
Proceedings of the 1996 IEEE 
International Conference on Rohotics and Automation 

Minneapolis, Minnesota - April 1996 

The Noise Amplification Index for Optimal Pose Selection in Robot 
Calibration 

Ali Nahvi and John M. Hollerbach 

Dept s. Mechanical Engineering and Computer Science 
Univ. Utah, Salt Lake City, UT 84112 

Abstract 
This paper presents a new observability index to  

quantify the selection of best pose set in  robot cali- 
bration. This noise amplification index is considerably 
more sensitive to  calibration error than previously pub- 
lished observability indices. Support for the proposed 
andex is provided analytically and geometrically, and 
also through comparison against previous indices by a 
simulation for a 3-link planar robot and by an experi- 
ment for a 3-DOF redundant parallel-drive robot. 

1 Introduction 
To implement calibration by kinematic loop meth- 

ods [6], a robot should be placed into poses that result 
in the most accurate estimates. For some poses, the 
parameters of the robot do not influence the sensor 
measurements much: the effects of noise and of un- 
modeled sources of error dominate the effect of length 
and other kinematic parameter variations of the robot. 
As a result, the calibrated parameters obtained will 
not be reliable. 

Investigators have proposed a variety of observabil- 
ity indices to quantify the goodness of pose selection; 
these indices are based on the singular value decom- 
position (SVD) of the Jacobian matrix of the differ- 
ential kinematics [9]. Menq and Borm [8] proposed 
an observability index related to the product of all 
singular values. Driels and Pathre [3] proposed the 
condition number; Schroer et al. [ll] stated that a 
condition number below 100 is required for reliable re- 
sults. Nahvi et al. [lo] proposed the minimumsingular 
value. In this paper, we present a new observability in- 
dex, termed the noise amplification index, which is the 
ratio of maximum singular value to  condition number, 
as the best criterion for pose selection. Formal argu- 
ments for the noise amplification index are given, and 
simulation and experimental comparisons relative to 
the other indices are given. 

For a reliable observability index, it is first neces- 
sary to perform task variable and parameter scalings 

to  make the singular values comparable [5, 6, 111. If a 
proper scaling is not implemented, the comparison of 
the singular values will be meaningless. Another im- 
portant step before pose selection is rank determina- 
tion, by employing the SVD to eliminate poorly iden- 
tifiable parameters. 

2 Observability Indices 
Assume the robot is placed into p poses. Follow- 

ing the formulation in [5, 6, 131, all kinematic calibra- 
tion methods are considered as closed-loop methods, 
wherein any endpoint measurement system is consid- 
ered to form a joint. Consequently, form the kinematic 
loop closure equations for the ith pose (i = 1, . . . , p )  : 

f i  = g”(x,vi) w 0 (1) 

where f i  is a residual function due to the inaccuracy of 
the kinemat>ic parameters, sensor noise, and unmod- 
eled errors, gi is the loop closure equation, x is a vec- 
tor of robot parameters to  be calibrated, and vi is a 
vector of joint sensor readings and possibly external 
sensor readings. Combine (1) for the p poses into a 
single matrix equation: 

f =  g ( 4  ( 2 )  

where f = [f l T . .  .fpTIT and g = [glT . . .gpTIT. In 
(a), we treat the sensor readings vi as constants for 
each pose i. Linearize ( 2 )  around the nominal values 
of the parameters: 

(3) 

where Af is the error between measured and computed 
residual function, C is the identification Jacobian, and 
Ax is the correction to be applied to the current pa- 
rameter estimate. The calibration problem is then 
solved by minimizing Af via iterative least squares. 
Define the SVD of the identification Jacobian in (3): 

A f =  CAX = U E V T A x  (4) 
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where U and V are orthogonal matrices and 52 is a 
matrix which is made up of the singular values of C 
in its main diagonal and zero for other elements. If 
we assume that at each pose, q equations (for position 
and orientation) are used, the robot is placed into p 
positions, and there are L parameters after rank de- 
termination, then Af will be a q.pvector, C a q.p x L 
matrix, Ax an L-vector, U a q . p  x q.p matrix, V an 
L x L matrix, and 

where S = d i a g ( a 1 ,  ..., a ~ )  is the matrix of ordered 
singular values. To avoid an underdetermined system 
of equations, q . p  should be at least equal to L. Again ,  
we  emphas ize  tha t  parameter  and task variable scal- 
ings should be implemented  before comparing singular 
values. 

In this paper, we assume output noise only: the 
sensor noise affects f and has little influence on the 
identification Jacobian C .  In case of input noise, one 
possibility is to augment the standard deviations of 
output noise by scaled versions of the input noise stan- 
dard deviations before performing task variable scal- 
ing [14]. However, we are leaving this issue for future 
research. Next, we consider 3 published observabil- 
ity indices before introducing the noise amplification 
index. 
2.1 The Product of Singular Values 

Borm and Menq [a, 81 selected the geometric mean 
of all the singular values as the observability index, 
which we will label 01: 

(5) 

where m is the number of poses. This index is related 
to the determinant of C T C :  

d d e t ( C T C )  = U1 ...CL ( 6 )  

The rationale derives from the following basic rela- 
tionship [8]: 

(7) 

where CL is the smallest singular value of C and a1 is 
the largest one. It is desired that a very small change 
in parameters, Ax, makes the largest possible effect 
on the residual error function Af. Thus we wish to 
make I I Af 1 1  / I I Ax 1 I as big as possible. 

From a geometrical viewpoint, if we assume that 
Ax defines a hypersphere with a unit radius, then Af 

Hypersphere (Ax) Hyperellipsoid (Af) 

Figure 1: Geometric interpretation of singular values. 

is a hyperellipsoid whose semiaxes are the singular val- 
ues of the gradient matrix C (Figure 1). Modifying re- 
sults in the mathematics literature, we can show that 
the volume VL of this hyperellipsoid is proportional to 
the product of the singular values of C :  

The geometric rationale behind the observability in- 
dex 01 is to make the volume of this hyperellipsoid 
as big as possible. This means that a parameter error 
vector results in a good aggregate increase in the mea- 
surable vector Af. The disadvantage of this index is 
that we cannot guarantee the Af vector is necessarily 
large in a voluminous hyperellipsoid. Imagine a big 
hyperellipsoid whose axes are all large except one. If 
we are unlucky, the Af vector may be as small as the 
small semi-axis. 
2.2 The Inverse Condition Number 

Driels and Pathre [3] suggested the condition num- 
ber of C as observability index. To accord with other 
observability indices which should be maximized, we 
use the inverse condition number 0 2 ,  whose maximum 
value is 1: 

(9) 
*L 

6 1  
0 2  = - 

They also stated that the reduction in the range of 
motion of a joint during calibration implies less ob- 
servability of the parameters of that joint, and this is 
accompanied by an order of magnitude increase in the 
condition number. 

Due to noise from the sensors or unwanted error 
sources ( b A f ) ,  Ax in (4) has an error 6Ax. (Re- 
member that Ax results from the difference between 
the actual and the nominal values of the parameters.) 
Strang gives [12]: 

To minimize the error of the estimated parameters 
1 1  6Ax 1 1 ,  we should make ul/a~ as small as possi- 
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ble, i.e., 0 2 .  Geometrically, this ratio is a measure of 
the eccentricity of the hyperellipsoid of Af. A bigger 
0 2  makes the hyperellipsoid closer to a hyper-sphere. 
This measure does not consider the size of the hyper- 
ellipsoid, but rather its eccentricity. An advantage of 
this index is that it is dimensionless, because of the 
ratio of two singular values. 
2.3 The Minimum Singular Value 

The first inequality of (7) is rewritten as: 

II A f l k  “L II Ax I I  (11) 

i.e., the greater the minimum singular value of C, the 
greater I I Af I 1. Thus define the observability index : 

0 3  = C ~ L  (12) 

O3 conveys the idea that the residual error function 
1 1  Af 1 1  is maximally related to the error of param- 
eters from their nominal values. Geometrically, this 
observability index requires a large minimum axis of 
the hyperellipsoid Af. 
2.4 The Noise Amplification Index 

To summarize from the geometrical point of view, 
01 is related to the lengths of all semiaxes, 0 2  to the 
lengths of the shortest and largest semiaxes, and 0 3  

to the length of the shortest semi-axis. 
Equation (10) is important. It says that if we wish 

a low value for 1 1  6Ax 1 1  / 1 1  Ax 1 1 ,  we should mini- 
mize both “ ~ / u L  and 1/ 1 1  Af 1 1 .  The minimization of 
U ~ / U L  is achieved by a large 0 2  and the minimization 
of 1/ 1 1  Af 1 1  is achieved by a large 03. 

To clarify that 0 2  or O3 cannot be used alone, 
assume a hypothetical robot with three parameters 
which is calibrated by two pose sets A and B. For 
pose sets A and B ,  suppose the singular values are: 

C A  = [100,0.1,0.1] (13) 
CB = [ lo ,  10,0.01] (14) 

Both pose sets have the same 01 index. The minimum 
singular value 0 3  suggests that pose set A yields bet- 
ter observability, while the inverse condition number 
0 2  treats them the same. This example shows the de- 
fect of the inverse condition number 0 2  : it does not 
consider the absolute value of 6 3 .  

Consider a third hypothetical pose set C with sin- 
gular values: 

CC = [ lo ,  I ,  0.11 (15) 
Compared to pose set A, the “1’s are different, but 
the us’s are the same. In this case, the inverse condi- 
tion number 0 2  prefers pose set C to pose set A ,  but 
the minimum singular value 0 3  treats them the same. 

This lack of discrimination regarding the largest sin- 
gular value is the defect of the minimumsingular value 

We also note that the volume of the hyperellipsoid 
cannot be a good indication of the observability be- 
cause it is not based on the worst case design crite- 
rion. Equation (11) tells us that as long as we have 
a small minimum singular value, we may have trouble 
in having a big and measurable Af. 

We now combine the inverse condition number 0 2  
and the minimum singular value 0 3  to  overcome the 
disadvantages of each: 

0 3 .  

The larger this index, the better the observability and 
accuracy of the calibration procedure. We name it 
the noise amplification index, because we will shortly 
show that it is an indicator of the amplification of the 
sensor noise and unmodeled errors. 

for 
pose set A and for pose set B ,  and hence selects 
pose set A over pose set B. This is an advantage over 
0 2  which does not take into account the minimum sin- 
gular value. For pose set C ,  O4 is equal to  lov3, and 
hence selects pose set C over pose set A. The noise 
amplification index O4 takes into account the condi- 
tion number, which is an advantage over the minimum 
singular value 03. 

The following theorem provides a formal rationale 
for the noise amplification index 0 4  . 

Theorem 1 If 6Af denotes the error of the residual 
error function due to sensor noise or unmodeled errors 
in a robot calibration pose set, the maximum amplifica- 
tion factor of the corresponding error in the identified 
parameters is u1/ui. 

Proof. Replace Af in (10) by its minimum value 
from (11). Equation (10) still holds: 

For the previous example, O4 is equal to  

or : 

Equation (18) clearly shows that the unwanted error 
of the calibrated parameters, 1 1  6Ax 11,  is an ampli- 
fication of the residual error function noise, 1 1  6Af 11,  
by a factor of “1/~; .  Hence the formal rationale for 
the noise amplification index 0 4  : the bigger 04, the 
smaller c1/ui ,  and the smaller 1 1  6Ax 1 1 .  Geometri- 
cally, O4 conveys the requirement for a hyperellipsoid 
which has a large minimum axis and is only mildly 
eccentric. 
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Figure 2: A 3-link planar robot. 

3 Results 
In this section, we present two kinematic calibration 

studies to evaluate the four observability indices . The 
first study is a simulation of a 3-link planar robot, and 
the second study is a simulation plus experiment for 
a 3-DOF redundant parallel-drive robot. 
3.1 A 3-Link Planar Robot 

Figure 2 shows the simulated 3-link planar robot. 
The end point position (z, y) is expressed in coordi- 
nate zero. We suppose it is tracked by an external 
measuring device with an RMS error of 3 mm nor- 
mally distributed. (This is roughly the performance 
of magnetic trackers, although the exact accuracy is 
not important here.) Joint angle errors are assumed 
negligible. 

where IC = 1, . . . , p  is the pose number. Angle 8 i ( k ) ,  i = 
1 , 2 , 3  is obtained by: 

&(k) = si * 7Ji(k) + Boi (19) 

where si, vi (IC), and 80; represent the gain, sensor read- 
ing, and offset of joint i respectively. Thus, we have 9 
parameters to calibrate: ai, s,, Qoi ,  i = 1,2 ,3 .  Nominal 
values,for link lengths ai's  are 2000, 1000, 500 mm? 
for all gains 7r/20 r a d l v ,  and for offsets ~ / 6 ,  ~ 1 3 ,  7r/2 
r a d .  Sensor reading range is [-10,+1O]w. The Jaco- 
bian C can be easily determined using the residual 
error equations. 

3.1.2 Simulation Results 

Using MatlabTM, we generated 343 equally spaced 
poses using the selected robot parameters. To the 

0 '  
0.02 0025 003 0035 0.04 0.045 0.05 0.055 0.06 

iounh ObeewabiliN index 

Figure 3: Noise amplification index 0 4  versus the 
RMS error of the scaled parameters. 

resulting x, y endpoint coordinates was added a nor- 
mally distributed noise level of 3 mm. These noise- 
corrupted x, y values were used as input to  a calibra- 
tion routine to determine the 9 parameters mentioned 
in the previous section. Column scaling which is a 
type of parameter scaling was performed before eval- 
uating indices [6]. We do not need to perform task 
variable scaling since z and y have the same unit and 
uncertainty. Each time we ran the calibration routine, 
50 poses from 343 poses were selected randomly as a 
pose set. 

Figure 3 shows the results of running the calibra- 
tion routine 50,000 times. Each circle shows the result 
of one pose set (50 poses). It is seen how the upper 
limit (dashed line) of the RMS error of the scaled pa- 
rameters decreases while the noise amplification index 
0 4  increases. The RMS error is the difference between 
the results of calibration routine and the true values of 
the 9 parameters. For example, when 0 4  is 0.021, the 
upper limit of the RMS error of the scaled parameters 
is 25.8. When 0 4  increases to 0.043, the error is not 
greater than 14. 

Similarly, the relation of the RMS error of the pa- 
rameters with other observability indices is shown in 
Figure 4.  In order to compare these indices, we scaled 
them so that the minimum value of each index is 1. 
Again, the upper limits are shown by dashed lines. 
Looking at the range of change of each index, we re- 
alize the sensitivity of these indices are quite different 
from each other. Figure 5 shows the upper limit lines. 
It is easily computed that the noise amplification in- 
dex 0 4  is 94% more sensitive to the RMS error of 
the parameters than the minimum singular value 0 3 ,  

273% more sensitive than the inverse condition num- 
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Figure 4: Scaled observability indices versus the RMS 
error of the parameters. 

ber 0 2 ,  and 785% more sensitive than the product of 
singular values index 0 1 .  This greater sensitivity is 
a clear advantage of the noise amplification index O4 
over the other indices. 

Upper limits of scaled obsevability indices 

I I 

'5 10 15 20 25 30 
RMS error of the parameters 

Figure 5: Comparison of the sensitivity of the observ- 
ability indices to the RMS error of the parameters. 

We are also interested in the relation among these 
indices. Figure 6 shows how the first three indices 
change versus the noise amplification index 04. In 
Figure (a), there is no clear relation between the noise 
amplification index O4 and index 0 1 .  In Figure (b), 
there is an almost linear relationship between the noise 
amplification index 0 4  and the inverse condition num- 
ber 0 2 ,  though near small values of 04, this relation 

0 I '  

0.2, I 

I 

0.02 0.025 0.03 0.035 0.04 0 045 005 
0-4 
(b) 

i 
J 

0.05 0.1 I 
0.02 0.025 0.03 0.035 0.04 0.045 

0-4 
(4 

0 0 2  01 -1 
I 

0.02 0.025 0.03 0.035 0.04 0.045 0.05 
0-4 

Figure 6: Comparison of the the first three observabil- 
ity indices to the noise amplification index 0 4 .  

almost vanishes. Finally, in Figure (c), as the noise 
amplification index O4 increases, the minimum singu- 
lar value 0 3  increases almost linearly. If we want to 
find O4 using a linear approximation in each of the 
three figures, maximum errors as much as 0.016 in 
Figure (a), 0.004 in Figure (b), and 0.005 in Figure 
(c) will result. Considering the overall range of 04, 
these maximum errors are not negligible. Thus, we 
conclude that knowing each of the first three indices 
does not give us an accurate 04. 
3.2 Redundant Parallel-Drive Robot 

This mechanism is a 3-DOF platform type closed- 
chain mechanism with its output link constrained to 
undergo spherical motions (Figure 7) [4]. In Figure 
7, di (i=1,2,3,4) is the input of the mechanism and 
represents a pair of actuator and displacement sensor. 
Ai (i=1,2,3,4) represents a spherical joint at the sta- 
tionary side of each actuator. B1 and Bz are universal 
joints and lie in the intersection of the centerlines of 
each two adjacent actuators. Plane BIB20 defines 
the end plate which should be placed into the desired 
orientation. IC1 and IC2 are imaginary links used in 
calibration loops. 

3.2.1 Calibration Procedure 

The kinematic loop formulations [6] requires measure- 
ment of all joint angles. Since the angles are not sensed 
in this mechanism, the simplest way to  formulate cal- 
ibration equations is to  use distance equations. We 
use measurement redundancy to establish our objec- 
tive function which is to be minimized. Assume we 
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Figure 7: 
viewed from above. 

move the mechanism into p different poses. 
the error vector f with the following components: 

Kinematic model of the shoulder joint 

Define 

f ( k . )  = (Bl(k) - B2(k))2 - k; (20) 

where k = 1, . . . , p  represents the pose number. Bl(k) 
and Bz(k) are the position vectors of the end plate 
universal joints in the k’th pose [lo]. Length di(k) 
which is measured by the i’th LVDT in the k’th pose 
is obtained as follows: 

d i ( l c ) = s i * v i ( l c ) + d o i ( i = l ,  ..., 4 , Ic=1 ,  . . . , p )  (21) 

where si, w;(k), and doi represent the gain, output 
voltage, and offset of the i’th LVDT respectively. It 
is worth mentioning that each time LVDT’s are disas- 
sembled and then reassembled, doi may change consid- 
erably (a few millimeters) and the closed-loop calibra- 
tion is a promising approach for finding new offsets. 

The objective function and solution procedure were 
outlined in Section 2. 

71 
3.2.2 Simulation Results 

Figure 8 gives the simulation results for several pose 
sets selected randomly from 280 poses. Each pose set 
includes 30 poses. The RMS error between the true 
values of parameters and those obtained by the rou- 
tine is shown versus the four observability indices. A 
noise level of 4 mv (10% of the real noise level) was 
assumed for the LVDT’s for faster convergence of the 
optimization. Column scaling (a type of parameter 
scaling) was performed in order to make singular val- 
ues comparable. 

It is seen that 01 gives poor results. Specifically, 
there are two coincident pose sets which have the worst 
RMS error in spite of a large 01. In the figure of the 
inverse condition number 0 2  all the points are below 
a limit curve (dashed line); as 0 2  increases, the up- 
per limit of the RMS error decreases. This curve was 

i 

Borm 8 Menq index(O-1) 

Figure 8: Comparison of the observability indices for 
a sensor noise of 4mv. 

fitted in such a way that all the points lie under the 
curve. The minimum singular value O3 gives a better 
indication than index 01. For large values of 0 3 ,  the 
RMS error is small, but still for 03=1.3 and 1.2, we 
see poor results of more than 2.5 m m  RMS error. The 
noise amplification index 0 4  gives an upper limit curve 
similar to that of 0 2 ,  In summary, simulation results 
show that 01 is a poor indication of observability, and 
that the minimum singular value 0 3  cannot be used 
alone. The inverse condition number 0 2  and the noise 
amplification index 0 4  gave good results. 

f 4 1  

5 
3 

2 

1 . 0.4 

20 40 60 80 100 
1 1 PO 

No. of pose set 

Figure 9: Comparison of the sensitivity of observabil- 
ity indices 0 2  and 0 4  with a sensor noise of 4mv. 

Figure 9 compares the inverse condition number 
0 2  and the noise amplification index 0 4 ,  for more 
than 100 pose sets obtained in the noise simulation re- 
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Figure 10: Variation of observability indices 01, 0 2 ,  

and O3 versus 04. Dashed lines represent linear ap- 
proximat ions. 

sults. The inverse condition number 0 2  changes from 
1.02 x to 4.76 x l o w 4  while the noise amplifica- 
tion index O4 changes from 0.33 x l ow4  to 8.57 x low4. 
The noise amplification index O4 is 2.2 times more 
sensitive, and confirms its advantage over the inverse 
condition number 0 2 .  

Figure 10 shows the first three indices versus 04. 
Dashed lines represent linear fittings. In Figure (a), 
it is easily seen that there is no good correspondence 
between O4 and 01. The maximum error between 
the computed O4 and fitted line is 4.9 x which 
is quite big. In Figure (b), there is an almost linear 
correspondence between O4 and 0 2 .  The maximum 
error between the computed 0 4  and fitted line is 2.2 x 

There is a rough linear relation between O4 
and 0 3  in Figure (c) for small values of 04, but at 
large values this relation vanishes. For example, at 
O3 NN 2,  O4 can be between 4 x 
The maximum error between the computed O4 and 
fitted line is 2.5 x We conclude from these three 
figures that we cannot necessarily predict observability 
index 0 4  from observability indices 01, 0 2 ,  and 03. 

Note that in Figure 8, we have very accurate re- 
sults for some pose sets in spite of small observability 
indices. This is always the case because the role of the 
observability index is only to  guarantee a small RMS 
error in the presence of large values of observability 
index. For small observability indices, the results are 
chaotic: sometimes accurate and sometimes poor. In 
other words, an observability index gives us an upper 
limit for the error and not a lower limit. 

and 9 x 

Calibration results 
0 4  < .00025 

TYP. 
result 

99.1 
98.0 
97.7 
97.0 

3.605 
3.697 
3.538 
3.733 

Stand. 
dev. 

0.8 
1.1 
1.2 
0.8 

0.058 
0.040 
0.026 
0.042 

O4 > .00081 

100.4 

Table 1: Experimental results of calibrating the re- 
dundant parallel-drive robot. Offsets are in mm and 
gains are in mmlv. 

3.2.3 Experimental Results 

The end plate was moved into different orientations 
manually and data were acquired simultaneously from 
four LVDT's through 12-bit A/D converters with a 
sampling frequency of 20 He. 450 poses were recorded. 
We wrote an algorithm in MatlabTM to select 50 poses 
out of 450 poses and recorded the final results along 
with observability indices. This procedure of random 
pose selection was repeated for 150 times. 

Table 1 shows typical results for two extreme cases: 
low and high values for the noise amplification index 
04. We recorded the results of 5 pose sets where O4 < 
0.00025 and 5 pose sets where O4 > 0.00081. We 
then calculated the standard deviation of the results 
of these 5 pose sets for each parameter. From Table 1, 
one can easily compute that the standard deviations of 
results for pose sets with high values of 0 4  are between 
34% and 77% of the standard deviation for the low 
O4 case. This complies with our expectation that the 
calibration results will be more robust if we have high 
values of 04. 

4 Discussion 
We have presented the noise amplification index as 

a new observability index to find the best pose set of a 
robot in the kinematic loop calibration methods. The 
proposed index was analyzed analytically and geomet- 
rically, in comparison to three previously proposed in- 
dices. Simulation and experimental results confirmed 
the effectiveness of the new index. 

In our method, we first created several poses in the 
simulation and then selected several pose sets out of 
these created poses. The optimum pose set was the 
one with the biggest observability index. This would 

653 



be a cumbersome task if we had more DOF’s. 
overcome the difficulty of checking the observability 326, Oct. 2-5, 1993. 

To tional Symposium, Hidden Valley, PA, pp. 319- 

index for all the possible pose sets, Zhuang et al. [15] 
proposed a simulated annealing approach to obtain 
optimal measurement pose set for robot calibration. 
They defined an observability index, e.g. condition 
number, as a cost function and minimized it through 
the simulated annealing optimization algorithm. They 
stated that this method can escape local minimum 
points. 

For those cases where noise perturbs the identifi- 
cation Jacobian, one should consider more complex 
measures. This is a research area which needs more 
work. For example, we might get better pose sets for 
the redundant parallel-drive robot if we consider per- 
turbation of the identification Jacobian too. 

While this paper has emphasized kinematic calibra- 
tion, the results are generally pertinent to any robot 
calibration problem, such as estimation of inertial pa- 
rameters [1]. Finally, we believe that the ideas of this 
paper can be used in their parallel for dexterity mea- 
sures of redundant manipulators. The first three ob- 
servability indices have been already proposed as dex- 
terity measures [lo].  We are interested to develop a 
manipulability similar to the noise amplification index 
0 4 .  
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