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Abstract

Closed-loop kinematic calibration has been expertmentally
implemented on the Sarcos Dextrous Arm. The elbow joint
1s made mobile by adding an unsensed hinge joint at the
endpoint attachment 1o ground. The calibrated parame-
ters include the joinl angle offsets and the hinge-rclated
parameters.

1 Introduction

In the past, we proposed the closed-loop kinematic cal-
ibration method [3], which permits a manipulator to be
calibrated without endpoint sensing. In this method, a
manipulator forms a mobile closed kinematic chain by at-
tachment of the end effector to the environment. This
attachment may be rigid or may have up to 5 unsensed
degrees of freedom. By placing such a constrained manip-
ulator into a number of poses, the kinematic parameters
may be calibrated using joint angle sensing alone and the
loop closure equations.

This paper presents an experimental implementation of
closed-loop kinematic calibration on the Sarcos Dextrous
Arm. a 7-DOF rédundant manipulator [11}. With rigid
attachment of the endpoint to the environment, the Sarcos
Dextrous Arm will form a mobile closed kinematic chain
with 1 DOF. Unfortunately, this anthropomorphic arm
will have an immobile elbow joint during this motion. In
order to make this joint mobile, and hence to identify the
parameters associated with this joint. it is necessary to
free at least one of the end effector constraints. Qne way
is to add an external unsensed hinge joint: this situation
was analyzed in [3] and a procedure was given to eliminate
the hinge joint angle from the loop closure equations.

In addition, it is necessary to define a force control
strategy. which permits manipulator pose changes in com-
pliance with a constrained end effector and initially incor-
rect kinematic parameters. In a previous implementation
on the fingers of the Utah/MIT Dextrous Hand {2]. the fin-
gers were manually placed into different poses and advan-
tage was taken of the backdrivability of the finger joints.
For the Sarcos Dextrous Arm. which is a hydraulic ma-

nipulator, an active force control strategy is required to
move the joints.

In the present paper we are determining only the joint
angle offsets and the hinge related parameters. because
our main purpose is recalibration of the joint angle offsets.
That is to say. we presume that the geometric parameters
are already well enough known from the manufacturer's
specifications or from previous calibrations. Joint angle
offset. recalibration is required because of the use of analog
sensing at. the wrist joints and incremental encoders in the
arm joints.

1.1 Related Research

Other researchers have implemented closed-loop calibra-
tion, under diverse endpoint constraints. In [14], a line
constraint was defined by a laser, which was tracked us-
ing an endpoint retroreflector on a PUMA 560 and a 4-
quadrant detector. In [5], a fiducial point on the end ef-
fector 1s touched to a fiducial point on the environment in
several different poses; this corresponds to the point con-
tact case in [3]. In [12], a teleoperated excavator with un-
sensed joints was calibrated by adding an additional link-
age (called a calibrator by the authors) with some sensed
joints to form a closed loop. In [7]. a ball bar with fixed
length and unsensed spherical joints at each end was em-
ployed. Closed-loop calibration of a manipulator with a
camera mounted on an end effector was presented in [17].

In the following, we first review open-loop kinematic
calibration. then derive closed-loop kinematic calibration
using a hinge joint. Experiments on the Sarcos Dextrous
Arm are then presented.

2 Methodology

The Denavit-Hartenberg (D-H) convention is employed for
the geometric parameters (Figure 1). In the present case,
Hayati coordinates are not required because the Sarcos
Dextrous Arm has all neighboring joints orthogonal. The
subsequent. development is taken from [3].
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Figure 1: Denavit-Hartenberg coordinates and tip vector
b
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2.1 Open-Loop Kinematic Calibration

For a manipulator with n DOFs. the end-effector is located
by the position vector p% and the orientation matrix R.:

n

pf..—_ZsJ-z;_l-’.-ajx;- (1)
j=1

R = [[ R:(6))R,(a]) (2)
i=1

where R.(¢) and R,(¢) are 3-by-3 rotation matrices
about the z and x axes by the angle ¢. The subscript
¢ indicates that the position and orientation are com-
puted from the model. The superscript ¢ indicates the
configuration of the manipulator. In kinematic calibra-
tion, the manipulator must be placed into m poses, with
a=1p6.. ... 9i)7.i=1,....m, for n links.

The required geometric parameters are s;. ;. and a;
for links j = L,....n. We will model only the joint an-
gle offset H;j 7 related to the actual G} and measured 0;
DH joint angles by the relation 0; =40; + 0]'-’“. For the
calibration, we use a single vector which holds all the un-
known kinematic parameters ¢ = [8°// a.s.a]T. where
s=[51,....5.]7. etc.

Instead of the orientation matrix R.. it is conve-
nient to represent the orientation by the vector or pi =
[oL. d);, #']7. representing the roll-pitch-yaw (ZYX) Euler
angles: R = R.(¢))Ry (¢! )Rs(¢}). The computed end-
point location can than be written as xi = [pi.p:]T and
given by :

x\ = f(8'. ¢) (3)

where the function f is derived from (1) and (2).

To estimate ¢, the manipulator must be put into an
adequate number m of configurations. in consideration of
the large number of parameters in @ and of statistical
averaging. At each configuration ¢, the actual endpoint
location x! is measured. The goal is to determine the
that best predict from the kinematic model (3) all of the
endpoint measurements X' = [x1..... x|

a

X = Fly) (4)
where F(p) = (£(0', ¢),....f(0™, v)).

Solving for ¢ from (4) is a nonlinear estimation problem
that can be done by linearization and iteration of :

AY =CAp M)

where C = 8F/d¢. The vector AX = [Ax!... .. Ax™]T,
with Ax* = x’ — x, contains the location errors. The
error in the total parameters is Ay = ¢ —¢,. where ¢, is
the current estimate, ¢ is the corrected estimate. In A,
As = s — sg, etc.

An estimate of the parameter errors is provided by

minimizing the least-squares function LS = (AX —
CA@)T(AX — CAgp). which yields
Ap=(CTO) tcTax. (6)

Finally. the guess at the parameters is updated as ¢ =
©o + A and the iteration continues until AY — 0.

The basis for linearization is the assumption that x? is
close to x!,. Then

A nt
ax=x,-xi=[ 40 ] )
where Ap’ = [dr®,dy’,dz]T is the incremental position
error, and Ap' = {3()5}.6(#2,(’94)';]7‘ is the incremental ori-
entation error in term of the Euler angles.

Using differential rotation about orthogonal axis rather
than non-orthogonal Euler angles, we have Ar' =
[8z!,8y', 0:']T. The relation between both are given in
[3]. The Jacobians are then found by screw axis analysis
as in [3].

2.2 Closed-Loop Calibration with Fixed
Endpoint

We next consider a redundant manipulator (> 7 DOFs)
with fixed end-point. Generally. the resulting closed-loop
chain will be mobile, since the fixed endpoint constraints
only 6 of the 7 DOFs of the manipulator. We can set
the reference frame to be at the fixed endpoint and to
have zero orlentation and position. Hence x;, = 0. and no
measurements are required because the actual position is
known and is zero by definition.
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Figure 2: Coordinate description of arm and hinge.

Using the previous mathematical development with one
modification, we can write:

AX' = —xt = —[0z}, 8y}, 028 det dyt, d=E]T (8)

where —Arf = (z%,9y:,0z)) is the computed orienta-
tion, and —Ap’ = (dzi,dyi,dz!) is the computed posi-
tion. Because the “measured™ angles are defined as zero,
differential rotation around nom-orthogonal Euler axis is
equivalent to differential rotation around orthogonal axis.
Thus, for the closed-loop case, we have Ap! = Ar’.

For the positional component of the loop closure equa-
tions, we have

n
p'c;Zsjz}_1+ajx} =0. (9)

j=1
Ordinarily in the closed-loop procedure this equation is a
problem, because the length parameters are linearly de-
pendent. To proceed. it is necessary to specify one length
parameter to scale the system size. This is not a problem
for the present case, since the manipulator link lengths are

presumed known.

2.3 Closed-Loop Calibration with a Hinge
Joint

To make the elbow joint mobile, we add a passive, un-
sensed 1-DOF rotary hinge joint. The hinge is defined to
be the —1 joint, with z', positioned along the hinge axis
(Figure 2). The endpoint coordinates being arbitrary, it
is convenient to make the last joint z/ coincident with the
hinge axis :%,. The hinge coordinates origin can then be
positioned at the endpoint coordinates origin.
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The geometric parameters needed to define this added
unsensed DOF are s, ag, and ag, defined from hinge co-
ordinates —1 to the manipulator base 0. and s;. We also
need to calibrate the parameters between coordinate 6 and
7: a7, 87, and a7. The hinge angle 8 = —@} measured
about z* | is unknown and must be eliminated from the
6 kinematic loop closure equations. All other parameters
related to the arm are known from the manufacturer's
specifications.

To apply the method from hinge to endpoint, we
have the position vector, pt = 0 from (9) and Ap’ =
[dz?, dy‘ dz*]T from (7), and the endpoint orientation ma-
trix R. and R:,,:

Ri,, = R.(6))Rs(a}) - R,(67)R.(a?)
= R.(32)Ry (0¥ )R, (3:') =15 (10)
R! = R.(0:")R,(dy')R.(8") (11)

where I3 is the 3-by-3 identity matrix, R}, is the total
rotation, including the unsensed hinge joint angle, R} is
the total rotation, excluding the hinge joint, dz° and 8y'
are infinitesimal rotation along axis r and y and 8* is finite
rotation along axis z of the coordinates frame —1.

From equations (10) and (11). and using the fact that
infinitesimal rotations are commutative, we have that
R.(6}) = RT(6)), or (65) = —()).

Then, from equations (10) and (11). to solve for the
hinge joint. we have :

R: = (R.(})R.(0)) - R.(05)R.(a})T .

cos(8l) —sin(6t) Oy
= sin(') cos(fl) —Oxf (12)
. ... 1

or. 9‘ = atan‘Z(R:ﬁ(:_,‘l),Ri(“,). where the indices denote
the elements of the rotation matrix R.

The desired variation dx* and Ay are extracted from
RIR, (') = R.(9zr)R,(0y'). The computed endpoint
location is then given, along the hinge base frame (frame
—1) by :

Ax' = [02). 0y det . dy', d:]T (13)

The equations (10) and (13) imply that everything is
calculated with respect to the hinge —1 frame. There-
fore, to carry on the calibration, the procedure is as fol-
lows : calculate the total rotation, without the hinge angle

(12) with respect to the base manipulator frame (0 coordi-
nates); extract # from (12) and 9z, 8y; from R{R.(6});



Figure 3: Sarcos Dextrous Arm and hinge joint.

rewrite (10) with respect to hinge joint frame (—1 coordi-
nates); then calculate endpoint position Ap’ = —p? with
respect. to the hinge frame.

Since z7, aligns with the hinge joini and with =7, then
05!/ can be arbitrarily set to zero. To reflect the reduced
dimension of xi. the function F, the vector X', and Jaco-
bian matrix C are redefined in (4), and (5) by eliminating
the third row at each pose. To proceed with the cali-
bration procedure, ¢ is adjusted by keeping the angles
offset. parameters (6%....,60%). and the hinge related ones
(np.a7.50.81.57.a;.a7). The Jacobian matrix C is rede-
fined by keeping the columns corresponding to parameters

n .

3 Experimental Results

For the first 5 joints of the Sarcos Dextrous Arm, joint
angles are sensed by 400,000 count optical encoders. For
the last two wrist joints. joint angles are sensed by ro-
tary variable differential transformers (RVDTs) which are
sampled by 12-bit ADC's. The manufacturer specifies a
linearity of 2% of full scale of a best fit straight line: in
addition we observe a noise level of 2 bits.

A fixture was made which rigidly attached the base of
the hinge joint to the arm’s last link and the hinge beam
to the robot mounting table (Figure 3). The location of
the hinge joint relative to the arm and to the mounting
base was selected such as to have a range of motion wide

enough for all the joints, and to have a generated pose
set for which the numerical calibration procedure is well
conditioned. For example, the hinge joint was positioned
such that neither joint 7 nor joint 1 were parallel to it.
(Parallel adjacent joints would require Hayati parameters
during a numerical calibration [9]).

The following force control strategy was used to move
the constrained arm. With rigid attachment of the end-
point to the environment through a hinge joint. the re-
dundant Sarcos Dextrous Arm with 7 DOFs will form a
mobile closed kinematic chain with 2 DOFs. Each joint
of the Sarcos Dextrous Arm can be controlled via a force
control loop (called free mode) or a combined position and
force control loop (called position mode). Hence. to move
the manipulator in a closed-loop fashion, we set two joints
in a position mode, and the remaining ones in a free mode.
The joints were chosen experimentally by the ones leading
to the most internal motion of the remaining joints.

To improve the numerical performance. we should con-
sider task variable scaling and parameter variable scaling.
In a least-squares analysis on the endpoint pose error, po-
sition errors and orientation errors have to be combined.
It has been argued that for arm lengths of around one
meter. then the units of meters and radians are directly
comparable [10]. Hence task variable scaling is not per-
formed. C'olumn scaling is performed for the parameters
[13]. With regard to identifiability and pose selection, af-
ter scaling and for the experiment done and the pose set
selected, we obtained a condition number of 28. Scaled
condition numbers below 100 are considered acceptable
[15].

The results from the closed-loop method, calibrating
only for the angle offsets 0;” and the hinge related pa-
rameters, are presented in Table 2. The manufacturer’s
values are given in Table 1.

At the moment. we have not implemented an indepen-
dent test to verify the identified parameters. In the mean
time, we present the standard deviation of the final pose
errors as a measure of goodness of fit. By definition. the
“measured” position and orientation from the hinge joint
to the end-effector is zero. The standard deviation of the
endpoint position is:

1

T | D+ )+ (D))

i=1

(14)

Tpos =

where ri, etc.. are the computed position components
from the identified parameters. The orientation standard
deviation is calculated from dr’ and dy* only:

m

Ot = i ;uaﬂ)? + (1)) (15)
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j | af (m) | 5P (m) | oF (deg) | 6;77 (deg)
1 0.000 * 90.0 *
2 0.000 0.000 -90.0 *
3 0.000 0.355 90.0 *
4 0.000 0.000 -90.0 *
5 0.000 0.320 90.0 *
6 0.000 0.000 -90.0 *
7 * * * *
Table 1: D-H parameters according to manufacturer's

specifications, and to hinge joint location.

For our experiment, we obtained a position standard devi-
ation p,e = 2.7m1n and an orientation standard deviation
Oori = 6.6mrad.

4 Discussion

We have presented experimental results for the closed-loop
calibration method applied to the Sarcos Dextrous Arm.
The main advantage of this method is that no external
sensor device is needed for the calibration. To implement
this method for the Sarcos Dextrous Arm, it was neces-
sary for us to free up one endpoint constraint to make the
elbow joint mobile. by adding an unsensed passive hinge
joint. We also implemented a force control strategy which
identified two drive joints and servoed other dependent
joints to zero torque.

The errors in the calibrated parameters could be ex-
plained by several sources. First and probably most im-
portantly, the RVDTs at the wrist are not that accurate.
We plan to overcome this problem in the future by con-
sidering these joints to be unsensed and eliminating them
from the loop closure equations. Thus there would be
three unsensed freedoms at the endpoint, similar to the
case of a ball joint except that the axes will not all in-
tersect. Second, the fixed parameters that were used in
Table 1 may not be exact. We plan to employ open-loop
calibration [1] to check on these parameters and to ver-
ify the closed-loop results. Third, the fixture used is very
stiff, but it is more flexible than the arm. It could be that
there was imperceptible motion between the hinge joint
and the end-effector or between the hinge joint and the
mounting table.

Another potential problem is that. compared to open-
loop calibration, the closed-loop method generates fewer
and more limited poses because the endpoint is fixed. The
joint ranges are also smaller. However, with a scaled con-
dition number of 28. it appears that the closed-loop poses
were adequate for this identification problem.

i [ aj (m) [ s (m) [ aj (deg) | 677 (deg)
0 0.202 .014 -38.5 n/a
1 273 9.9
2 -122.8
3 -21.1
4 -9.2
5 27.1
6 116.3
71 -0.101 0.038 99.8 89.3

Table 2: D-H parameters derived from closed-loop

method.
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