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Abstract

Autonomous robot calibration is defined as the process of
determining a robot’s model by using only its internal sen-
sors. It is shown that autonomous calibration of a manip-
ulator and stereo camera system is possible. The pro-
posed autonomous calibration algorithm may obtain the
manipulator kinematic parameters, external kinematic
camera parameters, and internal camera parameters. To
do this, only joint angle readings and camera image plane
data are used. A condition for the identifiability of the
manipulator/camera parameters is derived. The method is
a generalization of a recently developed scheme for self-
calibrating a manipulator by forming it into a mobile
closed-loop kinematic chain.

1. Introduction

Hand-eye coordination is a particularly demanding
task, because it requires the consistency of two sep-
arate sensing systems: the robot manipulator and the
stereo vision system. It is the intention of this article
to address the issue of how these two systems may
be calibrated autonomously. &dquo;Calibration&dquo; means
the determination of all of the parameters of the
internal models of both the camera and arm sys-
tems. For the purposes of this article autonomous
calibration is defined as an automated process that
determines the model parameters by using only the
robot’s internal sensors. Thus for autonomous kine-
matic calibration, only the joint angle and 2D cam-
era image sensors are permitted.

l.l. Motivation

Autonomy is an important property for a robot that
must function outside of controlled laboratory condi-
tions. It is inevitable that a robot will have its base
moved, links bent, or cameras misaligned or be
otherwise damaged. In such situations it would be
desirable not to have to resort to the use of special-
purpose calibration equipment to update the model
used for robot control. In fact, an ultimate goal
would be for the robot to be able to calibrate its
internal model in real time.

Although in certain engineering applications the
goal of autonomy may be sacrificed in favor of sim-
plicity, it is pointed out that humans have no such
choice in calibrating their sensory-motor system.
Thus a second motivation for studying autonomous
calibration derives from an interest in understanding
the human sensory-motor system (i.e., human motor
control research) (Bennett 1990).

1.2. Previous Research

In the domain of robot dynamics, autonomous cali-
bration has essentially been achieved, although the
kinematics must be assumed to be known (An et al.
1988). In particular, it is possible to estimate the
inertial parameters that define the various links by
using only internal joint torque (current), position,
and velocity measurements. This idea has actually
been made to operate in real-time model-based adap-
tive control schemes (Niemeyer and Slotine 1988).
The success of inertial estimation is based on the
observation that the suitable combinations of the
inertial parameters enter linearly into the dynamic
equations.

In contrast, autonomously determining the static
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relationship between the internal joint angle sensors
and the manipulator end-point position-referred to
as the kinematic model-has not been as successful
as autonomous dynamic estimation (Hollerbach
1989). Typically, researchers have viewed the
manipulator as a positioning device-that is, an
open-loop kinematic chain. This view demands that
the end point be measured in addition to the joint
angles to infer the kinematic parameters. Therefore
autonomous calibration is not possible.

If instead the manipulator is viewed as a device to
interact with the environment, then autonomous cal-
ibration is possible (Bennett and Hollerbach, 1988;
1989a,b). The basic observation is that the manipula-
tor may form a mobile closed-loop kinematic chain
when performing a task. The internal model struc-
ture, the knowledge of the type of task constraint,
and the internal joint angle measurements collected
while in a number of configurations provide enough
consistency equations to solve for the kinematic
parameters.

. For example, imagine a 6-DOF manipulator mak-
ing a fixed-point contact (a 3-DOF task) with a sur-
face (i.e., similar to holding a pen tip at a fixed loca-
tion). The resulting closed-loop kinematic chain is
mobile; so, if the closed loop is moved into n con-
figurations, then the joint angle readings may be
used to write 3n loop position equations that may be
solved to identify all of the kinematic parameters
(Bennett and Hollerbach 1989b). The transforma-
tions from robot base to the contact point and from
the wrist to the contact point are also determined in
the process. This technique is quite general. As an
example that is most relevant to the hand-eye cali-
bration problem, we point out that two uncalibrated
manipulators may calibrate one another by moving
while rigidly grasping a common object (a 0-DOF
task) (Bennett and Hollerbach 1988).
Three observations are worth stressing:

~ The knowledge of the task constraint (e.g., two
robots gripping together) replaces the need for
an external sensor.

~ The redundancy of the sensing systems (e.g.,
two arms) with respect to the task enables the
various redundant components to move while
performing the same task.

~ The a priori model structure knowledge allows
one to form a number of consistency equations
(the kinematics) that may be solved for the kine-
matic parameters.

These three observations serve as a basis for

extending autonomous manipulator calibration to

complete hand-eye calibration. First we review rele-
vant vision system calibration techniques. _ .

The conventional methodology for camera calibra-
tion is to move a number of known precision points
into the field of view of the cameras and infer the
camera calibration from the given points in space
(Tsai 1989). 

-

One effective approach is to form a look-up table
from known rays (obtained from two planes of
points in space) to recorded image locations (Mar-
tins et al. 1981; Gremban et al. 1988) and then use
splines to do local interpolation. Look-up table
approaches need external calibration points, and
thus they must be disregarded for autonomous cam-
era calibration.

Various model-based approaches have been used
for camera calibration. In computer vision and
graphics the pinhole camera model has been used
extensively (Sobel 1974; Duda and Hart 1973; Yaki-
movsky and Cunningham 1978; Horn 1986). This
model may be augmented to account for lens distor-
tions (Moffitt and Mikhail 1980; Ziemann 1985; Tsai
1986). Because the pinhole camera model is nonlin-
ear in its parameters, there have been various pro-
posals to make the calibration equations linear
(Abdel-Aziz and Karara 1971; Ganapathy 1984; Tsai
1986). These methods are important, because they
provide initial guesses at the parameters that general
nonlinear parameter search methods require. Other
empirical polynomial interpolation models have also
been used (Martins et al. 1981; Isaguirre et al. 1985;
Gremban et al. 1988), their only advantage being
that the parameters enter linearly into the equations.
These camera modeling techniques and parameter

identification methods are relevant to autonomous

calibration, but most of this work is predicated on
the assumption that there are external calibration
points available. There are a few notable exceptions.
For example, early photogrammetric engineering
work (Kenefick et al. 1972) and more recent robotics
research (Brooks et al. 1988) have demonstrated that
the camera parameters may be recovered by moving
the cameras while viewing arbitrary unknown points
in space.

Finally, there is a considerable body of literature
that addresses the problem of registering the cali-
brated vision system’s coordinates with respect to
the robot base (Hollerbach 1989). Especially inter-
esting is the work in Puskorius and Feldkamp
(1987). Their technique is to determine the camera
to hand transformation simultaneously to the robot
parameters by viewing an arbitrary fixed point in
space. The internal camera parameters are calibrated
beforehand by viewing a precision calibration jig.
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1,3. Toward Autonomous Hand-Eye Calibration

As can be seen, the calibration of a robot manipula-
tor/vision system is typically based on a &dquo;divide and
conquer&dquo; principle. None of these approaches may
be made autonomous. Further, there is no guarantee
that once the various separately calibrated compo-
nents are assembled they will be consistent. This is
an important point, as models and sensors are llSU-
ally inaccurate. We thus propose that a solution is
to calibrate the models of the manipulator and two
cameras simultaneously while performing the tccsk of
interest-hand-eye coordination. This may be done
as follows.

Recalling the three observations made concerning
closed-loop manipulator calibration, it is remarked
that hand-eye calibration fits into this framework.
First, a manipulator and a vision system may sense
the location of the same point in space, and thus the
total robot sensing is redundant. Second, if the task
is defined as the cameras tracking the hand, then a
closed kinematic loop is formed. This task constraint
replaces the need for external calibration points.
Finally, because we may assume a priori knowledge
of both the camera and the arm kinematic model

structure, it is possible to write consistency equa-
tions of the closed loop in a number of configura-
tions and thus solve for the parameters. We will

develop this idea in the following.

1.4. Outline

As stated, the purpose of this article is to extend the
&dquo;closed-loop&dquo; approach developed for calibrating
robot arms to calibrating a complete robot-with a
stereo vision system in addition to the manipulator.
The stereo system is assumed to have one axis of
rotation per camera but is otherwise taken to have
an arbitrary geometry.
An uncalibrated stereo camera system will be

made to track a point on the hand of an uncalibrated
arm. There are at least two distinct approaches to
forming the closed-loop calibration equations. The
first is to formulate a model for the manipulator rela-
tive to each camera separately and measure the
position error in 2D image plane coordinates. The
calibration would proceed by collecting data from
manipulator/camera movements and minimizing the
image plane error in both cameras. The second
approach is to directly model the position of the end
effector given by the stereo calculation (from the
image data). The calibration can then proceed by
minimizing the end-effector error between the
manipulator and stereo models. Of these two

approaches, the second is chosen, because it seems
more natural to minimize the task space error. In

addition, using the second approach enables one to
formulate the iterative identification equations more
simply; in particular, the manipulator Jacobians
developed in Bennett and Hollerbach (1988) are
directly applicable.

It is assumed that the point that is to be tracked
may be unambiguously located on both camera
images. This generally nontrivial correspondence
problem (Horn 1986) may be solved here because of
two additional constraints. First, it is known that the
hand is moving relative to the background; therefore
it is possible to disambiguate the hand image from
the background. Second, a convenient point that can
always be unambiguously located on the hand may
be used (e.g., the tip of a pointer).

2. Model Definitions

2.1. Manipulator Model

Consider an arbitrary manipulator with n.f degrees of
freedom. Let the 4 x 4 homogeneous transforma-
tion A; from link j to link ( j - 1) be defined by the
Denavit-Hartenberg (D-H) convention (Denavit and
Hartenberg 1955) given in Figure 1 and symbolically
as:

Aj = Rot(z, Oj’)Trans(z, s;)Trans(x, aj)Rot(x, aj)
where the notation Rot(x, $) indicates a rotation
about an axis x by 0 and Trans(x, a) indicates a
translation along an axis x by a. The joint angle is
presumed to be related to the sensor reading by a
constant offset: 6~ = 8; + 8, ff .
For convenience we define the base of the manip-

ulator to coincide with a head-referenced coordinate

system that is coincident with the left camera’s axis
of rotation (see next section). The position of the
last link is related to these base coordinates by a
sequence of D-H transformations defining the kine-

Fig. 1. Denavit-Hartenberg coordinates and tip vector b;.
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matic model:

Because the model must only locate a point on the
end effector, the last axis skew is unnecessary:

The position of the point P to be tracked is thus
given by the minimal parameter model:

where the &dquo; &dquo; 
emphasizes that it is the position of P

modeled by the manipulator system, and o = (0, 0,
0, 1 ) is the location of the point P in the hand-based
reference frame.

All of the unknown manipulator kinematic param-
eters are placed into an array:

where s = (SI, s2, ...)T, etc.

2.2. Visual System Model

The model of a stereo camera system may be decou-
pled into a purely geometric part giving the relative
orientation and position of the cameras and a part
modeling each camera’s projection of points in
space. The parameters for these two portions are
respectively called the external and internal camera
parameters.
The internal camera model used is the standard

pinhole camera model (Haralick 1980; Horn 1986).
More refined parametric models including lens dis-
tortions (Moffitt and Mikhail 1980; Ziemann 1985;
Tsai 1986) may also be incorporated without chang-
ing the general approach. Let the effective focal
point distance be denoted by f and the projected
point P in the image plane be given by the pair (u,
U). Further define local camera coordinates to have
x- and y-axes parallel to the camera (u, v) grid and
have an origin at the focal point (Fig. 2). Thus the

Fig. 2. The internal camera model.

coordinates (XR, yR, zR) of a point P expressed in
the right camera’s local coordinate system are given
by the standard projection equations:

Notice that provision is included for unknown off-
sets (ukff, v~f ) between the image plane readings
and the optical center of the camera. Analogously,
the left-camera equations are:

The external geometric model of the two camera
system can be represented by D-H transformations.
To distinguish the camera D-H parameters, a tilde
(e.g., so) is used. We assume that each camera has
one degree of rotation about a fixed axis with a joint
angle sensor (OL = 02 and BR = 01 for the left and
right cameras, respectively) as defined below. It is
convenient to start the kinematic chain at the right
camera’s local coordinate system-that is, the frame
located at the right camera’s focal point and having
its x- and y-axes parallel to the right image plane (u,
U) coordinate grid. As mentioned in the previous
section, the &dquo;base&dquo; coordinates are assumed to be
located at the left camera axis of rotation. Thus the
transformation of a point x _ (x, y, z, 1)’ in base
coordinates to the local coordinates of the right cam-
era _a = (xR, yR, ZR, 1)~ is given by (Fig. 3):

where the only variable parameter is 8; = OR +
biff, the right camera rotation. We also define the
opposite transform as! = TRx~. The left camera

! Fig. 3. The right camera axes to base D-H transforma-
. 

tions. The frst transformation locates the line of action of
the right camera rotation. The second transformation
locates the base coordinate z-axis, which is also the left
camera axis of rotation.
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Fig. 4. A stereo camera system attached to a manipula-
tor. L and R indicate the left and right cameras. The left
and right cameras rotate about ~I and ~o, respectively.

coordinate system may be located by two additional
D-H transformations (Fig. 4):

where the only variable parameter is 6’2 = OL +
e2ff, the left camera rotation. The parameters 93 and
63 translate and orient about the left optical axis so
that the left coordinate system lines up with the (u,
v) image grid and is located at the focal point. The
parameters d3 and cr~ are redundant and are taken to
be fixed zero quantities. We also define RR and RL
as the upper 3 x 3 rotation matrices of TR and T~,
respectively.
To solve the stereo camera equations, it is con-

venient to define the vector p from the left focal

point to the right focal point, the vector I from the
base frame origin to the left focal point, and the two
internal parameter vectors as follows:

where again o = (0, 0, 0, 1 )~. Notice that UL and uR
are vectors from the left and right focal points,
respectively, along the line of sight. Thus the point

P in base coordinates is simply:

where the &dquo;!&dquo; 
emphasizes that it is the position of P

modeled by the camera system. The scalar c is given
by:

where &dquo; 

x 
&dquo; 

denotes vector cross product, and &dquo;~&dquo;

denotes inner product. The linear operator F(-) has
been defined here, as it will be useful later.

All of the unknown camera parameters are placed
into an array:

2.3. The Closed-Loop Model

Comparing equations (11) and (12), it is seen that the
difference defines the closed-loop kinematic equa-
tions of the hand-eye system:

where we have defined (~T, ~T)T as a concat-
enation of all of the parameters to be identified.
Note that only unknown parameters need be
included in ~. For example, if all the camera param-
eters are known and not included in c~, then the cal-
ibration method described would be a standard

manipulator calibration scheme, as, for example, in
Bennett and Hollerbach (1988).

Also, recall that the base coordinates of the
manipulator were defined to correspond to the local
coordinates of the left camera rotation. Thus we see
that the manipulator base coordinates are the cam-
era coordinates with axes il,.f 1, and il.

3. Model Identification Procedure

As the cameras track the point P at discrete loca-
tions, the joint angle and image plane sensory infor-
mation are recorded. For convenience the data
recorded at the ith configuration are placed into a
single array:

At the ith configuration of the hand, one vector
equation of the form (13) may be written

where in addition to the functional dependence on
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the model parameters the dependence on the ith
data array u’ is explicitly shown. As a short form,
L1~ will be used, where the functional dependence
on the ith data array u‘ will be understood by the
superscript i. After moving the hand and cameras
into m distinct locations, 3m scalar equations are
generated. These equations must be solved in order
to find the optimal parameter set ~, completing the
calibration.

3.1. Iterative Identification Technique

Unfortunately, the equations of the kinematic loop
are nonlinear, so we must use an iterative method to
search for the solution ~. By expanding (13) with a
Taylor’s series about an initial guess Ao and neglect-
ing higher order terms, the following linearized form
is obtained:

where 4~ _ ~ - ~. The Jacobian C’ may also be
written as:

Recall that dx’ is the difference between the location
of the point P given by the camera model and the
manipulator model (computed using 4)0). Until the
system is calibrated, this difference is nonzero.

Place the equations for each of the loop configura-
tions into one array:

The solution that minimizes the modified-least-

squares criteria (4X - C4~)T(4X - C4 #) +
ha~Ta~ is: 

~ _

After calculating the expression (18), the current
guess at the parameters may then be updated using:

Iteratively applying (18) and (19) results in a Leven-
berg-Marquardt style nonlinear search that should
converge if the initial guess is sufficiently close to
the true solution (Norton 1986). The free parameter
A is used for numeric conditioning of the matrix
inverse in (18). A may be set to a nonzero value dur-
ing the iteration, but for convergence of the solu-

tion, A must approach zero. If the matrix inverse
(CTC) -’ is undefined near a solution, it means that
certain parameters in ~ are unidentifiable (see Sec-
tion 4 for further comments).

Jacobian Calculation

A useful method of calculating the Jacobian matrices
in (16) is to consider what instantaneous variations
(partial velocities) in the modeled position of the
point P are caused by separate small variations in
the parameters (Whitney 1972; Bennett and Holler-
bach 1988). Because all vectors are functions of the
joint angles (at the ith configuration), we will at
times explicitly show this by a superscript i. For the
purposes of this section the superscript i will be sup-
pressed for notational simplicity (e.g., ~’ = zi).
For the manipulator kinematic chain model at the

ith joint angle configuration, imagine a variation 4x’
at the point P to be an instantaneous linear velocity
vector. The combined variation in all the parameters
is presumed to cause this end-point variation. Spe-
cifically, a variation of the D-H parameter sj along
the local link z axis zj- i causes a contribution to the
end-effector linear velocity of JsjZj- 1. Likewise, a
parameter variation 4 aj about the local link x axis x;
causes a contribution to the end point’s linear veloc-
ity of ( 4 ajxj) x b~ + ~ , where b j + j is a vector from

the jth coordinate system to the end point (see Fig.
1). The 6y and Qj parameters are treated analogously.
In total, the end-point translation resulting from all
of the parameter variations is given by:

Recalling that 4x = ~axna~~a~, it is seen that the
columns of the Jacobian with respect to each of the

parameter variations are given by:

and

The partial derivatives of the camera model may
be obtained by similar methods. First concentrate on
the length parameters. Notice that the vectors p and
I in equations (7) and (8) may also be written as:
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where z and x are local camera z- and x-axes. Thus
the camera model of point P ( I 1 ) can be rewritten to
explicitly show the linear dependence of the length
parameters:

where we have taken advantage of the linearity of
the operator T(~) defined in (12). It is thus apparent
that the column of the Jacobian with respect to a

particular length parameter is given by the term in
square brackets that it multiplies in the previous
equation. For example, the columns with respect to
91 and W2 are, respectively:

The other parameters may be treated by direct dif-
ferentiation of (11). For example, consider the
movement of the point P caused by a variation in
ä2:

where b3 = uL. The term in square brackets in (27)
is the column of the Jacobian with respect to d2 -
The evaluation of aClad2 is straightforward but
messy. It involves only the partial derivatives of uL
and p, which are, respectively, X2 x b3 and X2 x p.

4. Model Identifi~bility
If an insufficient number of data points are collected
during the calibration or the model used has too
many parameters, then various parameters will be
unidentifiable. That is, there will be a continuous
infinity of possible solutions to the kinematic equa-
tions. To quantify this concept, we inspect the first
differential of the loop equations (13): 0 = C4~. If
at or near a correct solution # there is an infinity of
possible solutions for ~, then there must be a non-
zero solution to the equation 0 = Cd~ (the null
space of C). This may only occur if the columns of
C (when evaluated at or near the solution ~) are lin-
early dependent. Inspecting the form of C defined in

equation (17) shows that the columns of C will be
independent and thus the model identifiable if and
only if there does not exist some fixed linear relation
among the columns of the Jacobians C’. Using (21),
(22), (26), and (27), the following condition is
obtained:

Identifiability condition: identifiability is guaran-
teed by checking that there be no constant linear
relation (for all i = 1 ... m configurations)
among the manipulator local link xj-axes and
z~-axes, their moment vectors xf x b; and z§- x
bf, and the camera Jacobian vectors given in the
previous section.

This condition has the following physical interpreta-
tion : the parameters are identifiable, provided there
does not exist a nonzero change in the parameters
4 r~ that induces no change in all of the measured
end-point positions. That is, the null space of the C
only contains d~ = 0.
The identifiability of the parameters of manipula-

tors has previously been discussed in the context of
a similar identifiability condition (Bennett and Hol-
lerbach 1989a); thus we will restrict ourselves to
camera-related problem situations.
As a first example of unidentifiable parameters,

consider the situation when the two camera rotation
axes are parallel: ~b = ~; = z’. One might suspect a
problem, because it is well known that the D-H .s

parameter is poorly defined for serial link kinematic
chains with consecutive parallel axes (Hayati 1983).
The columns of the Jacobian (26) with respect to 91
and i2 are flz’) ul and z’ - F(z’)u’L, respectively.
These two vectors are not linearly dependent, so the
problem is not as simple as for serial link chains.
Notice though that ~~ = z’ is the base coordinate’s
z-axis of the manipulator, and the Jacobian vector
with respect to the manipulator parameter so is z.
Thus there exists a linear relation among these three
Jacobian vectors:

for all i. Thus by the identifiability condition, the
parameters so, S1, and go are not identifiable alone.
This becomes a practical problem, because it also
means that C~C will be singular in the iteration algo-
rithm (18). The solution is to use an alternate coordi-
nate convention for the transformation Al. The Ha-
yati convention (Hayati 1983) developed for
manipulators provides such a four-parameter sys-
tem. This convention cannot be used for all joints,
because it, too, has a similar ambiguous parameter
when there are two consecutive perpendicular axes.
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As a second instance of unidentifiable parameters,
notice that the closed-loop equation (13) of the cali-
brated model may be written to show explicitly the
linear dependence of the length parameters:

where, in addition to equations (13) and (26), the
fact that the manipulator length parameters enter lin-
early into the kinematics (Bennett and Hollerbach
1989a) has been used. All of the terms in square
brackets are columns of the Jacobian C’, and thus
the closed loop is unidentifiable by the above &dquo;iden-

tifiability condition.&dquo; Also, from (29) it is seen that
the source of the trouble is that the loop equations
may be scaled arbitrarily and still satisfy the joint
angle and image plane data. The solution to this
problem is to fix one link length arbitrarily. This
length determines the units of length. If conventional
units, such as a meter, are desired, the calibrated
vision system merely has to view the desired meter
stick and calculate the correction scale factor to its
internal units of length.
As a final example of unidentifiable parameters,

consider the case when the data are not &dquo;persis-
tently exciting.&dquo; For instance, if the hand point P is
always to move such that it stayed in a plane
defined by the right camera axis ib, and this plane
happened to be coincident with both focal points,
then (uR x uL) x zo = 0 for all i configurations.
Thus nib) = 0, and the column of the Jacobian with
respect to &1 is identically zero. The parameter s, is
unidentifiable in this situation. Though this scenario
is unlikely, it does point out the importance of the
choice of the configuration data used for calibration.
Although perhaps only simulation may determine the
optimal data set, it is possible to study the sensitiv-
ity of particular parameters (Torre et al. 1986).

5. An Example and Simulation
To clarify the general calibration procedure, an
example is now presented and solved by simulation.
Consider the planar 2-DOF manipulator connected
to a head mounted stereo system in Figure 5. In
total there are six degrees of freedom in the system:

Fig. 5. Example hand-eye system lisedfor simulation pur-
poses.

two manipulator joints, two camera rotations, and
two one-dimensional images. The kinematic param-
eters of interest are placed into the array # in the
following order: the three manipulator link lengths
and joint angle offsets, three length parameters pro-
viding the displacement between camera coordi-
nates, two camera rotation offsets, and two focal

lengths: ~ _ (ao, at, a2, 80, B;.fs~ ~vs~ So, ät, S3,
inff, B2f ~ , f L , f ~ )T . A simulation of this hand-eye
system was performed by using the &dquo;actual&dquo; param-
eter values 52 = ( 1, 1, 1, - 0. 8, 0, 0, 0.1, 0. 36, 0.1,
0, 0, 0.05, 0.05)’~ (lengths are in meters and angles in
radians). Joint angle data were generated by moving
the four rotational joints 0), 02, 8~ , and 0-2over a
trajectory starting at 01 = 0, 02 = 0, 8, = 0, and 02
= 0 and covering a joint space volume defined by
increasing each joint three times in increments of 0.1 1
rad (i.e., 3 x 3 x 3 x 3 = 81) distinct configura-
tions. The resulting joint angles and calculated image
pairs were used as input to the algorithm given by
equations (18) and (19). In addition, a preliminary
guess of ~o = (1.1, l.l, l.l, -.9, .I, .1, .11, .4, .11,
.1, .1, .06, .06)T was provided, and go was fixed at
O.lm. The algorithm was run until the &dquo;actual&dquo;

parameters were recovered to within eight decimal
places.

6. Conclusions

A general framework for calibrating a manipulator
and stereo system for performing the task of hand-
eye coordination has been presented. The emphasis
has been on autonomous calibration. The vision sys-
tem was seen to be represented simply with the D-H
convention, thus allowing a unification of manipula-
tor and camera model notation. The vector-based
derivation of the columns of the closed-loop Jaco-
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bian enabled an identifiability condition to be
derived. As examples of the application of this con-
dition, the parallel axes problem, the length parame-
ter scale problem, and the data &dquo;persistency of exci-
tation&dquo; problem were all discussed. Finally, a
Newton-like iterative search procedure was pre-
scribed for identifying the kinematic parameters.
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