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Abstract 
This paper presents a new and szmpie procedure to 

identzfy link mc1.s.s parameters used for yracity compen- 
sation and on-line automatic torque semor  calibration 
for  a robot manipulator. The approach employs .stnyle- 
joint rotatzon and a recursm procedure that proceeds 
dz.stal1y to proximally to  identify compmite mass mo- 
ments. Expertmental resu1t.s are prc.sented for  the Sar- 
cos Deztrou.i Arm. 

1 Introduction 
Gravity loading for all but the fastest robot mo- 
tions dominates manipulator joint torque. For 
anthropomorphic-sized arms it has been shown that 
motions have to he completed in around a half second 
or less for inertial forces to be greater [6] .  Even for 
fast motions, the use of a PD controller with gravity 
compensation apparently performs almost as well as 
a full feedforward controller that accommodates full 
inertial terms [l]. Figure 1 shows the block diagram 
for such a compensator. 

- U- 

Figure 1: Gravity compensator diagram (state feed- 
back is not shown here). 

Gravity compensation (GComp) is particularly im- 
portant when using a force-reflecting exoskeleton in 
teleoperation, such as the Sarcos Dextrous Arm Mas- 
ter. It is exceptionally burdensome for the operator 
to lift the weight of the master when attempting force 
reflection. Hence it is imperative that the weight of 
the master should be automatically compensated. It 
would be desirable to cancel inertial forces as well, but 
the typical small-motion tasks using a master mean 
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that gravity loading dominates. Moreover. attempt- 
ing to reduce or cancel inertia is known to be tricky 
[l]. as instability easily results. 

Figure 2 :  The Sarcos Dextrous Arm Master and Slave. 

We propose a simple method for gravity compen- 
sation, which is a natural extension of earlier work 
on torque sensor calibration [ll]. This torque sen- 
sor calibration method is the only published method 
that can calibrate manipulator joint torque sensors “in 
vivo” (without disassembly). This method employs 
single-joint rotation and fitting of sinusoidal models 
to the torque versus position readings. Identified are 
the torque sensor offsets and gains; as a by-product 
position sensor offsets and gains are also found. .4 
feature of the method is att.achment of a reference 
mass, where the kinematics of attachment (i.e., the 
moment arm) is not presumed known. No knowledge 
is assumed about the link mass properties either. 

It turns out that after this torque sensor calibra- 
tion, the same data can be employed to derive the 
gravity parameters which load the joints. This paper 
presents the procedure for this. In fact the torque 
sensor calibration and GComp procedures are tightly 
coupled in two ways. (1) It doesn’t make sense to cali- 
brate the gravity parameters unless one has calibrated 
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torque sensors; the factory-specified torque sensor cal- 
ibration was found to have drifted and recalibration 
is required. ( 2 )  Once the gravity parameters have 
been determined, the link masses may then be used 
as known loads to the joints to recalibrate the torque 
sensors in the field. This procedure would be more 
automatic and substantially simpler than our initial 
procedure [11], as the calibration mass is not required. 

Accurate values of the mass parameters are typi- 
cally unknown even to the manufacturers and meth- 
ods need to be developed to identify them. Full iner- 
tial parameter estimation methods are by now a well- 
known part of the robotics literature [a, 81 in which 
joint torque is correlated with joint position, velocity, 
and acceleration. One drawback of these methods is 
the differentiation to obtain velocity and acceleration, 
which introduces noise and imprecision. Secondly, this 
approach will complicate the identification process if 
we only need to find out mass parameters, which is the 
case for GComp. The proposed approach, by identi- 
fying link mass parameters statically and separately, 
can avoid the noisy differentiation process and result 
in a simpler, more accurate identification procedure. 

A straightforward way of identifying mass param- 
eters separately is to follow inertia parameter estima- 
tion procedures, while setting all dynamic terms to 
zero. This procedure is employed by the manufac- 
turer to implement GComp on the Sarcos Dextrous 
Arm [13]. Simultaneously multiple joint static rota- 
tion is required and care must be taken to choose the 
arm poses for better numerical accuracy. In compari- 
son, our approach may be considered to have a more 
principled method of pose selection and of determina- 
tion of identifiable parameter combinations. 

2 Notation and Background 
We assume that the manipulator kinematics are 
known (perhaps through an earlier kinematic calibra- 
tion procedure) and that the joint torque and position 
sensors have been calibrated [ 111. Standard Denavit- 
Hartenberg (DH) parameters are employed; additional 
notation follows (Figure 3). 

pt is a vector from coordinate origin i - 1 to coordi- 
nate origin i .  

si is a vector from joint i to the link i center of gravity 
(COG). 

i si expresses si with respect to (w.r.t.) link i coordi- 

'Si = Rz(a;)'s; expresses si w.r.t. a modified link i 
coordinate system, where after the rotation the 
modified Zi axis is parallel to zi-1. Then 

nates. Similarly for other vectors. 

Similarly for other vectors. 

As will be seen, the z-component of 
tribute to joint torque. 

does not con- 

Figure 3: Link coordinate assignment and COG 

Eext we extract pertinent developments from [ll]. 
The composite mass moment 2; about joint i consid- 
ers all links from i to the most distal link n to form one 
rigid body; hence it is configuration-dependent. Ex- 
press %, in the modified link i coordinates with the 
Euler notation: 

xi sqi c G  
i -  ai = Ri sqa s& (2) [ R i C r ) i  1 

where Ri is the vector length and qi and & are two 
angles that define the vector direction (Figure 4) .  The 
composite mass moment a; influences joint gravity 
torque ri through: 

ri = Zi-1. (a; x g) = (i-lg x i-1zi-l) .R,(O;)"R; (3) 

where Ri = R,(Oi)R,(ai) defines the standard DH 
rotation matrix for joint i, and the gravity vector i-lg 
is expressed in link i - 1 coordinates and is presumed 
known. Expanding (3) ,  

(4) 7; = Ai sin(6; + ai) 

where we define 

Equation (4) reveals the sinusoidal relation for joint 
i between its gravity torque and joint position, assum- 
ing other joints are fixed. Experimentally we rotate 
joint i in steps for its full range while keeping other 
joints stationary. Joint i torque and position sensors 
are sampled for each step, to obt,ain data pairs [q, Oil 
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Figure 4: The Euler representation of the composite 
mass moment 

on a sinusoidal curve. Ordinary least squares then fits 
the data pairs [q, Oil to (4).  Parameters Ai and are 
extracted from the sinusoidal curve fitting. 

Since gravity is known, we can then find Risq i  from 
Ai and from @pi to obtain the 2, y components of 
i R i  in (2). Consequently, define the identifiable x,y 
component ' A f i  of i R i :  

Ri srli CFi  

i J v i =  [ Ri s ~ i  s l i  ] (6) 

The z component, defined as i T i  such that i?& = 
i f l i  + i7; (Figure 4), cannot be found at  this point 
and does not influence joint i torque because it is par- 
allel to the rotation axis. However, it may influence 
more proximal joint torques. Expression (3) can be 
simplified as: 

(7) ~ - - (i-1 g x ' - ' z ~ - I )  . Rz(Oi) i f i i  

which emphasizes the need to know the normal com- 
ponent ' A f i  of the composite mass moment i*i; there 
is no need to identify the z component iTi. 
3 Gravity Torque Model 
This section develops a recursive procedure to calcu- 
late i f i i .  This procedure is equivalent to specializa- 
tion of previous research on the identifiable combina- 
tions of all inertial parameters [9, 10, 121 to just the 
gravity components, but we present our own deriva- 
tion for greater clarity in this particular context. The 
recursive relation among composite mass moments 7Ei 
is: 

mn s n  - R n  - 
R n - l  = mn-lsn-l+ mnp:-i+ E n  

Ri = mis; + (Cjn,i+lmj)pr + Ei+1 

(8) . . .  

To identify these R;, we recast (8) into quantities that 
for joint i axe (1) already known or computable, (2) 
identifiable by joint i rotation, or (3) not identifiable 
but passed down as a constant to  joint i - 1. 

This derivation is facilitated by defining ri as the 
mass moment component of Ei acting at  joint i that 
is constant, i.e., does not depend on the distal joint 
angles from i to  n. At the end, " 'Rn  and n f n  are the 
same: 

"72, = mnnSn = n ~ n  

As before, we separate froin nFn the 2, y component 
nnn which influences joint n torque, from the z com- 
ponent "t, which does not: 

(9) 

(10) n -  r, = "in + nnn 

In this case, ,fin = nnn and "7, = "t,, but not for 
i < n. Thus nnn can be identified completely from 
joint n rotation from the discussion in Section 2. But 
9, is unknown and will be passed down to link n - 1 
to be identified in linear combination with other mass 
moment components that influence joint torque rn- 1. 

To reflect this idea, for link n - 1 the mass moment 
relation (8) is modified as follows: 

"-lRn-l = mn-ln-'sn-1 + mnn-lp:-l 

- 

- n-1- t n - l +  n-1nn-1 + n-1- nn - 

where the constant mass moment portion n-lFn-l for 
link n - 1, 

n- l -  rn-l = m,-l n - l -  S n - l + m n n - l p ~ - l + n - l t n  (12) 

has been broken into 2,y components n-lnn-l and 
z component n - l t n - l .  Note that n - l F n - l  consists of 
components from both link n - 1 and n,  all of which 
are constant in link n - 1 coordinates and indepen- 
dent of the joint n position. This definition should be 
contrasted with the traditional definition of the mass 
moment mn-lsn-l for link n - 1, which depends only 
on the mass distribution of its link. In (11) n-lt, was 
passed down as an unknown when identifying link n 
components, but here appears as a constant in linear 
combination with other constant components. We also 
have kept n-lnn separated; it is completely known, 
but depends on On and must be recomputed for differ- 
ent arm poses. 

When rotating joint n - 1 by itself to  generate 
a sinusoidal curve, we identify the z, y components 
n - l f i n - l  ofn-17En-1 in (11): 

n-1 Afn-l = "-lnn-l + diag(1, 1, O ) n - l n n  (13) 
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where the square matrix diag(1, 1,O) expresses the o p  
eration of copying just the x, y components of known 
vector n-lnn. Therefore we can find n-lnn-l. As be- 
fore, the z component n-lin-l is unidentifiable and is 
passed down to the next link n - 2, where it similarly 
appears as a constant to be identified in linear combi- 
nation with other parameters in the mass moment of 
link n - 2. 

We now complete the derivation recursively. Sup- 
pose for link i + 1 we have determined the composite 
mass moment in the following form: 

-4.6877 
-1.0284 
1.5219 
0.0871 
0.6686 
-0.0597 

n 

0 
0 
0 
0 
0 
0 

j = i f l  

For example, the expression (11) for joint n- 1 has this 
form, which serves as the first step of the induction. 
All components of i + l n j  have been identified or can 
be computed up to  this point. The component i+lt;+l 
is unidentifiable here, and is passed down to link i: 

j = i + l  

where again we identify the x, y components and 
the z component i& of the constant link i m a s  mo- 
ment component i ~ i :  

n 

i r i  = miiSi + ( c m . ) i - *  j pi + i t i + l  (16) 
j = i + l  

Again, we identify through single-joint rotation of 
joint i the z, y components *Hi of iRi in (16): 

n 

'a; = in; + diag(1, 1 ,0)(  ;nj) (17) 
j=i+l 

Therefpre we can find i i i i ,  since all terms to its right 

are identifiable or computable. This completes the 
induction. 

After identifying in; of link i, for i=n,. . .,1, we are 
ready to  calculate the gravity torque on each joint for 
any configuration of the arm, by equation (7) and 

n 

4 Identification Algorithm 
We briefly recapitulate the procedure to identify mass 
moment components and compute gravity torques. 
Begin at  the last joint, and repeat Steps 1 to 4 be- 
low recursively from i = n to  i = l. 

Step 1: Sample joint torque and position sensor read- 
ings during static rotation of joint i. In our case, 
this process has been done in Ell] when we cali- 
brated torque sensor offsets. 

Step 2: Fit torque-position data to  the sinusoidal 
model (4) and identify 'ai from (6). 

Step 3: Compute ;ni from (17). 

Step 4: Calculate the gravity torque (7), where ' f i i  

is obtained from (18). 

link i 
1 
2 
3 
4 
5 
6 
7 

mi's,* 
0.1116 

0.1256 
0.0437 
0.0376 

0.1132 

-0.1063 

-0.0217 

mi' siy 
0.0485 
0.3289 
0.2997 
0.2184 

-0.0620 
-0.0057 

-0.0594 

mi2 siz 

0.5566 
0.8100 

0.1491 
0.0149 
0.8770 

-0.6305 

-0.0692 

Table 1: Assumed mass moment parameters (tradi- 
tional definition) used in simulation. 

link i 

7 

2 -  
nix 

0.1116 

0.1256 
0.0437 
0.0376 
-0.0217 
0.1132 

-0.1063 
-0.9594 

Table 2: The identified x,y component of the link mass 
moment in simulation. 

5 Simulations 
Simulations were first conducted to  verify the iden- 
tification algorithm. The simulation is done in 
MatlabTM, using the Robotics Toolbox from Corke 
[3] and the System Identification Toolbox from Math- 
works. Arbitrarily assumed mass moment parameters 
(Table 1) are used to generate gravity torque for each 
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joint when the link rotates about the joint. These 
mass moments miisi are the traditional intrinsic link 
i mass moments (Figure 3). 

The algorithm described in Section 4 was employed 
to identify the 2, y components of the composite 
constant link mass moments iri. The identified pa- 
rameters are shown in Table 2. The results in general 
are not comparable because of the different definitions 
of miisi and i n i ,  although for the Sarcos Dextrous 
Arm it turns out that mi'si, = ' f i i a :  because all skew 
angles are ai = n/2 .  The y-components though are 
different. To verify the identification result, we com- 
puted the gravity torque from the identified param- 
eters. Results agree with those computed from the 
assumed parameters. 

6 Experiments 
Experiments were then performed on the Sarcos Dex- 
trous Arm Slave (Figure 5). The Sarcos Dextrous Arm 
Slave is an advanced hydraulic manipulator with 7- 
DOF revolute joints and a 3-DOF, 3-fingered gripper 
(Figure 2). Each joint is instrumented with high pre- 
cision position and torque sensors, whose readings are 
accessible from the user level computer via a low level 
joint controller and mid level computer [13]. Work has 
been done to calibrate both the kinematic model and 
the joint sensor parameters [5, 71. 

U s e r  Levei  Mid Level  

POWER 

Figure 5: Experimental setup. 

We applied the identification procedures of Section 
4 to the data we sampled during the torque sensor off- 
set calibration in [ll]. We fixed joints that are to be 
stationary while another rotates, by applying a bias 
torque to push and hold these joints against the me- 
chanical stops. The identified parameters are given in 
Table 3 for the first 6 joints. We verified the identifi- 
cation results by comparing the model output torque 
with joint torque sensor reading when the Arm is at 

the same pose. The result is shown in Figure 6, and 
shows reasonable agreement. 

Table 3: 

2 -  link i I $niZ I niy 

1 1 0.7022 I 0.4967 

- 
2 -  niz 

0 
0 
0 
0 
0 
0 

Experimental results of the mass moment 
identification. 

7 Discussion 
This paper has presented a novel, simple and robust 
algorithm to identify the link mass parameters stati- 
cally. Our algorithm doesn't explicitly identify the tra- 
ditional mass moment for each link. Instead, it identi- 
fies all components contributing to the gravity torque 
on one joint. The constant mass moment portion of 
a proximal link may contain components of the more 
distal links. The algorithm assumes that the robot 
joint torque and position sensors have previously been 
calibrated [11]. In our case, the experimental data 
is the same as from the torque sensor offset calibra- 
tion; hence no new experiment is needed. In fact, one 
can argue that torque sensor calibration is an imme- 
diate prerequisite to gravity parameter determination, 
in order to  achieve the most accurate results. 

The algorithm rotates joints singly, and fits a si- 
nusoidal curve to the resulting data. Simulations and 
experiments verify the method. Following the identifi- 
cation of the robot link mass moment, one may build 
a gravity compensator to cancel out gravity distur- 
bance for teleoperation and motion tracking. More- 
over, a gravity torque observer based on the identified 
parameters can be used to  implement fully automatic 
on-line torque sensor calibration. 

Our procedure identifies the mass parameters for 
each link independently. The advantage of this ap- 
proach to others, such as those requiring all robot 
joints to  move simultaneously, is that it subdivides 
the general problem into a set of problems of lower 
complexity, thus achieving good stability and numer- 
ical precision. A disadvantage is that identification 
errors of distal links will propagate to proximal links. 
This can be overcome by re-identifying the parame- 
ters using all joint data simultaneously and a global 
optimization procedure, starting with nominal values 
the parameters identified from the proposed recursive 
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Figure 6: Experimental verification of the identified 
GComp model. The x axis is the pose number and 
the y axis is the gravity torque. Solid lines come from 
the identified model while dashed lines come from the 
joint torque sensor. 

method. Although conceptually straightforward, we 
have not yet implemented this re-identification. 
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