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Abstract—Positive joint torque feedback (JTF) can compensate
the detrimental effects of load torques on position tracking perfor-
mance. However, with (real world) nonideal torque sources, simple
unity gain positive torque feedback can actually deteriorate the
performance, or even result in instability. In this work, a new
joint torque feedback approach is proposed which takes into ac-
count the actuator’s finite bandwidth dynamics, and minimizes the
system’s sensitivity to load torque disturbances and load dynamics.
We also address implementation issues such as the development
of a hydraulic dynamometer testbed for measurement of the dis-
turbance sensitivity and of an innovative method for identifying
the actuator dynamics. Experiment results with our experimental
direct-drive motor demonstrate that the additional positive
torque feedback remarkably improves the disturbance attenuation
and load decoupling properties of a simple PID motion controller.
The optimal torque feedback also reduces the tracking error when
dealing with a dynamic load while, unlike the conventional unity
joint torque feedback, maintaining robust stability.

Index Terms—Direct drive motors, disturbance rejection,
control, motion control, positive joint torque feedback (JTF).
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I. INTRODUCTION

T HE need for high-performance motion control is perva-
sive in industrial applications, for example in automation,

high-speed tracking and pointing systems, CNC machine tools
[7], welding, laser cutting, or robotics. These high-performance
motion control systems require accurate command tracking and
good disturbance rejection. In general, it is understood that feed-
back control leads to a tradeoff between these requirements [14]
because the disturbance cannot be attenuated without a mea-
surement of its effect upon the system output. Torque distur-
bances can be either deterministic or random. For the determin-
istic case, such as free space motions of robotic manipulators,
model-based controller can compensate the nonlinear load dy-
namics [8], [20]. However, model-based controllers are limited
by parameter errors, structural modeling errors, parameter time
variations, or simply unmodeled dynamics. There are also many
application where the load torque cannot be predicted by a de-
terministic model, such as the cutting forces in a machine tool,
or the wind forces in a tracking antenna. In these applications,
high performance implies the ability of the control system to re-
ject external torque disturbances.

Positive joint torque feedback (JTF)1 can, in theory, be
used to eliminate completely the effect of external torque
disturbances and load torques on the motion servo. This re-
quires that the system be endowed with built-in torque sensing
which measures the load torque that is then precompensated
via an ideal source of torque [1], [17], [15]. While the use
of (high gain) negative joint torque feedback for purposes
of actuator dynamics compensation has a long history [9],
[11], [24], [18], positive joint torque feedback was proposed
more recently. Kosuge [17] demonstrated experimentally the
effectiveness of positive joint torque feedback to compensate
the entire link dynamics of a SCARA-type direct-drive robot.
The actuator dynamics was ignored and a simple control law
with good robustness against varying loads was proposed.
In this case, robot’s link dynamics is completely decoupled
and the remaining dynamics is the rotor dynamics which has
been derived in our previous related work [1]. Hashimoto [15]

1This term is consistent with previous authors. However, the scheme can be
treated as a feedforward as well.
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applied this technique to an actuator geared with a harmonic
drive where the deformation of the “flex-spline” is used to
measure joint torque. The dynamic coupling terms in the robot
dynamics are claimed to be small due to the high angular
velocity of the rotors in comparison to that of the links, and
therefore were treated as small disturbances. A survey of joint
torque feedback can be found in [21].

Ideally, positive joint torque feedback with unity gain decou-
ples the load dynamics exactly and provides infinite stiffness
for external torque disturbance. This is because the torque feed-
back trivially compensated as an ideal actuator reproduces the
same torque. However, the problem which stands in the way
of compensating the load torques exactly is the actuator dy-
namics (which in the sequel is understood to include the servo
amplifier dynamics as well as feedback loop delay) which has
a finite bandwidth and therefore may not respond fast enough
to the load torque. As a result, a complete compensation of
disturbance torque or complete decoupling of load dynamics
cannot be achieved in the presence of actuator dynamics. This
can deteriorate the performance of the motion control system
and even lead to instability. This is demonstrated in this paper
via experimental results. The central contribution of this work
is the formulation and design of positive joint torque feedback
by taking the actuator’s dynamics and uncertainty into account.
Our strategy in the design of torque feedback, then, is to mini-
mize the effect of load perturbation or of external torque distur-
bance. To this end, we seek an optimal filter for positive joint
torque feedback control which takes the actuator’s dynamics
into account and minimizes, in the sense, the sensitivity
to load torque disturbance. We show that finding optimal torque
feedback is equivalent to the model-matching problem [12], [13]
that has an exact solution.

Often the load torques are generated by a dynamical system,
as is the case in robot manipulators. In this case, we derive the
entire system transfer function, under torque feedback. We show
that the effect of the load dynamics enters as a perturbation to
the nominal system, comprised of rotor and actuator dynamics.
The optimal torque feedback minimizes the perturbation, makes
the actual system close to the nominal system, and yields op-
timal robust stability when the motion controller deals with an
uncertain load. It is important to note that the design of po-
sition feedback for motion control is well known and has suc-
cessfully been applied for some applications [22], [19] where
the design is based on a nominal model comprised of actuator
and load dynamics. In this paper, we introduce the design of pos-
itive feedback in the framework of to optimally compensate
the effect of load dynamics while the nominal model dynamics
becomes the dynamics of the actuator’s rotor to be controlled
effectively by a simple feedback loop. We also present a novel
method based on the measurement of disturbance sensitivity for
the identification of the actuator dynamics on which the optimal
control is based.

Accurate joint torque measurements encounter several design
challenges. We developed a torque sensor prototype used herein
that can measure joint torque accurately even in the presence of
strong overhang forces and bending moments [6], [2].

This paper is organized as follows. Section II analyzes the
inherent limitation of feedback control to attenuate load torque

Fig. 1. A typical motion control system.

disturbances in motion servo mechanisms. This fact justifies the
use of joint torque feedback in motion servo controllers where
the servo mechanism is exposed to external disturbances. Sec-
tion III is the main contribution of this work. Depending whether
or not load torque is dynamic, there are two different solutions
to the optimal torque feedback problem. If the torque distur-
bance is not correlated with the output, optimal joint torque
feedback maximizes disturbance attenuation of a motion con-
trol system (Section III-B). In the case of dynamic load, op-
timal torque feedback minimizes the effect of load perturbation
on the nominal rotor dynamics (Section III-C). Alternatively,
the torque feedback can be optimally designed to achieve robust
stability. Section III-E reformulates and solves the problem of
an optimal torque filter to comply with model uncertainty and
maximum filter gain specifications. Section IV extends the ana-
lytical results for the multivariable case. Implementation issues
are addressed in Section V where we describe the development
of a hydraulic dynamometer testbed to measure the disturbance
sensitivity of a motion control system. A direct-drive motor in-
tegrated with torque sensor is also described briefly. Further-
more, we introduce a new method for indentification of acu-
ator dynamics upon disturbance sensitivity of the system cor-
responding to two different torque feedback laws. Finally, Sec-
tion VI evaluates the performance of the proposed torque feed-
back on our prototype when the motion control system deals
with random disturbance or dynamic loads. The experimental
results validate the developed theory and demonstrate the supe-
rior performance of our optimal torque feedback over conven-
tional torque feedback.

II. FEEDBACK LIMITATION IN DISTURBANCE ATTENUATION

The general block diagram for a motion servo loop is shown
in Fig. 1 where the controller is cascaded with the plant

, comprised of the actuator , and the
mechanical system . Usually, the actuator dynamics
is not considered in the design of motion controllers, since
is the dominant dynamics. Let be the actuator angle which
should track the reference inputin the presence of external
torque disturbances, . is the net torque acting on the
mechanical system

(1)

where denotes the torque developed by the actuator with
the transfer function ,

(2)

and

(3)
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The input-output (I/O) behavior of the closed-loop system is
described by

(4)

where and show how the set-point and disturbance
signals are transmitted to the system output at different frequen-
cies. The transfer functions are related to the so-called sensi-
tivity transfer function, , by called com-
plementary sensitivity transfer function, and

(5)

where

(6)

and is the open-loop transfer function.
The primary concern in the design of the feedback transfer

function is to achieve or maintain stability of the
closed-loop system. Additional performance requirements can
be a specified tracking bandwidth,, and disturbance rejection
over a certain frequency range. However, there is a conflict
between these two requirements. Specifically, the feedback
system in Fig. 1 is not able to attenuate external force distur-
bances over all frequencies within the closed-loop bandwidth.
Since and are proper transfer functions, as they
do not have any response at infinite frequency, and the causal
controller is at least a strictly proper transfer function,
then the minimum relative degree of the open-loop transfer
function must be two. Moreover, since is a
stable plant, we can apply the Bode sensitivity integral [12]

(7)

In motion control systems, inertia dominates the plant dy-
namics which is typically a double integrator. Hence, the
magnitude of rolls off at high frequency. Moreover, as
shown, has a higher degree than. Consequently,
must roll off even faster than . As a result,
is close to 1 at frequencies sufficiently beyond the cutoff fre-
quency . Equation (5) shows that
leading to the following approximate relationship:

for at (8)

By splitting the interval of the integrals in (7) into two subinter-
vals as and considering (8)

Equation (9) reveals that there is little room to improve the dis-
turbance sensitivity within the system bandwidth by de-
sign. In fact, any attempt to decrease the disturbance sensitivity
over some frequency range amplifies inevitably the magnitude
over the remainder of the bandwidth. As an illustration of this
fact consider the plant dynamics as a double integrator for a
simple mechanical system , where is rotor
polar inertia. Then the right-hand side (RHS) of (9) can be car-
ried out in terms of an arbitrary bandwidth as

Fig. 2. Positive JTF system.

The minimum of maximum disturbance sensitivity is achieved
when the disturbance sensitivity function is flat over the band-
width , i.e., for an optimal solution we have

constant. Therefore,

for (11)

The right-hand side of (11) decreases monotonically with.
This implies that the higher the system bandwidth, the lower
the magnitude of the disturbance transfer function. However,
the maximum admissible bandwidth is restricted by the physical
capability of the actuator. Therefore, it can be concluded that
the minimum achievable within the bandwidth over all
controllers is merely determined by the system inertia.

III. POSITIVE JTF

In this section we formulate JTF in the presence of actuator
dynamics and seek a dynamical torque feedback to minimize
external torque disturbance or to minimize effect of load per-
turbation. A single variable case is considered herein, yet the
analytic solution will be extended for a multivariable case in
Section IV.

A. Model-Matching Formulation

In the following, we examine the ability of the control system
under positive joint torque feedback to eliminate the effect of
disturbance. The general block diagram is shown in Fig. 2. The
external disturbance is measured via a torque sensor between
the rotor and the load and is fed back for compensation through
a filter .

Let be the actuator input. We introduce a new input

(12)

which is the compensated control input under positive JTF. Now
define the disturbance sensitivity function

(13)

which shows how the disturbance torqueis transmitted into
the system—note that in the absence of feedback.
Our criterion to design the filter is to minimize the
worst-case transmissivity of the disturbance, i.e., ,
that is we seek an optimal filter in the sense of . Typically,
a physical system like an actuator is strictly proper because it
does not have any response at infinite frequency, ,
and hence . This implies that the disturbance
attenuation by positive torque feedback may not be achieved
if the frequency is not restricted. Indeed, the argument of the
min–max problem is one, and by selecting trivially
the minimum norm is achieved. This implies that the
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disturbance sensitivity may get worse by any kind of torque
feedback if the frequency is not restricted.

Let be a weighting function that shapes the
disturbance gain over frequency

(14)

Note that should roll-off at high frequency where
. Since the torque feedback is not able to attenuate

high-frequency disturbances, is used to determine the
frequency band of interest. Furthermore, the maximum gain of

plays no role in finding the optimal , because it can
be always be factorized in (14). Hence, for convenience we
normalize such that . Let represent the
maximum disturbance corresponding to an arbitrary filter ,
i.e., . Now, the problem is to find a stable and
realizable filter ( denotes the class of
functions which are rational) such that the maximum weighted
sensitivity of the system is minimized, that is formulated
mathematically

(15)

where . This is a model-matching problem, and algo-
rithms to compute the optimal are readily available [12],
[13].

How much can the disturbance sensitivity be reduced by joint
torque feedback? Supposeis the maximum disturbance sensi-
tivity corresponding to an arbitrary filter . Hankel operation
is an elegant solution for the maximum attainable attenuation
on the disturbance, . The attenuation which determines the
efficiency of the torque feedback method completely depends
on the location of right half-plane zeros of the actuator transfer
function . For a minimum phase system the solution is
trivial and the disturbances can be attenuated at will. But when

has a single zero in the right half-plane, ,
according to the maximum modulus theorem [12] we can say

and has a unique solution. Since usually
is typically a low-pass behaved function, it can be con-

cluded, in general, that the right half-plane zero near the origin
adversely restricts the functionality of joint torque feedback. In
other words, the location of actuator right half-plane zeros is a
rough indication of the frequency range of the disturbance rejec-
tion which can be achieved by any torque feedback. A suitable
choice of the weight function depends on the application, which
is addressed in the sequel.

B. Optimal Disturbance Attenuation

In applications with significant external torque disturbances
(e.g., machine tools for metal cutting, slow robots for contour
grinding, precision index machines, or tracking radar antennas)
disturbance attenuation is critical. Therefore, it is reasonable
to define the disturbance sensitivity which describes the
input to output relationship in the frequency domain. This
is equivalent to the previous model-matching problem (15), if

is chosen as the weight function . However
because is unbounded at zero frequency, and hence

there is no optimal solution if . Next we investi-
gate the disturbance attenuation with combined torque and po-
sition feedback, that is is dictated by a position feedback.

Theorem 1: The maximum magnitude of the disturbance
transfer function of a position control system combined
with positive torque feedback is minimized, when the torque
feedback filter is the model-matching solution of the
weighted disturbance sensitivity in (15) where the mag-
nitude of the weighting function is chosen as that of the
normalized disturbance transfer function of position feedback,

.
Proof: Equation (13) shows how the external disturbance

is transmitted into the control system with positive joint torque
feedback. In this case the system output is

where is disturbance transfer function of the motion control
system with positive torque feedback defined as

(16)

Therefore

(17)

In the above, is the weighted sensitivity where the weight
function is chosen as . Since ,
and knowing that , we can say

Therefore, the optimal torque feedback is the solution of
the model-matching problem in (15) where the weight function

is chosen as the normalized position disturbance sensi-
tivity .

It is worth noting that the disturbance sensitivity of the posi-
tion feedback, , has a large amplitude at low frequency and
decreases with frequency. Conversely, the magnitude ofis
small at low frequency and it increases with frequency. There-
fore, it can be concluded from (16) that the combined position
and torque feedback makes disturbance attenuation over a wide
frequency range feasible.

C. Optimal Robust Stability for Dynamic Load

The above optimal positive torque feedback is well suited for
systems in which no correlation exists between the torque dis-
turbance and the system output. However, for industrial
applications such as in robotics, is produced by the load dy-
namics, and there is a dynamical relationship between the dis-
turbance torque, , and net torque, . We assume that the struc-
ture of the load dynamics is unknown, leading to an uncertain
dynamical relationship between and . This means there is
no nominal dynamical model defined for the load. However, the
maximum bound over the ratio of the two signals at each fre-
quency is assumed known. The formal way to represent that un-
certainty mathematically is

(18)

where is any transfer function which at any frequency is
less than one. is a rational transfer function (”rotor-load”
transfer function) whose magnitude envelopes the ratio of the
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two signals. Our strategy then is to minimize the effect of the
load dynamics perturbation. Note that, since is the I/O rep-
resentation of a physical system, it is reasonable to assume that
it is bounded.

Now, we show that the effect of the load dynamics on a system
with JTF enters in the form of an inverse-multiplicative pertur-
bation to the nominal plant . Referring to
Fig. 2 and (18) we obtain

(19)

By replacing in the above from (18)

(20)

Finally, multiplying the both sides of (20) by , and using

(21)

where is defined as

(22)

Equation (21) describes a perturbed system in which
enters as a inverse-multiplicative perturbation to the nominal
plant . The worst-case magnitude of the perturbation oc-
curs when , hence we have

(23)

where the weight function, analogous to the previous section,
is chosen as . Hence

, where . Note that is the max-
imum magnitude of the rotor-load transfer function which is in-
dependent of the control. is the maximum weighted distur-
bance sensitivity that can be minimized by the optimal torque
feedback (15). Moreover, since is stable, the condition for
robust stability of the nominal open-loop transfer (21) is that

. This condition can be satisfied if

(24)

The load perturbation is minimum by applying the optimal
filter which minimizes . That is equivalent to solve the
model-matching problem when the weight function is chosen as

. Hence, the design requires an en-
velope of the magnitude-frequency of theto transfer func-
tions which are load dependent. To this end,can be approx-
imated by any transfer function whose magnitude envelopes all
empirical transfer functions representing different load case sce-
narios obtained from experiments. This will be described in Sec-
tion V-D.

Alternatively, the torque feedback can be designed to
achieve optimal robustness of the motion control system.
Assuming that the perturbed open-loop transfer function

is stable, i.e., ,
and assuming stability of the nominal closed-loop system, it
follows that is a stable transfer function. The Nyquist
criterion specifies that the robust stability is then guaranteed if
encirclements by of the point are avoided, or

(25)

Since is always positive, it can be multiplied to
the left-hand side of the above inequality. Moreover, considering

the worst-case , we have the robust stability condition
as

where the corresponding weight function is chosen as
for , and . Then

the above condition for robust stability can be written as

(26)

In summary, optimal robust stability of the closed-loop mo-
tion control system with positive JTF can be achieved if the
torque filter is the solution of the model-matching formulation
with the weight function .

Since the nominal open-loop system is stable, we have
, and —note that . This im-

plies that the earlier condition (24) is more conservative than
the latter one (26). Indeed, in (21), we attempted to minimize

uniformly over all frequencies by the positive JTF. Nev-
ertheless, the condition in (26) implies that to achieve optimal
robustness performance of the closed-loop system, must
be minimized at frequencies where is large.

It is also important to note that, inequality (26) implies
that either low attenuation of the weighted disturbanceor
heavy load, i.e., high , can potentially lead to instability.
Yet, in practice, is substantially reduced by optimal JTF
providing robust stability. Roughly speaking, increases
by increasing the ratio of the rotor to load inertia. Therefore,
the robust stability of the motion control system with positive
JTF deteriorates with heavy loads.

D. Selecting the Weighting Function

The purpose of the weighting function is to shape the
power spectrum density of the JTF disturbance function .
Therefore, only the magnitude of the weighting func-
tion plays a role, not the phase. The last two sections suggest
how the weighting function should be selected. In gen-
eral, a suitable choice of the weight function depends on the
application and can be selected as follows:

1) minimizes torque disturbance sensi-
tivity,

2) minimizes the perturbation of a dy-
namic load,

3) yields optimal robust stability
when dealing with a dynamic load.

E. Two-Block Formulation

The JTF approach described so far requires an actuator
transfer function. However, in most real-world systems, at high
frequencies the structure and model order of the actuator is
unknown. Since the plant dynamics at high frequency can be
very complex and/or nonlinear, it is preferable to work with a
simpler plant model approximation to reduce the order of con-
troller. The worst-case deviation from the nominal dynamics is
represented by the —norm of the “model uncertainty” which
underlies the subsequent JTF development.
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Suppose the real actuator torque dynamicsis described in
the form of a multiplicative uncertainty,
where the nominal transfer function is accompanied by
the uncertainty that can be any transfer function provided

. Then, the optimization problem leading to the
solution of in the presence of actuator modeling uncer-
tainty is

(27)

where

(28)

Therefore, we reformulate our original problem (15) in the
two block form(27) from which an optimal feedback can be
obtained. To solve this problem, one can be transform (27) into
the standard model-matching problem by changing variables as
described in Appendix I.

Some interesting observations can be made at this point. Due
to its simplicity, our model-matching JTF formulation does
not allow any specifications for the torque filter . Never-
theless, the magnitude of the torque filter should roll off
at high frequencies. The torque response resembles a low-pass
filter which makes a high-pass behaved optimal torque filter
because, roughly speaking, the solution of the model-matching
problem is equivalent to inverting a given transfer function.
Consequently, in practice, the amplitude of the torque filter

increases unboundedly at high frequency. The high gain
produces a large control effort which causes overheating of the
power amplifier and the actuator. Therefore, it is reasonable
to roll off the torque feedback at high frequency where the
magnitude of is sufficiently low. On the other hand, it
can be inferred from (27) that since the optimization procedure
suppresses the infinity norm of , the magnitude
of the torque filter is shaped by the magnitude-frequency
of the second weight function . Since is almost
zero at low frequencies, reassembles a high-pass behaved
system penalizing the magnitude of the torque feedback at
high frequency. This causes the magnitude of the torque filter

is rolled off at high frequency. Nevertheless, the torque
feedback is redundant at high frequencies where the inertia of
the system naturally attenuates torque disturbances.

IV. THE MULTIVARIABLE CASE

So far we have considered single joint system. Yet, the analyt-
ical results can be extended for a multivariable case, applicable
to robot manipulators. It has been shown [1] that the coupled
rotor dynamics of an joint manipulator can be represented by

(29)

where
diagonal matrix whose elements are the polar inertias
of the joint’s motors;

identity matrix;
is a strictly upper triangular matrix whose elements are
dependent of the robot’s twist angles (refer to [1] for
more details).

In addition, let represent the multivariable dis-
turbance sensitivity function corresponding to the plant
and the position controller . represents
the torque disturbance sensitivity under composite position and
torque feedback loops in the same fashion as defined for the
single variable case. Also, suppose is a matrix
corresponding to a multichannel joint torque feedback, and

is a diagonal transfer function matrix representing the dynamics
of the joint actuators. Analogously to the single output case, we
attempt to minimize the worst-case weighted sensitivity func-
tion of positive torque feedback, i.e., , by applying
an optimal multichannel torque feedback. By using the defini-
tion of the infinity norm for multivariable transfer function and
by using properties of singular value, we have

(30)

where denotes the maximum singular value of a matrix via
, and is the max-

imum eigenvalue. Equation (30) involves solving a multivari-
able model-matching problem. In general this is a challenging
analytical problem [13]. Yet, in this case, the optimal solution

has a diagonal form like the actuator transfer function ma-
trix. By virtue of the Lemma given in Appendix II, one can show
that the optimal form of the second term on the RHS of (30) must
be in a diagonal form. Therefore, the optimal torque filter in
(30) must be decoupled, i.e., is a diagonal matrix. This re-
duces the multivariable problem of the single-variable case,
solved in the previous sections. Hence, the following holds for
the RHS of (30):

RHS

(31)
suggesting that the design of JTF for each joint involves solving
the single-variable model-matching problem where the scalar
weight function is the singular value of the matrix weight func-
tion. Following the same arguments as for the single axis case,
the weight function matrix is chosen depending on application
described in Sections III-B and III-C.

V. IMPLEMENTATION ISSUES

This section describes the implementation of JTF for a single
axis joint. To this end, a hydraulic dynamometer was built that
allows us to measure the disturbance sensitivity of a motion con-
trol system. We also developed a novel procedure for the iden-
tification of the actuator dynamics based on disturbance sensi-
tivity measurements. The ability of JTF to decouple the effect
of load dynamics is assessed by using an arm whose counter-
balance weight can be changed. An envelope over the rotor-load
transfer function is obtained experimentally and is used to de-
sign the JTF.
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Fig. 3. Direct-drive motor on the hydraulic dynamometer testbed.

A. Hardware Description

Fig. 3 illustrates the experimental setup which consists of the
McGill/MIT Direct-Drive electric motor [4], [16] mounted on
the dynamometer, instrumented with our custom torque sensor
[2], and coupled to a hydraulic rack and pinion rotary motor
(Parker 113A129BME). The hydraulic motor’s shaft is con-
nected to the direct-drive motor by means of two couplings
(Gam/Jakob KSS-450), via an additional commercial reference
torque transducer. The role of the hydraulic motor is to gen-
erate a random disturbance torques. To achieve this goal, the
solenoid-valve of the hydraulic motor is interfaced to computer
by a binary high-voltage isolation amplifier, thereby a simple
open-loopON–OFFcontrol is possible. The solenoid is activated
by a random sequence generated by computer.

The system architecture is briefly described in the following.
The analog torque signal is processed by antialiasing filters and
digitized through a multichannel 16-bit A/D converter. Digital
position data from a custom-built counter is read into the com-
puter through the digital I/O port of the data acquisition board.
The three desired phase current output commands, determined
by a minimum ripple commutation law [5], [3], are converted
to analog signals via D/A converters for the inputs to the power
amplifiers which operate in current control mode (see Fig. 4.

The sixth-order optimal filter was converted to the-domain
equivalent via the Tustin transformation, and implemented on
a 66-MHz 80 486–based IBM compatible microcomputer. The
time to apply this filter to the torques was only 13s, which
is small compared to the 106s taken up by I/O tasks.

B. Position Controller

In the course of our experiments, it became evident that
joint torque feedback introduces a bias in position tracking
due to the torque sensor offset. Strain gauges are notorious
for their sensitivity to temperature. Theoretically, it should not
affect the Wheat-stone output because of symmetry. However,
the gauges do not have identical characteristics and a bias
voltage appears frequently. The sensor bias acts as a constant
disturbance on the position controller resulting in a steady-state

Fig. 4. The single joint direct drive system.

error. According to (5), the steady-state position error is
, where is the torque sensor

offset. Since the complementary sensitivity must be one at zero
frequency (due to the interpolation constraint for stability),

, and , we have

This offset is eliminated by the integral term in our PID position
controller

(32)

where . In our application a PID position controller,
, is used whose gains are tuned

as the followings: Nm/deg, Nm/deg s, and
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(Nm s/deg). The bandwidth of the position servo
with the corresponding gains is close to 10 Hz.

C. Identification of Actuator Dynamics

The performance of joint torque feedback critically relies on
the knowledge of actuator dynamics—the larger the modeling
uncertainty, the lower ability of JTF to suppress load torque. The
first step in identification process involves the determination of
the empirical (nonparametric) transfer function based on spec-
tral analysis of the stochastic I/O signals [10]. Our early experi-
ments to extract the torque frequency response based on a direct
measurement of an actuator’s I/O have not been successful. The
main obstacle is the interference of mechanical dynamics, due
to motion of rotor, that cannot be excluded even when the motor
shaft is locked. The flexibility of the mechanical locking device
and the torque transducer accompanied with the rotor inertia in-
troduce a dynamical system cascaded with the torque dynamics.
The dynamical system causes the observed torque signal being
the filtered version of the actuator torque. Therefore, in order to
identify the actuator’s dynamics accurately, the stiffness should
be high enough such that the modal frequency of mechanical
system is at least ten times that of the actuator cutoff frequency.
This is difficult to achieve in practice.

We used an alternative method to derive the torque transfer
function accurately. The method is based on measurement
of the disturbance sensitivities when different joint torque
feedbacks are applied. Assume denotes the disturbance
transfer function under unity gain positive JTF, i.e., .
As will be shown in Section VI-A, the disturbance sensitivity
test describes the amplitude and phase related frequency
corresponding to and . Then, by virtue of (16),
one can obtain the empirical (nonparametric) transfer function

via

(33)

The next step of the identification involves a numerical proce-
dure to represent the complex function (33) by a rational transfer
function as close as possible. To this end, the coefficients of
the numerator and denominator of a fixed order rational func-
tion were calculated to fit the complex frequency responses in
the least squares sense. Several parametric models were exam-
ined, and it turned out that a second-order systems is sufficient
to match the I/O behavior adequately. The empirical and para-
metric representation of the actuator dynamics is shown in Fig. 5
(top) which demonstrates graphically the validation of the para-
metric system model. The deviation of the parametric model
from the actual system response can be measured quantitatively
by

(34)

Fig. 5 (bottom) shows the magnitude of the deviation. A con-
servative bound for the uncertainty is estimated by a first-order
rational function which also extrapolates the uncer-
tainty at high frequency where there is no experimental infor-

Fig. 5. Frequency responses of the actuator (top); dashed isjH(!)j and
solid is jĤ(j!)j. Structured uncertainty (bottom); dashed is deviation from
the nominal dynamics,jH(!)=Ĥ(j!)j, and solid is uncertainty model by a
first-order functionw (j!).

mation. Recall from (27) that a conservative model for the struc-
tured uncertainty is required to synthesize the joint torque
feedback. The graph shows that the modeling uncertainty is
growing with frequency.

D. Rotor-Load Transfer Function

As discussed in Section III-C, in order to design the optimal
torque feedback in the case of dynamic load, we need to know
the worst-case magnitude of the net torque to sensor torque,
represented by . Similar to Section V-C, we performed
spectral analysis of the stochastic I/O signals to determine the
transfer function. The input signal is a small white noise signal
added to the reference input that excites all mechanical modes.
The control input signal is known because it is issued by the
computer, while the output signal is measured by the torque
sensor. Suppose the empirical transfer function represents
the control effort signal to torque sensor signal . Then, the
rotor-load transfer function can be reconstructed from by

(35)

The magnitude of obtained from experiment is shown in
Fig. 6 for two extreme loads corresponding to 0.7 kgmand 1.9
kgm . The graphs show that the mechanical modal frequencies
occur between 20 and 40 Hz, and the maximum amplification
of the net torque to sensor torque is 12. The solid line shows
a conservative envelope, used as the weight function to
design JTF. Note that a tighter envelope requires a higher order
transfer function, leading to a more complex controller.

VI. EXPERIMENTAL VALIDATION

This section evaluates the performance of the proposed JTF
experimentally in terms of torque disturbance attenuation and
position tracking accuracy under varying payload. In order to
measure the torque disturbance sensitivity, torque disturbances
are injected into the direct-drive system by the hydraulic dy-
namometer. An arm with adjustable payload is mounted on the
motor’s shaft to investigate the load decoupling and robust sta-
bility properties.
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Fig. 6. Graph ofj�j with two load cases.

Fig. 7. Tracking error with different joint torque feedback.

A. Disturbance Attenuation Measurement

In this section, we compare the disturbance attenuation of
conventional unity gain positive JTF with that of the proposed

JTF (Section III-B). To this end, we command a ramp ref-
erence signal through the PID position controller (Section V-B)
while the hydraulic motor injects random torque disturbances.
Fig. 7 shows applied the torque disturbances and the resulting
position tracking errors for three different torque feedback laws.
The system exhibits high disturbance sensitivity without any
JTF. The conventional unity gain JTF is able to reject the slow
varying part of torque disturbances, but is sensitive to the fast
torque variation. The figure clearly shows that the tracking error
is substantially reduced with JTF.

Next, we perform a spectral analysis on the time series
output–input data, to obtain the complex frequency response
[23], disturbances transfer functions, shown in Fig. 8. As
expected, the position servo system without torque feedback
exhibits high sensitivity to disturbance within the loop band-
width. It is also apparent that the system with the unity gain
JTF, , performs better than without any JTF, espe-
cially at low frequencies. However, at higher frequencies there
is little improvement. This can be explained by the low-pass
characteristics of the actuator dynamics. At low frequencies
where the actuator dynamics are negligible, it is able to produce
exactly the required torque. However, at higher frequencies
the produced torque appears in different amplitude and phase
from that of torque disturbance depending upon actuator
dynamics. Thus the net torque increases with frequency and so
does the disturbance sensitivity. Nevertheless, at sufficiently
high frequency, the disturbance sensitivity drops again due to

Fig. 8. Experimental disturbance attenuation with different JTF.

the attenuation effect of position feedback itself, because the
position disturbance sensitivity weighs the torque feedback
disturbance sensitivity. The unity gain JTF has its maximum
disturbance sensitivity at 15 Hz with a relatively high peak
value. As it shall be shown in the next section, this resonance
can cause instability when the system encounters a dynamical
load. The optimal feedback lowers the system sensitivity to
disturbance remarkably over the whole frequency range. This
validates the superior performance of the proposed JTF.

It is worth nothing that, since the actuator and position
sensor are co-located, the joint angle is slightly different from
the sensed angle. The difference is due to the compliance of
the torque sensor. The sensor compliance has been measured
experimentally to be deg/Nm [2]. It is almost one
order lower than the value of the controller compliance. This
fact clarifies that any improvement on lowering the disturbance
sensitivity lies on reducing the disturbance sensitivity of the
motion controller rather on incorporating a stiffer torque sensor
or compensating its effect.

B. Robustness Stability Under Dynamic Load

This section presents some results for robotics application
where there exists a relationship between the load disturbance
and the system output. The main objective is to investigate the
performance and stability of positive joint torque feedback as
derived in Section III-C, under dynamical load. To this end, a
link with a 7.2 kg mass is mounted on the motor’s torque sensor
(Fig. 4). The mass plays the role of an uncertain payload. The
weight can be mounted at different distances from the rotation
axis to change the link’s inertia and gravitational torque. The
counterbalance weight produces a nonlinear gravity torque to be
compensated with positive joint torque feedback. To investigate
the tracking performance of the control system, we command a
sinusoidal reference position trajectory de-
grees to the PID controller.

First, no JTF is applied. Since the nonlinear link dynamics
(due to the gravitational term) are not compensated by a JTF
controller, the tracking error resulting from the PID controller
alone is large, as shown in Fig. 9 (top). Next, we apply unity gain
and the JTF in addition to the PID position controller. As
discussed earlier in Section III-C, the performance of JTF dete-
riorates with heavy loads as it produces a stronger disturbance
torque. Thus, we chose the heavy load (1.9 kgm) for demon-
stration. Indeed, it turned out the optimal JTF has little merit
over the conventional unity gain JTF for relatively light loads.
However, with the heavy load, the conventional unity gain joint
torque feedback exhibits unstable behavior as shown in Fig. 9
(middle). Yet, when the optimal joint torque feedback is applied
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Fig. 9. Position tracking error trajectories with (top) no JTF, (middle) unity
gain JTF, and (bottom) optimal JTF.

the tracking error is reduced significantly while maintaining sta-
bility, Fig. 9 (bottom).

VII. CONCLUSION

In this paper, we formulated the problem of optimal positive
JTF in the presence of actuator’s finite bandwidth dynamics to
compensate the effect of load torque. We showed analytically
and demonstrated experimentally, that the conventional unity
gain torque feedback is not appropriate for the compensation.
This is because in practice actuators and their power amplifiers
have finite bandwidth and hence cannot respond fast enough to
the load torque. We designed an positive joint torque feed-
back which can optimally suppress the effect of load torque dis-
turbance on a motion control systems in the presence of actuator
dynamics.

The optimal torque feedback can be designed to minimize the
magnitude of the disturbance sensitivity or to minimize the per-
turbation caused by a dynamic load. The theory of JTF based
the framework of was further developed to address uncer-
tainty in the actuator model itself, and to solve the MIMO case
as well.

An experimental setup comprised of a direct-drive electric
motor, torque-sensor, and hydraulic motor was constructed to
measure disturbance sensitivity of a motion servo mechanism.
A novel method based on the measurement of disturbance sen-
sitivity is also introduced for the identification of the actuator
dynamics on which the optimal control is based.

To demonstrate the performance of the proposed torque
feedback, a typical motion controller for the direct-drive motor
was implemented while the torque disturbances were injected
by a hydraulic motor. The performance of the joint torque
feedback to decouple a dynamic load was also investigated by
using a single link. The results demonstrated that the unity gain
positive torque feedback has poor disturbance attenuation at
high frequencies where the actuator dynamics becomes impor-
tant. However, when the actuator was cascaded with the optimal
filter, a significant reduction in sensitivity was achieved. In our
second experiment, a single link with adjustable inertia was
attached to the motor. In the absence of any torque feedback, the
tracking error increased due to load nonlinearity, and increases

with payload. Both conventional unity gain and torque
feedback substantially reduced the tracking error for small
loads. However, the conventional unity gain torque feedback
destabilizes the system for larger loads while the feedback
maintains stability and tracking accuracy.

APPENDIX I

Let , and define the vector as

For a real valued function we have where
. The objective function to be minimized is

,

(36)

For any positive semidefinite , the spectral factorization is
defined as

Now if and are defined as

(37)

and

(38)

one can show that the RHS of the following equation is positive
semidefinite, therefore a spectral factorization exists, i.e.,

(39)

Now by substituting , and from (37)–(39)
into the RHS of (36), we have

(40)

The RHS of (40) is equal to where
, and

(41)

Since the second row in vector does not depend upon
, the optimal solution underlies the solution of the standard

model-matching problem in the first row of vector .

APPENDIX II

Lemma 1: Let and be square diagonal and nondiagonal
matrices respectively, where and have identical diagonal
elements. Then their maximum singular values are related as
follows:

(42)

Proof: Suppose the th element has the largest absolute
value among all diagonal elements, hence

(43)

By the definition of the infinity norm of matrices, we have

where (44)
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Now choose all components of vectorin (44) zero except
. Then

(45)

(42) can be concluded from (43)–(45).
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