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Identification of Human Joint Mechanical
Properties from Single Trial Data

Yangming Xu,Member, IEEE, and John M. Hollerbach,*Fellow, IEEE

Abstract—A method is presented for estimating the time-
varying compliance parameters of the elbow joint from a single
movement. The method separates by frequency the perturbed
from the voluntary response, then determines the parameters by
exponentially weighted least squares. The tracking performance
of the method is established by simulation and by a calibrated
mechanical joint. Experimental results are presented on time-
varying posture and slow movement.

Index Terms—Arm movements, frequency separation, human
joint dynamics, perturbation analysis, system identification.

I. INTRODUCTION

I DENTIFYING the mechanical properties of the human
neuromusculoskeleton system under normal conditions is

challenging because of the time-varying nature of the system,
nonlinearities, unsensed voluntary inputs, and adaptation of
the central nervous system. Past approaches have relied on
apparatuses using electrical or hydraulic actuators that con-
strain natural human joint movements and limit the results
under these conditions. However, the constraint also allows
time-invariant methods to be used because the human joint is
forced to operate under some fixed operating condition. The
time-invariant methods include frequency methods (transfer
function), pulse response methods, and a sinusoidals method
[7]–[9], [11]. The time-invariant results obtained are valid only
for a fixed operating point, and the transient properties of the
human joint cannot be obtained with these methods directly.

More recently, a static nonlinear, time-invariant method
has been applied to identify the different contributions to the
total joint mechanical properties of the reflex versus intrinsic
components [15] by using random position perturbations with
a hydraulic apparatus. Again, the approach takes advantage of
the constraints of the apparatus on the human joint to obtain
tonic contractions.

To overcome the motion limitations of past apparatuses, we
have developed nonrestrictive one-dimensional (1-D) and two-
dimensional (2-D) airjet systems capable of applying random
force perturbations to the human joints without any mechanical
constraints [18], [21]. The perturbations can be continuously
applied to the human joints without impairing the natural
movement. This significant advance in apparatuses brings
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the possibility of identifying the time-varying human joint
mechanical properties under natural movement.

One of the central issues in studying the mechanical prop-
erties of the human arm joints during movement using non-
invasive methods is to separate the voluntary inputs and
movements from the perturbation inputs and perturbed joint
movements. Even though electromyograms are related to the
voluntary actions, they are too noisy to provide reliable infor-
mation of the voluntary movement. In essence, the voluntary
movement is not measurable.

Ensemble methods are promising [3], [14] because the
results at any instant of time are supported by more data
points. The methods align many trials with similar movement
profile based on a feature in the movement profile to calculate
an average movement. The perturbed movement is obtained
by subtracting the average movement from the movement
measurement. Theoretically, they can track an instantaneous
change of the system dynamics. One problem is intertrial
variation; since the perturbation amplitude is small, the error
due to the intertrial variation is often on the same order as the
perturbation. Furthermore, the intertrial variation may neither
be white nor Gaussian, and may even have nonzero mean. In
order to have a stereotyped motion, most of the movements
have to be fast. These methods fail for time-varying posture
identification because there exists no features at all across
different trials, therefore, the alignment cannot be done.

In this paper, we propose a method for slow time-varying
posture and slow motion based on a single trial that is capable
of identifying the time-varying joint mechanical properties
and does not have the intertrial variation issue. The method
separates the perturbed and voluntary responses in frequency,
and then applies exponentially weighted least squares. It is
called the frequency separation and exponentially weighted
least squares (FSEWLS) method. The method requires only a
single-movement trial data. In the following sections, we will
first describe the theory for different measurement conditions
and propose the frequency separation, then analyze the error
and limitations, and finally demonstrate the results by applying
it to data from simulation and experiments.

II. THEORY

A. Linearized Human Forearm Model

The equation for the human elbow joint under perturbation
can be written as

(1)
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where is the moment of inertia of the forearm,is the actual
joint angle, is the total torque from the muscles
and passive tissue,is the muscle input, is the perturbation
torque, and is the gravity induced torque. and are
nonlinear and time varying. Because is not known, we
linearize it around an unperturbed operating point (, )

(2)

where , , , and
. We have assumed a random external

perturbation that is not tracked by voluntary effort. The
compliance parameters reflect the linearized
joint mechanical properties at an unperturbed operating point;
the validity of this linearization is tested in experiments. We
measure and

, where is the force sensor signal induced by the
voluntary movement.

B. Removing Voluntary Movement

An effective way to remove and from the measure-
ments is to make the voluntary movement and the perturbation
separable in frequency. The movement tasks considered in this
paper are below 1 Hz, while the perturbation has enough power
at high frequencies. Using a zero-phase-shift acausal linear
high-pass filter , we can extract the perturbation force
and the perturbed response from the measurements

(3)

Appendix B gives a qualitative error analysis due to high-pass
filtering in respect to (2). A quantitative analysis is given in
the simulation and calibration experiment later.

C. Estimating Derivatives

The derivatives of the position are not directly measured in
the experiment. The differentiation of position data to estimate
its derivatives is sensitive to noise in the position measure-
ments and numerical error. One solution to this problem is
to use a linear low-pass filter to process the input and
output measurements assuming the filter bandwidth is much
higher than the variation of the parameters

(4)

We let , where the filter constant
determines the filter response time andis the order of the
filter. Appendix A shows the error due to low-pass filtering.

D. Extracting Parameters

We cast (2) into the regression form

(5)

where , and
. We extract using the

Fig. 1. Block diagram of the simulation procedure for identification of the
time-varying elbow joint dynamics in posture and movement.

exponentially weighted least squares method [6], [12], [13].
The continuous domain equations are

(6)

where is a weighting factor. The estimation error is related
to the parameter variation rate and measurement noise [16].

In a discrete time domain implementation of (6) as in
[1], [12], and [13], we found ill conditioning in transforming
from discrete to continuous parameters because of the small
sampling period. Consequently, we implement (6) in the
continuous time domain, by using a fourth-order Runge–Kutta
integration method with the step size equal to the sam-
pling period. The points between the steps required by the
Runge–Kutta method are obtained through linear interpolation.
The continuous model gives accurate results especially at small
sampling periods. The initial values for parameter estimates

and gain matrix in (6) are calculated using standard
least squares.

III. SIMULATION STUDY

A. Simulation Method

We first tested the method described in Section II with data
generated by simulating the changes in the human elbow joint
dynamics from our previous studies [3], [20], which include
the stiffness and damping changes in posture and movement.
Fig. 1 shows a block diagram of the simulation procedure.

The linearized compliance dynamics are similar to (2)

(7)

where is the joint torque due to the voluntary action,
. On the basis of previous quasitime-invariant

studies [3], [4], [11], [20], [22], the voluntary movement and
stiffness are assumed to vary sinusoidally with the same
frequency and with different amplitudes of rad and
Nm/rad plus a mean of 40 Nm/rad, the inertiais assumed
to be time-invariant, Nms rad, and the damping is
assumed to vary similar to the stiffness while the damping
ratio is assumed to be constant [9].

The force perturbation input is a pseudorandom binary force
sequence (PRBS) with an amplitude of about 4 Nm, the same
as the one used in the experiments. The autocorrelation is small
(below 10%) beyond 10-ms lag (ten sampling periods), which
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indicates that it is essentially an uncorrelated random process
in the 100-Hz frequency bandwidth. The power spectrum of
the PRBS has useful power up to 50 Hz. The input and output
data are filtered by a low-pass filter with a cutoff frequency
of 150 Hz, which mimics the anti-aliasing filter used in the
experiment.

We evaluate the accuracy of the estimated parameters by
calculating the percentage of variance accounted for (VAF) of
the mean (VAFM) and variance (VAFV), which are defined as

VAFM (8)

VAFV (9)

where is the mean of over time, is ,
and is . VAFM and VAFV indicate how
well the estimator predicts the mean and variation of the
estimated signal. In the experiment only the VAFM and VAFV
of the output can be calculated. Both VAFM and VAFV will
be meaningless if their denominators are close to zero. For
example, the inertia in the following simulation is assumed to
be constant, . We suggest that when the denominator
is less than one, we should set it to one. When a signal is
zero mean, (9) is the same as the VAF definition in [14]. We
require both VAFM and VAFV over 75% [3], [14], for which
the relative prediction error variance is less than one-third.

B. Simulation Results

In all of the simulations, the weighting factor in (6) is
. determines the width of the weighting window in

which the estimates are calculated as (6) indicates. We chose
the window width five times smaller than the fast human arm
movement, 4 Hz [2], [3]. A 10%–15% variation of did not
change the following simulated results much in the frequency
range of interest.

The results for the FSEWLS tracking performance are
summarized in Fig. 2 for posture and movement without
derivative measurements. For the low-pass filter in (4), we
use a third-order low-pass filter with a cutoff frequency of
3.2 Hz, which is chosen based on the requirement of eight
times reduction of the noise in the derivatives, assuming
there is 5% noise over the signal standard deviation in the
position measurement. For the high-pass filtering in (3), we
use a fourth-order Chebyshev filter with a cutoff frequency
of 1 Hz. The lowest VAFM and VAFV are associated with
the stiffness , and are shown in Fig. 2 as the solid squares
and solid circles. In all of the cases, the error is negative, i.e.,
the estimated parameter is smaller than the actual one. If the
acceptable values for VAFM and VAFV are 80%, from Fig. 2,
we have the following observations.

• The FSEWLS tracking performance is better for posture
(1.5 Hz) than for movement (0.5) because the latter
employs a high-pass filter (see Appendix B).

Fig. 2. Simulation: VAF of the output prediction, and the VAFM and VAFV
of the stiffnessK versus the frequency of the parameter variation for posture
and movement without derivative measurement.

• The VAF of the output prediction error is always high,
close to 100% for all of the frequencies tested. This
implies that the output prediction error is only a nec-
essary condition for evaluating the parameter tracking
performance.

Under our simulation conditions, the maximum parameter
variation should not be more than 0.5 Hz as indicated in
Fig. 2(b). The ratio of the parameter variation frequency to
the filter cutoff frequency in (4) is about 6.4. Raising the
filter cutoff frequency will improve the parameter tracking
frequency, provided that the perturbation frequency and power
are also increased to keep the noise-to-signal ratio (NSR
variance of noise/variance of signal) low.

The robustness of the FSEWLS method in the presence of
output measurement noise is examined by simulating experi-
ments with a variety of NSR without derivative measurements
and in the presence of voluntary movement. Fig. 3 shows the
variation of the VAF versus NSR. In general, the VAF of the
output prediction and the parameter estimate decreases with
the NSR. Note that the VAF of the parameter decreases
faster than that of the output prediction, which indicates that
the output prediction error is not a sufficient condition for
measuring the method performance to noise. When NSR = 0.2,
the VAFV drops close to 80% for the simulated conditions.

IV. CALIBRATION EXPERIMENTS

The simulation study in the previous section is intended to
find the conditions associated with the method under which
the experiments must be controlled. The key conditions in
our methods are: 1) the parameter variation must be less
than 0.5 Hz; 2) NSR must be less than 20%; and 3) the
perturbation model structure must be linear. Since the nature
of the time-varying behavior of the neuromuscular system
is still unknown, it is impossible to simulate it with great
certainty. However, the magnitude of the changes and the
time over which they occurred may be controlled to satisfy
the conditions above. Consequently, we should be able to
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Fig. 3. Simulation: (a) VAF of the output prediction, (b) VAFM, and (c)
VAFV of parameters versus the NSR of the output measurement noise.

Fig. 4. Apparatus: an airjet system and a single joint, passive arm used for
calibration.

obtain an approximate model with reasonable confidence. To
demonstrate it, we did calibration experiments.

A. Apparatus

The calibration setup is shown in Fig. 4. We built a well cal-
ibrated single joint, mechanical arm which consists of an arm,
two linear springs, and a joint made of a damper (KINETROL
KD-2a). The damper has a shaft-mounted vane rotating be-
tween fixed vanes in the body. The motion is restricted to

45 . The springs are high precision with constant stiffness.
The airjet system [21] is a complete dynamical measuring

system, capable of mechanical perturbation generation, motion
tracking, and data acquisition. It consists of three parts: an

airjet perturbation device, a motion tracking device, and a data
acquisition system. The airjet device [20] has an airjet actuator,
an extension bar, and a cuff (Fig. 4). The airjet actuator is cur-
rently a 1-D perturbation device, capable of producing
forces from the reaction force of compressed air. The direction
of the airflow could be switched 180in less than 5 ms by
using a Coanda valve. The extension bar allows the airjet to be
mounted distally to the hand so that the force is in the direction
of elbow flexion/extension and is aligned with the long axis of
the arm to avoid pronation/supination torques. The extension
bar is supported by an aluminum cuff. The left wrist of each
subject is custom fitted with a molded plastic cuff to which
the aluminum cuff can be tightly clamped. The aluminum
cuff can be tightened until movement from skin compliance
is negligible for the perturbation used (NSR1%). A strain
gauge force sensor is mounted between the airjet actuator and
the extension bar. The sensor has a resonance at 160 Hz.

The motion tracking device, the Optotrak (Northern Digital
Inc., Waterloo, Ont., Canada), uses three LCD cameras to track
infrared light-emitting diodes (IRED’s) and produces three-
dimensional position data of the IRED’s with an accuracy of
0.05 mm. All of our experiments were in a vertical plane,
which is aligned with the Optotrak’s– internal plane. We
used one IRED in the experiments, with a sampling rate of
500 Hz. The Optotrak data is later resampled digitally to 1000
Hz to match the airjet force sampling rate.

The PRBS signal was generated digitally in real-time
and fed to the airjet through a 12-bit digital-to-analog
converter (DAC) at 100 Hz. The airjet force signal was
first amplified by a signal conditioner 2B31J from Analog
Devices, then low-pass filtered by a linear phase analog filter
DOW848 from Frequency Devices with a cutoff frequency
of 150 Hz before digitization by a 12-bit analog-to-digital
converter (ADC). The pure time delay introduced by the
low-pass filter was corrected later, digitally. The sampling
frequency was 1000 Hz. The synchronization between the
Optotrak and the real-time data acquisition system was made
at the beginning of the data collection through an external
triggering mechanism provided by the Optotrak.

B. Calibration Results

The model of the artificial arm is given by (7) with
. The parameter values in the model are cal-

culated based on the geometry, material, and gravity
properties: Nms rad, Nms/rad,

Nms/rad, and Nm/rad.
The airjet device is mounted at the tip of the arm similar

to the human wrist mounting. Fig. 5 shows the time-varying
results, where the damping was varied during the experimental
trial. Note that the inertia and stiffness do not vary and
have estimation errors less than 5%, and the output VAF is
also 99%. The results show that the apparatus as well as the
method work as expected.

V. HUMAN SUBJECT EXPERIMENTS

A. Subjects

Five healthy right-handed subjects (four males, one female),
ranging in age from 22 to 26 years, were examined. Because
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Fig. 5. Calibration: linear time-varying experiment. The damping was varied
during the experiment.

Fig. 6. The airjet actuator attached to a subject’s wrist.

the results are similar across subjects, we only show the results
from two subjects. However, the experimental conclusions
are drawn based on the observation from all five subjects.
Experiments were done with a subject’s left arm. The subject
sat in a chair and rested his elbow on a piece of clay on the
bench. The airjet actuator was attached to the subject’s wrist
(Fig. 6). The elbow length was estimated by using both caliber
measurement and the Optotrak. The results differ by less than
2%. The forearm was free to move in a vertical plane passing
through the upper arm. The subject’s palm was turned 90
away from his shoulder. The wrist was immobilized through
a custom fitted plastic cuff.

B. Posture Experiments

The postural experiments were intended to examine the
change of the mechanical properties for the elbow joint for
different efforts of maintaining the posture and to test the
FSEWLS method against existing methods. A different effort
is an indication of a different co-contraction, and was realized
by instructing a subject to use minimum, medium and maxi-
mum effort in maintaining his/her forearm posture against the
perturbations. Furthermore, we tested the method’s continuous
tracking capability by asking subjects to vary the effort during
a trial.

In all of our experiments, the torque perturbation is less
than 5% of the normal elbow torque range (26 Nm) and the
movement is about 5% of the elbow joint movement range
(100 ). The small force perturbation is a prerequisite toward
the linear identification of a nonlinear biological system.

1) Time-Invariant Posture and Linearity Test:Because the
results are consistent with previous findings, we merely state
them here. For all of the experiments, the VAF of the output
prediction is over 95%

• The inertia for each subject is approximately constant
(less than 1% change) over time and does not vary with
different effort. Across subjects, it may vary by 80%.

• The damping drifts slowly over time and increases with
effort for all subjects. Across subjects, it may vary by
100%.

• The stiffness drifts over time and increases with the effort,
similar to that of the damping. Across subjects it can vary
by ten times.

• The damping ratio drifts as well and does not vary much
across effort.

In order to test the linearity of the elbow joint under
small perturbation, on one of the subjects (RSG) a set of the
experiments was conducted with lower air pressure (45 psi), so
that the force perturbation amplitude was reduced to half ().
There is little difference in terms of the profiles for all of the
parameters. The difference of the mean value of the parameters
is within 5%, which may well be due to intertrial variation.
The VAF’s for both cases are above 95%. This indicates the
validity of the linearization under the experimental conditions.

2) Time-Varying Posture:A moving target was presented
to the subject during each trial. When the target was moving
forward, the subject gradually increased the effort, and vice
versa. Fig. 7 shows the measurements of the elbow joint angles
and perturbation torques. The maximum joint angle is about
0.058 rad (3.32), and the maximum perturbation torque to
the elbow joint is about 2.4 Nm. Fig. 8 shows the results of
time-varying posture. The VAF for all of the experiments is
over 95%. From Fig. 8, we have the following observations.

• The inertia for each subject is approximately constant
with time, and the differences across subjects are similar
to those in the time-invariant posture experiments.

• The stiffness and damping vary dramatically with time
and have the same variation pattern for all of the subjects.
The values of the peaks and valleys are comparable to
those from the time-invariant postural experiments with
the minimum and maximum efforts.
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Fig. 7. Joint movement and perturbation torque measurements from postural
experiment (subject PAB).

Fig. 8. Results from postural experiment (subjects PAB and LG): (a) inertia,
(b) damping, (c) stiffness, and (d) damping ratio parameters with time-varying
effort.

• The damping ratio for every subject drifts with time, but
does not have a clear pattern. The mean value is between
0.1 and 0.5, and similar to that in the time-invariant
postural experiments.

Fig. 9. Results from movement experiments with minimum and maximum
efforts from subject PAB: (a) inertial, (b) damping, (c) stiffness, (d) damping
ratio parameters in minimum effort tracking task, and (e) shows the actual
movement trajectories.

C. Movement Experiments

The voluntary movement in the experiments is slow so
that the mechanical properties also change slowly. In the
experiments, we presented a slow-moving target to the subject.
The subject was instructed to track the target with a reasonable
accuracy. The result from subject PAB is shown in Fig. 9. The
inertia for minimum and maximum efforts differs by less than
2%. The target trajectory is given in Fig. 9(e). Each movement
phase (4 s) is followed by a postural phase (3 s). In each trial,
there are seven posture and six movement phases in 45 s.
The maximum movement speed is 15/s, and the movement
frequency is about 0.071 Hz. If we do not consider the postural
phases, the frequency of 0.125 Hz is well below the 0.5-Hz
boundary frequency of the FSEWLS method. The VAF for all
of the trials is above 95%.
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1) Inertia:

• The inertia is approximately constant with a variation of
less than 5%.

2) Damping:

• At a constant effort, the damping drifts without a clear
correlation to the movement. The mean and variation
magnitude are in the same range as in the time-invariant
postural experiments.

• The damping variation with effort is similar to that
in the time-invariant posture experiments. At the maxi-
mum effort, the variation is slightly smaller than that in
posture.

• The damping with the maximum effort is higher than that
with the minimum effort. The mean value is about 0.1
Nms/rad higher. However, in the varying effort posture
experiment (Fig. 8), the damping varies by around 1.7.

• Across subjects, the variation is also similar to that in the
time-invariant posture experiments.

3) Stiffness:

• The stiffness variation is similar to the damping variation.
The stiffness variation is not strongly correlated with the
movement. The stiffness is higher with the maximum
effort than that with the minimum effort. The mean value
differs by about 10 Nm/rad.

4) Damping Ratio:

• The damping ratio variation is similar to the damping
variation as well. The mean value with the minimum
effort is a little higher than that with the maximum effort,
opposite to the damping. This indicates the damping plays
more of a role in the minimum effort case.

VI. DISCUSSION

This paper demonstrates that the FSEWLS method is a
successful means to identify the slow time-varying dynamics
of the human motor control system. The key in the method is
to eliminate the voluntary response from raw data through
high-pass filtering and to estimate the derivatives through
low-pass filtering. The method has three major advantages:
1) it works on a single trial; 2) it has few restrictions on
the input signal; and 3) it has a well-characterized error.
Under our experimental conditions (small force perturbation,
no derivative measurements, and unknown voluntary actions),
the technique estimates the time-varying parameters up to a
frequency of 0.5 Hz. The method is quite robust to output
noise and has been tested extensively. Because the FSEWLS
method is capable of tracking dynamical change in posture,
it may be used clinically to do monitoring and to evaluate
functional electrical stimulation in rehabilitation engineering.

Recent advances in ensemble-based methods have reduced
their sensitivity to intertrial variation [19]. However, they
must have fast movement patterns in order to align trials.
We think that the FSEWLS and robust ensemble methods can
complement each other, in that the FSEWLS method works in
posture and slow movement domains while ensemble methods
work in fast movement domains.

One of the major goals in this study has been to investigate
the limitations of the FSEWLS method and to establish the
applicable boundaries under the experimental conditions. We
discovered that the output VAF cannot be used exclusively to
judge how good the parameter estimates are. Theoretical anal-
ysis, simulation, and experimental calibration are necessary to
find the application boundaries for accurate estimates.

A. Physiological Results

The primary objective of the experimental study was to
establish the viability of the FSEWLS method. Nevertheless,
the results are of considerable physiological interest. The time
course of the dynamic change of the elbow joint in posture has
not been reported previously. Previous results are the average
values over a certain period of time.

We discovered that at a fixed effort the stiffness, damping
and damping ratio can vary with time while the inertia is
constant. The variation of the damping ratio is smaller than
that of the stiffness or damping, but is significant. In time-
varying posture, the damping variation with stiffness has been
demonstrated. The damping ratio shows no clear correlation
with stiffness or damping even though it is computed from
them. This brings up the question of whether the stiffness
and damping are controlled independently or the damping
ratio is the controlled quantity. In any case, the damping
ratio is between 0.1 and 0.5, which indicates that the joint
is underdamped.

The results from movement are different from previous ones
with the normal or fast movements. The stiffness, damping
and damping ratio are all in the same range as those from
the postural experiments, much higher than reported before
[3]. Furthermore, their variations over time do not show a
strong correlation with the movement. One reason may be due
to the slow movements in the current experiments. If both
results are accurate, it may indicate that there is a significant
decrease of the stiffness and damping from very slow to
normal or fast movements. On the other hand, the current
movement experiments show that there is no sudden change
of mechanical properties from posture to movement. Flash [5]
showed, in simulation, that in order to fit the hand trajectory
well during normal movements, the joint stiffnesses must be
equal to or higher than those in posture. Further experiments
are needed to resolve this difference.

B. Comparison with Previous Studies

There are several published articles on time-varying dynam-
ics of the human forearm system, which are all ensemble-based
methods. There are no reports on their sensitivity to intertrial
variations. Soechtinget al. [17] devised a correlation-based
method to study the changes in human myotactic reflex (dy-
namic relationship between joint angular position and surface
electromyographic activity). Lacquanitiet al. [10] applied
the same method to studying the human elbow compliance
during a change in contraction level of the muscles of the
upper arm. The impulse functions were fitted by a second-
order model to obtain compliance parameters. The inertia
parameter was not estimated based on their experimental data,
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but on anthropometric tables. Our result shows that the iner-
tia varies significantly across subjects (100%). Nevertheless
time-invariant results from our methods agree with theirs
qualitatively.

Bennettet al. [3] devised an ensemble parametric method
to identify the time-varying compliance of the human elbow
joint during normal voluntary movements; the cyclic voluntary
movement frequency was about 1 Hz, ten times faster than the
movement used here. A linear second-order model was used
to fit the data. The method does not use correlation functions
and, therefore, does not have many requirements on the input
perturbation as does Soechting’s. The mean value of stiffness
was very low ( Nm/rad), much lower than that from posture
with minimum effort. The stiffness was found lower during
movement than that at target points. More recently Bennett
[2] showed with pulse perturbation that the stiffness increases
with movement speed. The stiffness level is also below those
in posture.

MacNeil et al. [14] devised an ensemble nonparametric
method to study the time-varying dynamics during rapid
voluntary force change in the human ankle joint. They found
that during the force ramping, the ankle joint cannot be
modeled by a second-order system and the dynamic stiffness
decreased with the mean force, which contradicts the postural
results in [7].

C. Nonlinear Considerations

The biological system is inherently nonlinear. If the system
is assumed to be nonlinear in general and the voluntary action
is not measured completely, the perturbation approach has
to be devised carefully so that the linearization is correctly
realized, since superposition is explicitly or implicitly used
in all of these approaches. For example, in the movement
experiments, we must subtract the mean from the raw data in
order to obtain the perturbed responses. The part of the mean
(especially the time-varying mean) is due to voluntary actions.
On the other hand, by understanding the linearized dynamics
of a nonlinear system, we can gain considerable knowledge
about the system. Better experiments may be devised based
on this knowledge. This is the exact drive behind this study.
Indeed, the results of this study may be considered to be our
first step toward the identification of the underlying nonlinear
biological system.

APPENDIX A
EFFECT OFLOW-PASS FILTERING ON PARAMETER ESTIMATION

Consider a general time-varying input and output system

(10)

where and are the input and output variables, and the’s
and ’s are time-varying coefficients. Apply a linear filter (4)

Fig. 10. Simulation: impulse response function from a recursive low-pass
filter.

to the input and output signals

...

...

where is the impulse response of the low-pass filter ,
and . A typical impulse response of a

second-order low-pass filter with damping ratio at one is given
in Fig. 10. Because the filter is an infinite impulse filter (or
recursive filter) and if . Therefore,
the terms with in the above expressions should be zero
when is sufficiently large. If all of the coefficients’s and
’s are constant then

(11)

after is sufficiently large. This means that the identification
method described in Section II-C is the exact solution. If
the coefficients and are time-varying but approximately
constant within the time constant of the low-pass filter, then
(11) will still be valid. This means that the ratio of the
frequencies of the parameter variation and the low-pass filter
must be smaller than one. The filter bandwith does not have
to be higher than the bandwith of the system as (11) suggests.
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However, the low filter bandwith will decrease the signal-to-
noise ratio of the derivative terms. A simulation not shown
here indicates that the reliable parameter estimates can be
obtained even if the filter bandwidth is lower than that of
the system with PRBS perturbation. When the bandwith of
a system dynamics is known only approximately, it is safe
to have the filter bandwith higher than that of the system
dynamics.

APPENDIX B
EFFECT OFHIGH-PASS FILTERING ON PARAMETER ESTIMATION

Consider the linearized dynamics of the elbow joint in (2).
Apply a high-pass filter (3) to the measurements and

where is the impulse function of the acausal low-pass
filter (4). The derivatives are

Now consider the difference and assume that the voluntary
movement is low-frequency only

which shows that the high-pass filtering does not introduce
error in the parameter estimation if the high-pass filter cutoff
frequency is higher than that of the voluntary movement and
the perturbation has sufficient power in the high frequency
range. Given a type and amplitude of a perturbation, the
higher the high-pass filter cutoff frequency, the less the useful
perturbation frequency range, the less the perturbation power,
the higher the NSR and the estimation error. This is where the
source of the error is with the high-pass filtering method.
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