purity of 0.55.
It implies that ShapeOdds failed to capture the nonlinear
variations in the simulated ellipses.

Next, we examined our method on a real-world dataset,

# InfShapeOdds GPLVM ShapeOdds VAE-2
3 0.6436 0.6377 0.5762 0.4648
4 0.4854 0.5059 0.5273 0.2607
5 0.4258 0.3896 0.3779 0.4863
6 0.4434 0.1777 0.3281 0.3525
7 0.5088 0.3486 0.2627 0.2900
8 0.4434 0.1387 0.2646 0.2559
9 0.4277 0.2324 0.2324 0.3965

Table 1: The purity of the estimated clusters from fashion
MNIST.

fashion MNIST (https://github.com/zalandoresearch/
fashion-mnist). This dataset comprises 28 × 28 gray-scale
images for 10 categories of fashion products, including
shoes, skirts, shirts, etc. We first converted these images
into binary shapes with a threshold of 0.05. We then
generate six datasets, each of which contains 1, 024 random
images, based on the number of categories being used.
For each training set, we ran all the methods to estimate
compact representations (with dimension 2). To determine
the number of clusters for GPLVM and ShapeOdds, we
ran the Dirichlet Process k-means (Kulis and Jordan 2011)
algorithm to cluster their representations. The results are
listed in Table 1. InfShapeOdds achieves the highest purity
in most cases, indicating the best clustering performance,
which confirms the advantage of our method in recovering
the hidden structure from real data.

Finally, as a case study, we show in Fig. 6 the cluster struc-
ture found by InfShapeOdds from the horse dataset. These
clusters of the latent representations are meaningful — they
actually reflect different horse poses, e.g., running, standing
and grazing. Visually, the distribution of the representations
is clearly multi-modal, implying a structure in the data. We
also found meaningful clusters from the motorcycle dataset.
The results are provided in the supplementary material.

Conclusion
We have proposed a nonparametric Bayesian shape repre-
sentation model based on Gaussian process and Dirichlet
process. Our model can flexibly capture nonlinear shape
variations and discover latent structures. The performance of
our method is better than or comparable to neural-network-
based approaches. However, our method does not suffer



Figure 6: Latent clusters found by InfShapeOdds on the
horse dataset.

from overfitting, requires fewer parameters, and is easier to
train.
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