
1056 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 15, NO. 6, NOVEMBER 2000

Optimal Commutation Laws in the Frequency
Domain For PM Synchronous Direct-Drive Motors

Farhad Aghili, Member, IEEE, Martin Buehler, Member, IEEE, and John M. Hollerbach, Fellow, IEEE

Abstract—This paper presents a new model for torque gener-
ation of permanent-magnet synchronous motors and their control
based on Fourier coefficients. A new commutation strategy delivers
ripple-free torque and simultaneously minimizes copper losses for
the case when the motor’s servo amplifier dynamics are negligible.
However, multipole motors give rise to high frequency control sig-
nals, and often the dynamics of the current amplifier are no longer
negligible. For this case, we present a new commutation strategy
which minimizes the torque ripple and the velocity induced change
in the torque transfer function. The performance of both commu-
tation laws is validated via simulations based on experimental data
from a synchronous motor. Minimal computational requirements
make these algorithms ideal for real time implementation.

Index Terms—Motor drives, permanent magnet motors, syn-
chronous motors, torque control.

I. INTRODUCTION

A CCURATE and high bandwidth sources of torque are es-
sential for the precise position, velocity or force control

necessary in many robotics and automation applications. Di-
rect drive motors, and in particular synchronous motors [1], are
ideal candidates for these tasks since they eliminate the non-
linear backlash, friction and cogging effects inherent in mechan-
ical transmissions which can severely compromise performance
[2]. In addition, the performance of positive joint torque feed-
back systems [3] critically relies on the capability to produce
actuator torque accurately.

The control problem of translating a desired torque command
faithfully into a motor torque and the underlying motor model
have been studied by several researchers [4]–[11]. Manzeret al.
[4] characterized variable-reluctance motors by approximating
their flux linkage through piecewise fits of polynomials. Murai
et al. [12] proposed heuristic commutation for nonsinusoidal
flux distribution. Starr and Wilson [13] and Newman and Patel
[14] applied a 2-D lookup table and a multivariable function
to determine the phase currents of a variable-reluctance motor
with respect to position and torque set points. Filicoriet al.
[6] proposed a dynamical torque controller based on a flux ob-
server minimizing copper losses or the maximum motor-feeding
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voltage. Le-Huyet al. [15] and Favreet al. [16] compromise
the torque ripple harmonics for brushless DC motor by using
several drive current waveforms. A similar approach to ours,
reducing torque ripple and minimizing copper losses based on
Fourier coefficients in brushless permanent magnet motors has
been proposed by Hung and Ding [17]. However the approach
does not consider the velocity induced torque ripple, caused
by limited current amplifier bandwidth. Jahns and Soong [10]
suggested that pulsating torque can be eliminated by improving
machine design such as skewing and fractional slot pitch wind-
ings. It also reviews control-based techniques for compensation
of torque-ripple through a torque estimator. A fast ripple com-
pensation scheme is proposed by Holtz and Springob [11] that
is based on a model of parasitic effects, for which a complex
state-variable approach is used. Moreover, a high bandwidth
ripple compensation is enabled by using a deadbeat current con-
troller and current predictor. The main trend in the control of
synchronous motors is based on transforming currents via the
‘d–q transformation’ [18]. Since the transformation linearizes
only an ideal motor with perfectly sinusoidally distributed mag-
neto-motive force, another torque set point is cascaded to cancel
torque ripples [7], [19]. This method has been successfully im-
plemented on the previous version of the McGill/MIT motor at
MIT [19]. Less than Nm torque ripple has been reported at
low speed, however no attempts to cancel torque ripple at high
speed or to minimize power dissipation were made.

This paper presents a new open-loop torque control approach
for permanent magnet synchronous motors. The problem is how
to modulate the phase currents as a function of the angular motor
position such that the desired instantaneous torque is generated,
with minimum power dissipation. To minimize the deteriorating
effect of motor velocity on the generation of torque ripple, the
dynamics of the power amplifier is also taken into account in
the commutation design.

A new approach to torque modeling and control where both
motor torque function and commutation strategy are expressed
by complex truncated Fourier series is presented in Section II.
Since both torque and commutation functions are periodic non-
linear functions, sinusoidal bases offer a very concise repre-
sentation. In contrast, describing a function by a look-up table
may require a vast amount of data. Moreover, the phase torques
are shifted versions of each other. This feature can be exploited
nicely in the frequency domain to simplify the analysis and de-
sign of the commutation. In addition, the Fourier coefficients
of the torque function can be extracted on-line based on phase
voltage measurements only [20].

The most important aspect of this approach however, and the
subject of Section III, is that it is possible to relate the Fourier
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Fig. 1. Motor-amplifier-control system.

series coefficients of the phase torque function and those of the
commutation function by a set of linear equations. When the am-
plifier bandwidth is sufficiently high, the solution yields ripple
free torque and minimizes copper losses. However, when the
amplifier bandwidth is limited, ripple free torque can be accom-
plished only at one particular velocity. Consequently we pro-
pose another commutation law which minimizes theroot-mean-
square(rms) norm of the torque ripple over a range of selected
velocities. It is worthwhile pointing out that the delays attributed
to the digital controller implementation can be lumped with the
transfer function of the current amplifier. Section IV demon-
strates the effectiveness of the two commutation laws by com-
paring their torque ripple as a function of motor velocity to that
of the standard sinusoidal commutation.

II. TORQUEMODELLING IN THE FREQUENCYDOMAIN WITH

INCLUSION OFAMPLIFIER DYNAMICS

The structure of the motor torque controller for a general syn-
chronous motor is shown in Fig. 1. We should note that the
McGill/MIT motor [1] is the experimental system which moti-
vated this research. It is a wound-field synchronous motor with
identical rotor and stator armatures. Due to practical limitations
of the motor prototype, the phase currents of the rotor armature
were set constant independent of the torque set point. That is,
the motor exactly resembles a permanent magnet synchronous
motor on which the analysis and control design are based herein,
yet the developed controller is extendible to wound-field syn-
chronous motors. The torque generated by a single phase is a
function of the phase current,, and the motor angle,. For
a complete list of variables, see Table I. In the linear magnetic
regime the function is linear in current, and the total torqueis
the sum of the phase torque contributions

(1)

Since successive phase windings are shifted by , we have
the relationship,

where is the motor’storque functionand is the number
of motor poles. The commutator commands the phase currents,

, via

(2)

The individual phase control signals can be expressed based on
the periodiccommutation function ,

where is chosen such that is an integer. Since both
and are periodic functions with position periodicity

of , they can be approximated effectively via the truncated
complex Fourier series

(3)

where can be chosen arbitrary large, but must be an in-
teger. Since both are real valued functions, their negative Fourier
coefficients are the conjugate of their real ones, and

. Since the magnetic force is a conservative field for
linear magnetic systems, we have which implies
zero average torque over a period, and thus .

The motor model and its control can be described by the vec-
tors of the Fourier coefficients of and ,
respectively, by

(4)

(5)

The control problem is to find the vector of the commutation
spectrum, , with respect to the torque spectrum vector, such
that the motor torque becomes ripple free, i.e., independent of
the motor angle . With defined as the impulse response of
the current amplifiers, we have

(6)

After substituting (3) and (6) into (1), the total motor torque can
be expressed as

(7)

This expression can be simplified by noting that the third sum-
mation term in the right-hand side of (7) vanishes when

is not a multiple of the number of phases

if
otherwise.
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TABLE I
NOMENCLATURE

At constant velocities, , we have
. Defining and , and swapping

integration and summation, the torque (7) can written by

(8)

The torque ripple, , is defined as

(9)

while the position independent part of the produced torque in
(8) is defined as

(10)

III. D ESIGN OF COMMUTATION LAWS IN THE

FREQUENCY-DOMAIN

A. High Amplifier Bandwidth: First Commutation Law

In the absence of significant current amplifier dynamics, the
commutation problem has infinitely many solutions. In this
case, it is possible to minimize the power dissipation.
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Proposition: Let vector represent the Fourier coefficients
of the commutation function. Then the power loss is propor-
tional to , where depicts the Euclidean norm of a vector.

Proof: Suppose is the armature resistance. Then the av-
erage of dissipated power over time periodis

By changing the integral variable from timeto , where
and , we have

By virtue of Parseval’s theorem [21], the power loss per unit
commanded torque, i.e., , is

(11)

The immediate consequence of the above formula is that min-
imizing power loss is tantamount to minimizing the Euclidean
norm of the commutation spectrum vector.

We can ignore the dynamics of the amplifier if its bandwidth
is much higher than the frequency of the highest harmonics at
maximum velocity, that is decays faster than . Now

and (9) and(10) simplify to

(12)

(13)

The terms are the Fourier coefficients of the torque ripples
which can be calculated as follows:

if

otherwise.

(14)

The term in (13) is the constant part of the circular convo-
lution of and . This, in turn, is equal to twice the real
part of the inner product of the vectorsand

(15)

To characterize the spectrum of the torque ripple, we define
vector which con-
tains the Fourier coefficients of torque ripple.

Remark: Analogous to proposition 1, one can show that the
root-mean-squarenorm of the torque ripple is proportional to

.

(16)

In order to eliminate the ripple torque (12) completely, all co-
efficients except must be zero. Therefore, from (15) and
(14) the optimal commutation strategy,, must solve

(17)

The matrices can be constructed from
the torque spectrum vector in (5) and (14). For example, for
a three phase motor ( ), see (18) and (19) shown at the

bottom of the next page. By separating the real and imaginary
parts, (17) can be rewritten in the standard linear form as

(20)

This equation can be expressed concisely as

(21)

where

and (22)

and where is the set of unknown control coefficients.
The elements of matrix can be obtained
based upon the given torque functions, Fourier coefficients
according to (20), (18) and (19). Now (21) in conjunction
with Proposition 1 can be used to calculate the spectrum of
the first commutation. A ripple-free commutation implies
that all coefficients except are zero and , where

. Hence, (21) yields

(23)

where , . In general,
for motors with more than two phases, , there are fewer
equations than unknowns in (23). Therefore, ifbelongs to the
range of , a unique solution is not expected. Instead, a family
of solutions which belongs to the null space of plus a par-
ticular solution exist. Among all the solutions, the shortest one
in the sense of Euclidean norm is desirable. This is consistent
with minimizing power losses, since

The generalized inverseoffers the solution
to the problem. However, it may have

numerical pitfalls in practice because is usually ill-con-
ditioned. Singular Value Decomposition is a standard technique
to deal with such problems [22]. The matrix can be written
as where and are orthogonal matrices and
is a diagonal matrix whose elements are the singular values
of matrix . Since the matrix is not square, it has to be
augmented by adding rows of zeros underneath. The optimal
solution, , is then

(24)

where and the inverse of those singular
values which are close to zero, is replaced by zero, andis
an augmented version of . The columns of corresponding
to the zeroed construct the bases for the null space of
which shows the class of ripple-free commutation law spectrum
whereas (24) is the optimum one.

B. Limited Amplifier Bandwidth: Second Commutation Law

1) Torque Transfer Function:The more poles exist in a
motor, the higher is its maximum torque. However, using more
poles results in a higher drive frequency for a given motor
speed. This tends to become difficult for the current servo
unit to track the reference current input. Before designing
the commutation law, it is necessary to derive the system
transfer function in the presence of amplifier dynamics. The
commutation law aims at eliminating the torque ripple (9),
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while (10) shows how the torque set point is transformed
linearly into motor torque. This section is devoted to deriving
the torque transfer function of the linear system in the presence
of amplifier dynamics. Let be the impulse function of the
system,

Then by virtue of the convolution integral and (10),

(25)

where . Thus the impulse response of the torque,
, is formed by modulating , thecarrier, by

the amplifier’s impulse response, . Modulating a signal by
cosine with spectrum causes replicas of to be
placed at plus and minus the carrier frequency. The Fourier
transform of the system in terms of the amplifier’s frequency
response is

(26)

The above complex transfer function can be approximated by
a simpler one which give insight into the dynamics of torque
generation. Using the Taylor expansion of the shifted functions
around , one can write,

where is previously defined, and is a perturbation
term which enters as in an additive form into the nominal
transfer function . The perturbation transfer function
can be written up to first-order approximation by

where

Therefore, the system transfer function depends on the velocity,
, such that at zero velocity it is coincident with that of the

current amplifiers, . The above expression also relates the
uncertainty of the system to . One can show that for first
order or damped second order amplifier dynamics, is
maximum at . The outcome of this part will be used to
design the optimal commutator.

2) Ripple Cancellation:Equation (9) characterizes the
torque ripple in the presence of amplifier dynamics. The inte-
gral terms indicate that the current still enters linearly. Suppose

is the impulse response of a virtual system
associated with theth harmonics. Then

where denotes the convolution operator. The exponential func-
tion shifts the frequency of the Fourier transform of the current
amplifier, . Therefore in the frequency domain we have,

. The steady-state response of the
system to a unit step input is

(27)

Therefore, substituting (27) into (9) yields the steady-state
torque ripple. Moreover, since is a real valued function,

. Now the spectrum of the steady-state
ripple can be found analogously to the previous case at each
particular velocity as

(28)

where is the Fourier coefficient of torque ripple at theth
velocity, and is a diagonal matrix defined by

Equation (28) is similar to (17) by considering and
in (28) as and , respectively. Analogously to (23), we have

. As a matter of fact, one can show that (23) is the
special case where the velocity is set to zero. Therefore, it can
be concluded that the first commutation law is always applicable

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

(18)

...
...

...
...

...
...

...

...
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...
...

...
...

...

(19)
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at every particular velocity. Such a commutation is useful for
velocity regulator applications where the velocity remains in the
vicinity of an operating point. Since the matrix changes with
velocity, we can write the equations over an arbitrary number of
velocities

(29)

where and
. In this case, there are more equations

than unknowns in (29). Therefore, the equations are inconsis-
tent and no solution exists. This implies that it is not possible
to eliminate the harmonics at all velocities. Yet, in general, we
can find the solution using all equations to minimize the error
in the least square sense. Supposeand are two positive
scalars, then we reformulate our problem in (29) as

(30)

which can be written concisely , and is an iden-
tity matrix. Define error . The pseudo-inverse
[23] offers a solution is the
weighted least-squares solution minimizing ,
where is a diagonal matrix—again, the singular value de-
composition is another technique which can be applied here to
cope with ill-conditioning. The minimization criteria is inter-
preted in the forgoing analysis. Assume that matrixis chosen
so that scalars and weigh the error associated with the
first and the second blocks of (30). Then

(31)

Recall from (28) that is a vector containing the real
and imaginary part of the ripple spectrum atth velocity. Now,
by virtue of proposition 1 and remark 1,

where is the torque ripple atth velocity. The above expres-
sion implies that the second commutation law minimizes the
weighted sum of power loss and the rms norm of torque ripple.

IV. I MPLEMENTATION ISSUES ANDSIMULATION RESULTS

The experimental setup is a hydraulic dynamometer testbed
consisting of our direct-drive motor coupled to a hydraulic rack
and pinion rotary motor (Parker 113A129BME) via a torque
transducer (Himmelstein MCRT 2804TC) [24]. An optical
encoder (Gurley 8321-4500-CBQA-NB) mounted on the motor
shaft measures motor angle. The speed of the hydraulic motor is
regulated by a pressure compensated flow control valve (Parker
TPCS600S01). The motor torque is measured in a quasistatic
condition, where the motor velocity is kept sufficiently low
( ), to ensure that inertial torques do not interfere with
the measurements. The dynamometer is interfaced to an IBM
compatible 66 MHz 80 486 computer. Despite this limited
processing power, the CPU time taken up for the proposed

Fig. 2. Torque-angle profile obtained from experimental data.

Fig. 3. Frequency response of the current controller.

commutation laws for a three phase motor is only 106 ms,
based on Fourier coefficients up to 24 harmonics.

Implementation of the first commutation law only requires
the motor’s torque-angle profile (phase torque function). We
characterized the motor prototype by energizing one phase with
a constant current and recording torque measurements versus
motor angle using a specially designed dynamometer [24]. The
resulting torque-angle profile is shown in Fig. 2. Alternatively,
the Fourier coefficients can be extracted on-line and without
the need for elaborate mechanical test fixtures, based on phase
voltage measurements only [20]. These experiments also
showed an approximately linear relation among phase currents
and phase torques, indicating the motor operates in a linear
magnetic regime.

In addition to the torque-angle spectrum, the frequency re-
sponse of the current servo amplifier is needed to design
the second commutation law. It is obtained experimentally by
performing a spectral analysis of the input–output of the system.
To this end, a pseudo-random signal generated by the computer
is input to the amplifier while the winding current is measured
by a hall-effect current sensor (Micro Switch model SLB1AD).
The empirical transfer function of the system is illustrated in
Fig. 3 by the solid lines. The dashed lines represents the best
match fourth order model (in the least-square sense) which is
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(a)

(b)

Fig. 4. Commutation spectra for minimal losses (left) and minimal ripples
(right).

used for design and simulation. The loci of the system zeros and
poles indicate that the amplifier is a nonminimum phase system
with 150 Hz bandwidth.

Using the theory developed in the previous section and the ex-
perimental data, the commutation spectra for minimum power
losses and torque ripples were computed and are shown in Fig. 4
which shows the tradeoffs clearly. The first commutator is de-
signed for quasi static operation, while the second one is de-
signed for operating in the velocity range zero to .

At very low speed, the first commutation law is equivalent
to a look-up table based commutation whose performance was
reported in [24]. The problem we encountered with our exper-
imental setup was to evaluate the performance of the second
commutation law at high velocity. Due to physical constraints,
our more motor cannot turn more than one revolution. This pre-
vented us from operating it in steady state in order to elimi-
nate the inertial torque from torque measurement. Therefore, we
evaluated the performance of the commutation laws via simu-
lations, based on the experimental motor and current amplifier
models.

The value of torque ripples when the first and second com-
mutation laws as well as contemporary sinusoidal commutation
are applied is demonstrated in Fig. 5. It is apparent that the
first and second commutations do not exhibit torque ripple at

(a)

(b)

Fig. 5. Comparison of the induced torque ripples with sinusoidal, the first and
second commutations at low (0:1(rev=s)) velocity (left) and high (1(rev=s))
velocity (right).

Fig. 6. Torque ripple at5(rev=s).

low velocity ( ) since the maximum current frequency
demanded by the commutators is well below the amplifier’s
cut-off frequency of 150 Hz. However, the spectrum of the first
commutation contains the 13th harmonic for torque ripple com-
pensation. Thus at the first commutator commands the
current amplifier at 117 Hz, which is now close the amplifier
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cut-off frequency. As a result, even though it delivers smooth
torque at very low speed, the first commutator causes high ripple
at high speed—almost as much as the sinusoidal commutation.
The second commutator exhibits very low torque ripple at low
and high velocities, although its power loss is slightly higher
(4% more in this particular case). It is important to point out
that at even higher velocities, the frequency of the commuta-
tion is beyond the bandwidth of the torque controller, and all the
commutation exhibits torque ripple. This fact is demonstrated in
Fig. 6 that simulates the motor torque at .

V. CONCLUSION

A general model for torque generation of synchronous mo-
tors in the presence of current amplifier dynamics is derived.
The formulation uses Fourier coefficients to capture the phase
torque and commutation function in a concise fashion. In ad-
dition, the calculation for commutation is simple and suitable
for efficient implementation on DSP processors. We proposed
two commutation laws. The first one minimizes copper losses,
and can deliver a ripple-free torque independent of motor ve-
locity, provided that the dynamics of the current amplifier are
negligible. Otherwise, the motor velocity compromises perfor-
mance in two ways. First, perfect ripple cancellation is not pos-
sible over a range of velocities. Moreover, the torque response
of the system varies with velocity. We derived a commutation
law addressing both issues. It minimizes the weighted sum of
the torque ripple and power losses. Simulations using an exper-
imentally derived torque characterization of a direct drive motor
and frequency response current torque characterization of cur-
rent controller demonstrated the validity of this method.
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