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Abstract 
This work deals with closed-loop calibration methods 

where the robot endpoint is constrained to lie on a plane. 
Previously published calibration approaches are shown to 
have certain weaknesses. A new solution is given using DH 
and Hayati notations and standard nonlinear least squares 
optimization. The procedure is extended via the Implicit 
Loop Method, which takes input noise into account. Pose 
selection is guided by the Noise Amplification Index. Simu- 
lation and experimental results are presented for  a PUMA 
560 industrial manipulator; and are compared to those ob- 
tained from an open-loop calibration procedure. 

1 Introduction 
Most kinematic calibration techniques require expensive 
andor complicated pose measuring devices, therefore the 
necessity of developing procedures which use data only 
from the internal sensors of a robot is evident. This paper 
presents closed-loop methods which use only one endpoint 
constraint, i.e., the number of calibration equations per pose 
is one [6 ] .  Using a probe, the robot touches a number of 
points on a fixed selected plane, and frorn the formulated 
identification model the real robot parameters can be esti- 
mated applying an optimization technique. 

Three important issues have to be considered in these 
methods. Like in every closed-loop calibration - not hav- 
ing a priori knowledge about the task constraint - the scale 
of the mechanism must be set, i.e., one liink length has to 
be known [ 11. Special care has to be taken about the loca- 
tion of the base and end link frames, which add to the num- 
ber of identifiable parameters. Finally, we !should not ignore 
the effect of errors in the joint angle measurements. It has 
been shown that this so-called input noise may cause bias in 
the parameter estimates [9]. Since the end effector is con- 
strained, the input noise is not negligible compared to the 
output noise. Thus a total least squares optimization proce- 
dure is recommended to avoid unreliable estimates [6]. 

We begin by reviewing previous calibration proposals. 
After our analysis a new solution is given and examined 
through both simulation and experiment. 
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2 Previous Approaches 
In recent years several calibration approaches have been 
proposed that yield only one equation per pose [6].  Open- 
loop methods include the use of a single wire potentiometer 
[3], an instrumented ball bar [4], and a laser displacement 
meter [ I 1  3 .  Closed-loop methods have employed a ball bar 
with known length [2]  and a plane constraint [IO, 131. For 
the method of planar constraints, two approaches towards 
formulating an identification model are (1) the use of the 
general equation of the constraint plane, and (2)  the use of 
plane normals which are supposed to be parallel. 
2.1 Using the Equation of the Plane 
The most straightforward approach assumes that the end- 
points satisfy the plane equation: 

where i = 1, .  . . , P for P poses, and a, 6, and c are the 
generalized plane coefficients. This equation assumes the 
plane does not intersect the origin. 

The computed endpoint positions pi  deviate from the 
plane due to errors from the kinematic model and the mea- 
surements. To reduce these deviations, we minimize 

P 

S = C([ a b c ] p :  - 1)2 
i=l 

where the expression in the brackets is proportional to the 
distance of pi  from the plane. 

The computed endpoint positions are a nonlinear func- 
tion of the robot parameters 4 and the joint angles &: 

where the joint angle inputs have been folded into f .  Af- 
ter substitution into (2), we get the objective function of the 
nonlinear optimization problem: 

P P 

S = E([ U b C ]  f(4) .- 1)2 = C ( y ' ( a ,  6 ,  C, 4) - 1)2 
i=l i=l 

(4) 
where 4 contains the robot parameters, which are defined 
by a certain kind of parameterization including joint angle 
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offsets yJ too. This parametrization has to choose appro- 
priate coordinate frames; the plane, the robot mechanism, 
and a tool transform are included in the parametric func- 
tion g. One could continue with calculating the Jacobian 
and applying for example Gauss-Newton optimization, but 
we have found this overall approach deficient. 

Consider the calibration of a two link planar manipulator 
using a line constraint. This two dimensional version of the 
3D plane calibration method shows the deficiency of this 
approach easily. The objective function can be expressed 
similarly except that fi has only two components. One link 
length has to be fixed and the first joint angle offset y1 is not 
identifiable. 

Using MutlubTM we generated 40 points on a line uni- 
formly. After adding Gaussian noise we calculated the joint 
angle readings by solving the inverse kinematics of the ma- 
nipulator. The deviations from the real and calibrated lines 
using the parameters obtained from the calibration based on 
the approach above are shown in Figure 1. It can be seen 
that using the identified kinematic model the endpoints do 
not fit the original line (dvr = 0 mathematically). Instead 
they fit a different line (which is defined by the calibrated 
line coefficients). 
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Figure 1: Deviations from the real and calibrated lines. 

The reason is that the definition of the base frame is 
wrong; we have to fix the base frame to the line and not to 
the first robot axis. It also can be seen that the deviations fit 
the calibrated line perfectly. The situation is similar in the 
three dimensional case; the calibration plane “wanders.” 
2.2 Using Plane Normals 
This approach is based on the calculation of the vector prod- 
ucts of a set of difference vectors in the same plane, which 
are supposed to yield plane normals [ 131. Three points de- 
termine a plane, and yield two independent difference vec- 
tors from which the plane normal can be extracted. From 
the cross products of these “small plane” normals a linear 
indentification equation system can be derived. Besides the 
definition of the base frame, this method has two more prob- 
lematic aspects: 

We have to be careful with the pose selection because 
we can get collinearities- which make the identifica- 
tion difficult - very easily. 

Not all the points are considered in the identification 
at a time, only a set of points is used. If we wanted to 
include all the points, the Jacobian would be huge. 

These aspects are independent of where we place the con- 
straint plane. Because this approach does not even use a 
numerical description of the plane (it only assumes that 
the endpoints are lying on some plane), we found that the 
wandering-effect occurs more seriously. 

3 A Regular Approach 
To make the 3D plane calibration method work, we found 
that a careful definition of the base frame was essential. 
3.1 The Kinematic Model 
Every kinematic model includes geometric and non- 
geometric parameters of the robot. For the geometric 
parameters typically four-parametric models are used. We 
use the well-known DH notation for nearly perpendicular 
neighboring axes, and Hayati parameterization [SI in the 
nearly parallel case. We give the definition of the metrol- 
ogy or base frame and the end link frame exclusively; 
the definition of the intermediate frames can be found in 
for example [7].  The non-geometric parameters include 
only the joint offsets, since in most closed-loop calibration 
methods the gains are difficult to estimate [6]. 

3.1.1 Definition of the Base Frame 

There are two cases for the definition according to whether 
the first robot axis is parallel with or perpendicular to the 
plane. We show the definition for the first case using DH 
parameters. 

In order to handle the problem easier, let’s number the 
base frame as -1 (Figure 2).  There is a problem with find- 
ing frame origins 00 and 0-1, because there is no con- 
straint on the location of the endpoint on the plane. Assum- 
ing that we can apply DH parameters for frame 1 ,  the first 
definitive point is the intersection of the common normal 51 
with the first rotation axis ZO. This intersection is a good 
choice for 00, which then sets dl  = 0. 

Project 0 0  to the plane to set 0 - 1  and z-1. Since the 
first robot axis is nearly parallel to the plane, z-1 and zo 
are nearly perpendicular, and their common normal 20 is 
well defined. Set 2 - 1  equal to 50, which fixes uo = 0 and 
yo = 0. Note that we use two parameters between frames 
0 and 1, and three parameters between frames - 1 and 0. 

When the first robot axis is nearly perpendicular to the 
plane, we can use Hayati parameters. The intersection of 
the plane and the first robot axis defines 00. Working back- 
wards we get that U ;  = 0, -/A = 0 and $ = 0. However 
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the maximum likelihood estimate is obtained by minimiz- 
ing the following chi-square function: 

Figure 2: Base coordinates. 

we noticed that this configuration yielded a serious observ- 
ability problem in case of the Puma 560 robot. 

3.1.2 

Because the orientation of the end link frame does not play 
a role, only three parameters out of the four are needed. We 
can choose z, to be parallel with zn-l; this :sets a, = 0. 
3.2 The Identification Procedures 
3.2.1 Nonlinear Least Squares Optimization 

Relative to the -1 frame (Figure 2), the plane constraint on 
the end link frame can be expressed by the calibration equa- 
tion: 

Definition of the End Link Frame 

p; = 0 

After substituting the forward kinematics (3) of the robot 
and linearizing the equation, we get: 

Api = 0 - f ( # k )  = &'A# 

where 
is the basis for the iterative update of parameters. 

contains the third component of f i .  This equation 

3.2.2 Implicit Loop Method 

The Implicit Loop Method is based on the unification of 
open and closed-loop methods: the closure of kinematic 
loops by end-effector measurements or by constraints are 
considered equivalent [12]. All kinds of measurement er- 
rors are included implicitly in the loop equations: 

where Zi  contains the measurements (both input and out- 
put) taken at pose i with measurement error &, and 4 is the 
initial estimates of the parameters which have errors of 4. 
The goal is to find the most likely combination of param- 
eter errors and measurement noises 3' which satisfy the 
loop equations. Assuming Gaussian noise with zero mean, 

where C, and E4 are the covariance matrices of the mea- 
surement errors and the parameters, respectively. Itera- 
tively minimizing this sum subject to (4), one could get es- 
timates for errors in both the kinematic parameters and the 
measurements. 

The inclusion of the covariance matrices means that 
we use some a priori knowledge about the error distribu- 
tions. Thus the method puts parameter variations, joint 
and end-effector measurements on equal footing. Since the 
loop equations are satisfied exactly, no equation scaling is 
needed. Besides these advantages, the approach provides 
measures for both the accuracy of the fitted parameters and 
the consistency of the data with the model analytically. The 
accuracy of the estimated parameters #* compared to their 
actual values # is zero mean with covariance 

(7) 

where subscript $ denotes the symmetric square root, and 
!ilq can be derived from the procedure. 

The method also provides a measure as to whether the 
results of the estimation agree with the statistical assump- 
tions of the model. Substituting the converged values, the 
x2 function can be approximated by a Gaussian distribu- 
tion with expected value of PC and standard deviation of 
U = m, where C is the number of calibrationequations 
per pose. The complete formulation of the Implicit Loop 
Method can be found in [ 121. 

4 Simulation Results 
In the simulations we generated joint angle readings by 
solving the inverse kinematics of the Puma robot from end- 
points on a given plane. The endpoints were selected ac- 
cording to grid or random distributions and Gaussian noise 
was added with given variances in directions x,y and z. The 
nominal parameters of the Puma robot can be found in Ta- 
ble l along with the base and end link parameters. The a6 

offset of the touching probe was built intentionally to make 
the last joint offset observable. 
4.1 Pose Selection 
In order to achieve accurate estimates the robot should be 
positioned into an appropriate pose set. Here we use the 
noise amplification index 871 - which is the ratio of maxi- 
mum singular value to condition number - as the indicator 
of how many samples in what amangement should be col- 
lected. The bigger this number is the smaller the errors in 
the identified paremeters are. 
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0.0 
0.0 
0.0 

0 
0 

149.09 
433.07 

0.0 
175.25 

Table 1 : Nominal parameters of the Puma 560 robot. De- 
fined zero parameters are indicated as 0. 

Figure 3 shows the results of the simulation; 5000 poses 
were generated according to random distribution on a plane. 
From this pose set 50 to 300 poses were selected randomly 
and the corresponding indices were calculated. The result 
is a distribution with a large variance, because not only the 
number, but also the location of the poses matters. From fit- 
ting a curve on this distributionand examining the tendency, 
a sufficient number of poses can be inferred. 

The default number of poses is 50. While adding from 
one to 100 more poses the noise amplification index in- 
creased significantly; from 150 poses it did not change 
much. However we should not ignore the human factors: 
the collection of 150 poses is a tedious procedure. Taking 
this factor into account we chose 120 as the “optimal” num- 
ber of poses. Another issue is the location of the samples. 
The simulations showed that collecting poses according to 
a rectangular grid yields a bigger noise amplification index. 
Therefore the selection of 96 poses was based on an 8-by-12 
grid and the remaining 24 poses were collected randomly. 

Noise Ampllkalan 1- vs nuntar ot -e= = x  10- 

0 0 0  0 

E 

l o 0  I 

Figure 3: Pose selection using the noise amp. index. 

5 Experimental Results 
In order to cross-check the improved accuracy of the cali- 
brated manipulator, two calibrations were performed simul- 
taneously. Besides taking 120 poses on a plane with the 
touching probe, 60 position measurements using the Op- 
totrak 3D motion tracking system (Northern Digital Inc., 

Waterloo, Ontario) were collected too. Thus the results of 
the open loop calibration could be compared to the results 
of plane methods, and helped with choosing a known link 
length. 

5.1 Open Loop Calibration Using Position Mea- 
surements 

An open loop calibration procedure was applied using 
Gauss-Newton optimization, and the RMS error between 
the measured and predicted endpoints was reduced to 0.156 
mm. This result corresponds to the accuracy of the Opto- 
trak, which is stated to be 0.1 mm at a viewing distance of 
2.5 m. 

We have to be careful with the cross-check because in 
this case the setup of the base and end link frames is differ- 
ent from the setup described before. Also the Optotrak cal- 
ibration determines 27 parameters while the plane version 
yields only 23. Therefore the cross-check is performed by 
substituting the internal parameters of the open loop results 
to the closed loop calibrated parameters. Using this mixed 
set and the calibration results of the closed loop method, 
two pose sets can be generated. The inter-distance of any 
two points in the two sets are compared and the RMS error 
of these distances are calculated taking each pair into ac- 
count. 

Another problem is the scaling of the mechanism in the 
closed loop methods: we have to fix one link length. It 
seems reasonable to choose this parameter from the Opto- 
trak results. To verify this statement we repeated the open 
loop calibration using the Implicit Loop Method. By setting 
x++m (numerically this means lo5 times of its normal 
value) and the standard deviation of the input noise to zero, 
we could reconstruct the estimates of the Nonlinear Least 
Squares method. The reconstruction gave a x 2  = 110.6 
with an expected value of P x C  - N = 153 (where N de- 
notes the number of parameters). This is a little bit low but 
within the acceptable 99% region, and because of that we 
set the variance of the output noise double the precision of 
the Optotrak (0.2 mm). 

From the internal parameters we had to choose from two 
candidates for the fixed link length (a2 or de). The standard 
deviation of the errors between the real and calibrated pa- 
rameters were calculated (from the diagonal entries of co- 
variance matrix x; - see (6)). Link length parameter a2 

had a smaller standard deviation of parameter error (ca2 = 
0.0677”) than $4 (udq = 0.0876mm), so it seemed rea- 
sonable to consider it as a known parameter (very close to 
the real value). However to see the difference three closed 
loop calibrations were performed each time; one with fixed 
link length a2, another with fixed d4, and a third one when 
both of them were fixed. 
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par. Number Index Dist. (mm) 

Parameter NLS (mad,") 
0.0907 

4.2362 

Table 2: Comparison of closed loop calibrations. 

ILM (mrad,mm) 
0.0904 

4.0878 

5.2 Closed Loop Calibrations Using a Plane Con- 
straint 

The results of the comparison are shown in Table 2. Only 
100 measurements were used for calibration; the remaining 
20 poses could be used for indepent test. To see the robust- 
ness of the model and the procedure, we list the condition 
numbers and noise amplification indices too. The RMS er- 
rors of the cross-check are included for the calibration and 
the test pose set respectively. 

Interestingly the best results were obtained when both 
candidates were fixed. However, this makes the planar cal- 
ibration unreasonable. Although for d4 the condition num- 
ber of the Jacobian is larger (probably because a2 has bet- 
ter observability and this makes the procedure more robust), 
the final results of the cross-check are worse. Thus we 
chose a2 as the known link length. 

The identified parameter errors (w.r.t. the nominal 
PUMA parameters), obtained by setting a2 = 432.3" 
from the Optotrak results, are collected into Table 3. The 
huge joint angle offsets yj  are due to the zero level of the 
potentiometers in the joint angle sensors not having been 
set correctly. The RMS error of the endpoint distances 
from the plane was reduced to 0.2515 mm w.r.t. the 100 
test points and to 0.2774 mm for the independent 20 test 
points. 

It is of interest whether we can build a better model by 
taking the input noise into account. First using all the 120 
points we replicated the NLS method by setting X++co, 
the standard deviation of the output noise o - ~  = 0.25mm, 
and the standard deviation of the input noise U$ = 0. We 
got back the same parameter corrections, r e "  and a x2 
value of 120.3 which is a little bit far from its expected value 
P x C - N = 97 but in the acceptable region. 

Then to deal with joint sensor noise, we modified the 
model by including input noise standard deviation of U+ = 
0.lmrad. This seems reasonable because it can cause er- 
rors in the endpoints having standard deviation of 0.1 mm. 
The optimization yielded a x2 value of 134.7 with expected 
value of P x C  = 120. The initial estimates were modi- 
fied to match the a priori standard deviation of parameter 
errors which was set to 0.002 (rad,m). Performing the cross 
check with the mixed parameter set yielded the RMS error 
between inter-distances of 0.5303 mm. 

-3.439 0 
7.028 0 
-2.693 1.19 
-6.932 -2.03 
-1.749 -0.19 
-14.331 -0.4 

0.27 0.021 
0 0.104 

0.06 0.0225 
-0.67 0.04 

-0.01 0.008 
-0.7 0 

0 
-0.275 

0 
0 
0 
0 

Table 3: Identified errors in the parameters. 

5.3 Statistical Analysis 
The results of the error analysis of the fitting processes are 
shown in Table 4. The standard deviations of the errors be- 
tween the estimated and real parameters are calculated from 
the diagonal elements of E;. Huge uncertainties are found 
among the last two joint angle offsets and skew angles. One 
reason for this might be backlash in the Puma wrist, no- 
ticed during the experiment too, which can cause outliers 
and make the Gaussian assumption of joint sensor errors in- 
valid. It is shown that link lengths d3-6 might be far from 
the real values too. 

0.2034 
0.6604 
0.662 1 
3.4756 
7.8142 
0.2131 
0.3389 
0.1758 
0.7979 
1.7140 
3.7753 
4.2423 
0.0558 
0.2975 
0.0557 
0.6141 
0.08 18 
0.5389 
3.2211 
3.3906 
6.4105 

0.1985 
0.6205 
0.5897 
1.7146 
1.9379 
0.2088 
0.3352 
0.1756 
0.7321 
1.2930 
1.7514 
4.1051 
0.0561 
0.2795 
0.0520 
0.3143 
0.0774 
0.5042 
3.0269 
3.1569 
3.2808 

Table 4: Standard deviations of parameter errors. 

These discrepancies can also be explained from a differ- 
ent viewpoint. It has been shown in [12] that considering 
the singular value decomposition of the augmented Jaco- 
bian D = U X V T ,  the columns of V are independent er- 
ror directions having standard deviations i?i = l / d m .  
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When the measurements are noisy, or when the model is not 
complete, some parameters are hardly observable; CT~ will 
be small and U* will remain at its original value of 1 leav- 
ing the estimates unchanged from the initial values. Other- 
wise it will be reduced to approximately l /q,  i.e., the esti- 
mated parameter will be close to the real value. By exam- 
ining the singular values of the ILM Jacobian we could cal- 
culate that the final parameter errors were reduced to 0.77% 
and 69.63% of the initial value for the best and worst direc- 
tions, respectively. 

6 Conclusions 
Calibration using a planar constraint is the most signifi- 
cant remaining closed-loop approach to be developed. We 
found that it was surprisingly difficult to develop a viable 
approach. Previous proposals for formulations using the 
plane equation or using normals obtained from cross prod- 
ucts of difference vectors were found problematical. For 
example, the fitted plane wandered, even though the result- 
ing parameters matched to it well. The key for us was a 
careful definition of the base frame, by a projection back 
from the first distinctive axis intersection point on the mech- 
anism to the plane. 

Good results were obtained with proper definition of the 
base and end link frames. The results of two optimization 
techniques, Nonlinear Least Squares Optimization and the 
Implicit Loop Method, were compared. NLS Optimiza- 
tion is easy to implement, but is based on the reduction of 
output noise only. Among the advantages of the Implicit 
Loop Method is that a priori information about parameter 
and measurement errors can be included easily. The applied 
model can be verified and unmodeled factors are uncovered 
by the statistical analysis. 

The experimental results showed that this method is suit- 
able for robot calibration without using external sensors, 
though unmodeled factors and the fact that we use only one 
calibration equation per pose can cause observability prob- 
lems with the parameters. Special care has to be taken about 
the location of the constraint plane and the points selected 
for calibration. 
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