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Abstract 
A method as presented for autonomous kanematzc 

calzbratzon of a 3-DOF redundant parallel robot. Mul- 
taple closed loops are used an a least squares optamzza- 
iaon method. Ill-condataonang, column scalang of the 
gradzeni matrax, and obseraabalaty andaces for the best 
pose set of robot calzbratzon configurataons are das- 
cussed. Ezperamental results are presented and com- 
pared wath the results iiszng an external calzbratzon d e -  
vace. 

1 Introduction 
Recently, it has been shown that single-loop closed 

chains can be kinematically calibrated using joint an- 
gle readings alone [l . By placement of the closed 

dit,ions permit, the kinematic parameters t,o be extzact- 
ed. 

Autonomous calibration is particularly useful for a 
number of reasons, nominal accuracy being only one of 
t8hem. For example, in case of repair, replacement of a 
displacement sensor typically leaves the device uncal- 
ibrated since the origin may not be precisely known. 
With this technique, the device can regain its origi- 
nal accuracv without external calibration devices. Au- 

chain into a number o tl configurations, consistency con- 

Figure 1: 3-DO tonomous calibration is a technique to uphold nominal 
accuracy over extended periods of operation without 
maintenance. 

A 6-DOF Hand Controller was recently calibrated 
by this approach using double closed loops [9]. In this 
paper a similar method is used to  calibrate a shoulder 
joint's kinematic parameters. The parameters include 
sensor offsets and three other kinematic parameters. 

Wampler and Arai also used kinematic closed loop- 
s to calibrate a three-leg planar parallel-link manip- 
ulator [16]. A laser tracking coordinate measuring 
machine was self-calibrated in [17]. Four trackers 
provided redundant sensing of the manipulator end- 
point, and this redundant sensing was used to cali- 
brate the relative locations of the trackers. Boulet ap- 
plied closed-loop calibration to  a mechanical two-loop 
system formed as a single joint with two antagonistic 
linear actuators which is a precursor to  the present 
mechanism [3]. 

The mechanism used in the calibration experiments 
is a 3-DOF platform type closed-chain mechanism 

F redundant shoulder joint. 

with its output link constrained to  undergo spheri- 
cal motions (Figure 1). It is intended to  form the 
shoulder joint for a complete manipulator with a hy- 
brid kinematic design. Previous work on this chain 
includes kinematic modeling [7 , kinematic optimiza- 
tion [ll] and prototype design i 81. It is characterized 
by a large workspace free of singularities. The theo- 
retical optimal workspace is as large as 180' of tilting 
and rocking, and 270' of swivel. The prototype used in 
the experiments is hydraulically driven by four piston 
type actuators and achieves 90' of tilting and rock- 
ing and 180' of swivel while delivering a torque of 
nearly 200 N . m  throughout its workspace acting on 
an inertia of t8he order of 0.01 1Cg.m'. Four LVDT's 
measure the linear movement of actuators using 12-bit 
A/D converters. A more complete description of its 
construction is available in [8]. 
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Figure 2: 
viewed from above. 

Kinematic model of t,he shoulder joint 

2 Mechanism Kinematics 
The kinematic model is shown in Figure 2. A, 

(i=1,2,3,4) represents a spherical joint a t  the station- 
ary side of each acha tor .  B1 and Bz are also spherical 
and lie in the intersection of the centrelines of each t- 
wo adjacent actuators. Plane BlBzO defines the end 
plate which should be in the desired orientation. di 
(i=1,2,3,4) is the input of the mechanism and repre- 
sents a pair of actuator and displacement sensor. kl  
and kz are imaginary links which are used in calibra- 
tion loops. 

2.1 Inverse Kinematics 
In the inverse kinematics of this robot, d; 

(i=1,2,3,4) can be found from the orientation of the 
end plate pivoted about 0.  A coordinate frame is 
chosen in such a way that x is along OAl, y remains 
in the plane of AlAzO and z is directed out of the 
paper. So, Ai’s are as follows: 

It is to be noted that the above notation is used in 
the calibration algorithm; in the ideal design, there 
are some assumptions mentioned in Section 2.2. 

From the orientation of the end plate, B1 and Bz 
are found by multiplying the rotation matrix by their 
initial position vectors. Now, di’s can be found as 
follows: 

2.2 Forward Kinematics 
In forward kinematics, the orientation of the end 

plate should be obtained assuming all di ’s are known. 
Forward kinematics of this manipulator becomes com- 
plicated if we do not assume that: a)  A11 A, ’s have 
the same distance from 0. b) Points Az, 0, and AB 
are colinear. c) Points A I ,  0, and A4 are colinear. It, 
is fortunate that for our calibration approach, we do 
not need forward kinematics. Based on the above as- 
sumptions, a good solution for the orientation matrix 
can be found by manipulating (2) [ll]. 

3 Closed-Loop Calibration Procedure 
The selection of the parameters to  be calibrated is 

an important issue. In fact, it would be ideal to as- 
sume all the kinemattic parameters, scale factors (gain- 
s) of the sensors, and sensor offsets unknown. But, we 
should first evaluate the limits of the approach con- 
sidering measurement errors due to resolution, non- 
linearity, and noise of sensors, numerical error of the 
method used, sensitivity of end plate orientation with 
respect to change of a parameter, and observability of 
our parameters. Then, we can decide which param- 
eters should be assumed known and which should be 
identified. 

Length d , ( k )  which is measured by the i’th LVDT 
in the R’th pose is obtained as follows: 

d , ( k ) = S , * V , ( k ) S d o , ( i =  1, ..., 4 , k =  1, ..., m) (3) 

where Si, I$(?, and do8 represent the gain, output 
voltage, and o set of the i’th LVDT respectively, and 
m is the number of measurements. I t  is worth men- 
tioning that each time LVDT’s are disassembled and 
then reassembled, do, may change considerably (a 
few millimeters) and the closed-loop calibration is a 
promising approach for finding new offsets. 
3.1 Least-Square Method 

Since the angles are not sensed, the simplest way 
to formulate calibration equations is t80 use dist,ance 
equations. We use measurement redundancy to estab- 
lish our objective function which is to  be minimized. 
Assume we move the mechanism in m different pos- 
es. Define the 4mdimensional error vector f with the 
following components: 

f ( 4 k  - 3) = (Bi(k) - Ai)’ - d f ( k )  

f (4k - 2) = (Bt(k) - Az)’ - di(k) 

f(4k - 1) = (B;(k) - A3)2 - d g ( k )  (4) 

f(4k) = (B:(k) - A4)’ - d: (k )  

where k = 1, ..., m. d , ( k )  is obtained by (3).  Bj(k.), 
j = 1 , 2  and i = 1, ..., 4 is the position vector of point 
Bj in the k’th pose which is obtained by using mea- 
surements of all LVDT’s except the i’th one. As an 
example, let’s see how to find BZ(k). 



We first find B1 by the intersection of the following 
three spheres: 
Sphere 1: centered at 0 with radius k1, 
Sphere 2: centered a t  A I  with radius dl k , 
Sphere 3: centered a t  A2 with radius dZ[k{. 

lowing three spheres: 
Sphere 1: centered a t  0 with radius kz, 
Sphere 2: centered a t  A4 with radius d4 k), 
Sphere 3: centered at B1 (obtained above\ with radius 
k3. 

The objective function to  be minimized is defined 

Then we find Bi(k) by the int,ersection of the fol- 

as: 

min fTf 
X (5) 

The solution is sought by a Gauss-Newton method. 
It is helpful to find the Jacobian o f f  analytically and 
use it in the least-square method: 

g ( i ,  j )  = a f ( i ) / a z ( j ) ;  i = 1, ..., 4 m ; j  = 1, ..., n. (6) 

where g is Jacobian(gradient), z ( j )  is the j ’ th  un- 
known parameter to  be calibrated, and n is the num- 
ber of parameters. 
3.2 Scaling 

Some inaccuracies in computations are due to  ill- 
conditioning of matrices. In [15] and [Z], issues such as 
scaling, condition number, and the best pose set of the 
robot for data acquisition in calibration measurement 
have been discussed. 

Scaling is a way to  obtain better numerical per- 
formance. There are two types of scaling: a) Task 
Variable Scaling: I t  is used when the end point po- 
sition and orientation are to  be related to  each other 
to  have the same order of precision. In this paper, we 
do not deal with the combination of orientation and 
position. b) Parameter Scaling: We normalize the ef- 
fect, of different parameters on the end-effector pose. 
Column scaling is a way to  achieve parameter scaling 
[12]. The key point is that we normalize the Jacobian 
to  approach the minimum possible condit,ion number. 
Define a diagonal matrix H=diag(hl, ..., h,) with ele- 
ments: 

where g, is the i’th column of g (Jacobian). Also, we 
have: 

Af = g A x  = (gH)(H-’Ax) = g A x  

where Af is the residual error in the error function, 
and Ax are the residual parameters. The new Jaco- 
bian gH has unit column vectors and lower condition 
number, and our new parameters are multiplied by the 
norm of the corresponding column of the Jacobian. 

3.3 Observability Index 
The best pose set of the robot that  yields a maxi- 

mum observability of the parameters must be found. 
The singular value decomposition yields: 

Af = gAx = UCVTAx (9) 
where U and V are orthonormal matrices and C is a 
4m by n matrix which is made up of singular values 
of g in its main diagonal and zero other elements. I t  
can be shown that [2]: 

where UL is the smallest singular value of g and u1 
is the largest one. I t  is desired that  a very small er- 
ror in parameters makes the highest possible effect on 
the sensor measurements. In other words, we look for 
some pose sets which exhibit the greatest influence of 
parameter errors (relative to  their nominal values) on 
the objective function. (10) yields: 

I A f t 2  C L  I Ax I ( 1 1 )  
i.e. the greater U L ,  the greater I Af  I. In fact, we 
would like to  make sure that  we achieve the maximum 
observability of the errors of parameters. So, the ob- 
servability index is defined as : 

0 = UL (12) 
In [a] the observability index is defined as: 

where L is the number of singular values of g and M 
is the number of measurements. A well-known result 
is that d m  = ul ... uL. So, this observability 
index ( 1 3 )  is related to the value of the determinant 

Driels and Pathre mentioned that the condition 
number of the Jacobian g is an indication of the ob- 
servabilit,y of the parameters to be identified [5]: 

of g T g  

0 = k(g) = u1/uL (14) 

where u1 is the maximum singular value of g and UL 
is the minimum. It is to  be noted that  0 in (12) and 
(13) is to  be as large as possible, but in (14), 0 should 
be as small as possible. 

From a geometrical point of view, we know that  if 
Ax defines a hypersphere in (9),  then Af will be a 
hyperellipsoid with the shortest semiaxis u~ and the 
longest 61.  Also, the volume of this hyperellipsoid is 
proportional to  the product of singular values of g. 
13 conveys the requirement for a big volume, but I1 12 conveys the idea that the shortest axis should be 

as long as possible. In other words, in (12) we would 
like to  make sure that our sensor measurements are 
maximally related to  the errors in parameters 
while minimizing the influence of noise. In (I4yGi 
would like to make the hyperellipsoid close t,o a hy- 
persphere. In other words, (14) avoids the occurrence 
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of a sharp hyperellipsoid. It can be shown that a large 
condition number has a great influence on the ampli- 
fication of the measurement noise 61. If we consider 
the volume of the hyperellipsoid aone ,  I then there is 
a risk that  the measurement corresponding to the s- 
mallest hyperellipsoid axis corrupts our results. Now, 
it is clear that  even checking both the condition num- 
ber (14) and observability index using (13), cannot 
guarantee the validity of our results. 

To compare these observability indices, we assume 
a hypothetical robot with three parameters which is 
calibrated by two pose sets A and B. For pose set A, 
suppose the singular values are: 

U = {100,0.1,0.1} (15) 

and for pose set B: 

d = { 10,10,0.01} (16) 

Note that both pose sets have the same condition num- 
ber. (12) suggests that pose set A yields better ob- 
servability and (13) treats them the same. It is seen 
that pose set B may give ten times less observability 
compared to  pose set A. 

Finally, we suggest that the smallest singular value 
along with the condition number should be regarded 
as the observability indexes. 

4 Results 
In this section, simulation results are presented, 

then closed-loop experimental results are presented 
and are compared to the open-loop results. 
4.1 Simulations 

In simulation, we considered issues such as: se- 
lection of parameters to  be calibrated, measurement 
noise, the required number of robot poses to identify 
parameters, and the optimum pose set. 

4.1.1 Measurement noise 

We calibrated each LVDT using the measurement of 
an accurate milling machine and found that we can 
find the gain of each LVDT with a noise level of 40mv 
(or 0.15") in the input voltage. Of course, other 
errors like nonlinearity of the sensors are included in 
that value, but we treat all sensor errors as noise. 

4.1.2 Selection of Parameters to  Be Calibrat- 
ed 

As mentioned in section 3, it would be ideal to iden- 
tify all the robot parameters. We started with these 
parameters : sensor offsets, sensor gains, AI,, Azr, 

IS to be noted t8hat each time we ran the calibration 
algorithm, we did column scaling first and then pro- 
ceeded to  the rest of the routine. Some parameters 
were eliminated through these steps: 

a) Inclusion of all the parameters resulted in a high 
condition number of more than 10000 and erroneous 
results. On the other hand, we should keep in mind 
the reliability of our results compared with blue print 

A 2 y 7  A3xr A3y, A3tl A417 4 4 y I  A4z1  k.1, k 2 .  and k3 ,  It 

0 1 0 2 0 3 0 4 0 $ 0 6 0 7 0 8 0 9 0  
Number of configuration 

0 1 0 2 0 3 0 4 0 5 0 8 0 7 0 8 0 9 0  
Number of configuration 

0 1 0 M 3 0 4 0 5 0 6 0 7 0 8 0 9 0  
Number of configuration 

Figure 3: End plate orientation error in degrees due 
to l m m  error in do l .  

data. We should calibrate those parameters which we 
believe our closed-loop method can detect more accu- 
rately than blue print data. Based on manufacturing 
specifications of the shoulder joint, it is reasonable 
to assume:  AB^ = A4z = A4y = 0, Asz = -A2=, 

b) The calibration routine was very sensitive to the 
initial guess of scale factors. It was found that we 
need an accuracy of less than 0.1 percent for the ini- 
tial guesses. Even in that case, the calibration result 
was not better than 0.1 percent. In other words, the 
routine had a tendency to diverge. So, we measured 
off-line scale factors of each LVDT using the move- 
ments of an accurate milling machine. The  sensitivity 
of the nonlinear optimization algorithm to the gains 
was also reported in [9]. 

c )  We did singular value decomposition of the Jaco- 
bian and found that k3 .  kl, and k2 make the observ- 
ability index very low. For example, inclusion of k3 
in the routine provided a very low observability index 
(12)  of 0.006, while after removing k3 as a parameter, 
observabi1it)y index rose to 0.1. After elimination of 
these three parameters, we could get an observability 
index 12) of 1.8, and condition number of less than 

rameter on the plate orientation. We calibrate those 
parameters of the robot to which the end plate orien- 
tation is more sensitive. To this end, we used Z-Y-Z 
Euler angles [4] and considered the error produced in 
a ,  p, and y of end plate due to errors in different pa- 
rameters. Figure 3 shows the change in (Y , p, and ? 
due to 1 mm error in dol (offset of the first LVDT). 
After doing so for all the parameters, we realized that 
the effects of sensor offsets are as t8he same order as 
AI,, Azz, A2y. So, we set the parameters to  be cali- 
brated as: sensor offsets, A l z r  Azl, and A2y. 

Note that because some paramet,ers such as k3 are 

A3y = -A2y, A4s = -Ai1. 

1000. 6 ) We considered the effect of errors of each pa- 
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5 Discussion 
We have presented an autonomous procedure for 

kinematic calibration of a shoulder joint to  identify 
displacement sensor offsets and 3 other kinematic pa- 
rameters. This closed-loop procedure requires only 
the joint displacement sensing, and hence is a viable 
option for field calibration where end-point measure- 
ment is not feasible. This procedure is an extension of 
an approach initially formulated for single closed kine- 
matic loops [l] to  multiple closed loop mechanisms. 

Results of simulations and experiments show that 
the allowable condition number depends on the mea- 
surement noise, computer precision, and our desired 
accuracy. It seemed that  condition numbers of up to  
1000 are acceptable in the present case. 

It was found that  our closed loop approach was 
quite sensitive to  sensor gains. If we have some initial 
guesses which are inaccurate by more than 0.1 per- 
cent for the gains, there is a risk of divergence of the 
algorithm. 

It seems t.hat for getting better results, we should 
also model the compliance of joints and also take into 
account the possibility of misalignment of intersecting 
axes. 

The observability index was used as a criterion for 
Selection of the best pose set to  detect parameter er- 
rors. It was shown that the smallest singular value is 
more reliable for observability index than the product 
of singular values. In simulation, we used the prod- 
uct of singular values as the observability index, but 
the RMS of parameter errors did not decrease as the 
observability index increased. It should be noted that, 
if parameters are of different, units (e.g. position and 
orientation), then the observability index may include 
different units and the selection of the best pose will 
be vague. So. tthe observability index should be con- 
sidered when the parameters all have the same unit. 
Generally, to get more accurate and reliable results 
from the calibration procedure, itl is needed that both 
observability index ( 12) and condition number be tak- 
en into account. One should make an appropriate 
tradeoff between these two factors based on simula- 
tion results. 

Similar considerations have been taken into ac- 
count by others in the field of robot kinematics. K- 
lein and Blaho analyzed some dexterity measures for 
the design and control of kinematically redundan- 
t manipulators[ lo]. They considered several criteria 
such as determinant, condition number, and minimum 
singular value of the Jacobian matrix of manipulator. 
For redundant manipulators, manapulabalaty was de- 
fined as: 

JZ= ul...u, (17) 

where u,(i = 1, ..., m)  are the singular values of the Ja-  
cobian matrix. (17) is similar to  (13). It is to  be noted 
that the identification Jacobian in calibration analysis 
is different from the well-known Jacobian of the ma- 
nipulators used in (17). They concluded that  the min- 
imum singular value has a quantitative interpretation 
that complements the condition number. They also 
stated that although in many cases maximizing the 

dol(".) 
100.3 
95.1 94.6 

100.2 99.6 
68.7 68.3 69.0 

A29 ") -28.8 -28.9 -28.9 
Azy nzm) 62.4 62.8 62.2 

Table 1: Comparison of calibration results. 

known, there is no need to  assume a parameter as a 
reference unit and find other parameters relative to  it 
PI. 

4.1.3 Number of Poses 

It was found that there is no need to use more than 50 
poses to  calibrate parameters. These poses are select- 
ed as optimal ones, i.e., the observability index (12) 
(after doing scaling) reaches its maximum value (1.8). 

4.2 Closed-Loop Experimental Results 
The end plate was moved to  different orientations 

manually and data were acquired simultaneously from 
four LVDT's through 12-bit A/D converters with a 
sampling frequency of 20 Hz. 450 poses were recorded. 
We wrote an algorithm in MATLAB to select 50 poses 
out, of 450 poses to  have the maximum observability 
index (over 1.8) and minimum condition number. Re- 
sults are shown in Table 1. 

4.3 Open-Loop Experimental Results 
We carried out an open loop procedure to find the 

kinematic parameters using an Optotrak 3020 (North- 
ern Digital, Ltd., Waterloo, Ontario) which has a stat- 
ed accuracy of .1 -.15 mm in a 2.5 m distance. Three 
IREDs (infrared emitting diodes) were attached to the 
end plate. The end plate was placed into 100 poses, 
carefully chosen to  be in view of the camera system. 
At each pose, Optotrak IREDs and LVDT measure- 
ments were sampled and averaged 10 times. 

A standard iterative least squares method was em- 
ployed to derive robot parameters, including extra pa- 
rameters t,o locate the IREDs in the end plate and also 
coordinate frame of robot relative to the camera coor- 
dinate system. Results are presented in Table 1. 

To compare closed-loop and open-loop methods, we 
consider RMS errors of the three parameters for which 
we have their nominal values. It turns out that for the 
closed-loop method, the RMS error is 0.22" and for 
the open-loop is 0.33". The RMS error of open loop 
method is a little bit more than that of closed loop 
method. It, can be due to the extra parameters that 
we had to add in the algorithm to locate IREDs in the 
end plate and also coordinate frame of robot relative 
to  the camera coordinate system. It also gives us a 
promising view for the closed-loop method. 

411 



minimum singular value gives the same configuration 
as minimizing the condition number, in other problem- 
s - particularly those with more degrees of freedom - 
the minimum singular value could be used to choose 
between cases with equal optimal condition number. 
Also, it is t o  be noted that while a determinant going 
to zero marks the presence of a singularity, the actual 
value of the determinant cannot be used as a practical 
measure of the degree of ill-conditioning. 

Kurtz and Hayward noticed that the low sensitivity 
of the condition number made it necessary to consider 
several memure8 [ 111. 
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