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Motion Control Systems witf°° Positive Joint
Torque Feedback

Farhad Aghili, Martin BuehletMember, IEEEand John M. Hollerbaghrellow, IEEE

Abstract—Positive joint torque feedback (JTF) can compensate  Td; Ts driving torque, disturbance torque
the detrimental effects of load torques on position tracking perfor-  x(s) sensitivity function of JTF
mance. However, with (real world) nonideal torque sources, simple  y+(s) weighted sensitivity function of JTF
unity gain positive torque feedback can actually deteriorate the [ absolute value of a complex number
performance, or even result in instability. In this work, a new H=° I Iloo infinity norm of a transfer function

joint torque feedback approach is proposed which takes into ac-
count the actuator’s finite bandwidth dynamics, and minimizes the

system’s sensitivity to load torque disturbances and load dynamics.
We also address implementation issues such as the development
of a hydraulic dynamometer testbed for measurement of the dis-
turbance sensitivity and of an innovative method for identifying

the actuator dynamics. Experiment results with our experimental

direct-drive motor demonstrate that the additional H°° positive

torque feedback remarkably improves the disturbance attenuation
and load decoupling properties of a simple PID motion controller.

The optimal torque feedback also reduces the tracking error when
dealing with a dynamic load while, unlike the conventional unity

joint torque feedback, maintaining robust stability.

I. INTRODUCTION

HE need for high-performance motion control is perva-

sive in industrial applications, for example in automation,
high-speed tracking and pointing systems, CNC machine tools
[7], welding, laser cutting, or robotics. These high-performance
motion control systems require accurate command tracking and
good disturbance rejection. In general, it is understood that feed-
back control leads to a tradeoff between these requirements [14]
because the disturbance cannot be attenuated without a mea-
surement of its effect upon the system output. Torque distur-
bances can be either deterministic or random. For the determin-
istic case, such as free space motions of robotic manipulators,
model-based controller can compensate the nonlinear load dy-

Index Terms—Direct drive motors, disturbance rejection, H>°
control, motion control, positive joint torque feedback (JTF).

NOMENCLATURE

C(s) motion controller transfer function (t.f.) namics [8], [20]. However, model-based controllers are limited
G(s) torque disturbance t.f. of the motion by parameter errors, structural modeling errors, parameter time
controller variations, or simply unmodeled dynamics. There are also many
G*(s) torque disturbance t.f. of JTF application where the load torque cannot be predicted by a de-
G¥a(s) torque disturbance t.f. of unity gain JTF  terministic model, such as the cutting forces in a machine tool,
Go(s) torque disturbance t.f. of optimal JTF or the wind forces in a tracking antenna. In these applications,
H(s),H(s)  actual, nominal actuator t.f. high performance implies the ability of the control system to re-
J V-1 ject external torque disturbances.
M(s) actuator rotor t.f. Positive joint torque feedback (JTF)can, in theory, be

Q(s), Qop(s)
S(s)

torque feedback, optimal torque feedback
motion controller sensitivity function

used to eliminate completely the effect of external torque
disturbances and load torques on the motion servo. This re-

T(s) complementary sensitivity function of quires that the system be endowed with built-in torque sensing

+ the motion controller . which measures the load torque that is then precompensated
oy control input, CO{npensated control input via an ideal source of torque [1], [17], [15]. While the use
Z;I((:)) ;?;z?t;;xfs;:iizty of (high gain) negative joint torque feedback for purposes
A(s) rotor-load transfer function of actuator dynami_c_s cpmpensation has a long history [9],
! actuator angle [11], [24], [18], positive joint torque feedback was proposed

more recently. Kosuge [17] demonstrated experimentally the
effectiveness of positive joint torque feedback to compensate
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applied this technique to an actuator geared with a harmonic Ts
drive where the deformation of the “flex-spline” is used to
measure joint torque. The dynamic coupling terms in the robot
dynamics are claimed to be small due to the high angular
velocity of the rotors in comparison to that of the links, and
therefore were treated as small disturbances. A survey of joint ] .
torque feedback can be found in [21]. Fig. 1. A typical motion control system.

Ideally, positive joint torque feedback with unity gain decou- ] ] ] ) L
ples the load dynamics exactly and provides infinite Stiﬁnegésturbgr)ces in motion servo .mechgnlsms. This fact justifies the
for external torque disturbance. This is because the torque fellg€ ©Of joint torque feedback in motion servo controllers where
back trivially compensated as an ideal actuator reproduces {fig S€rvo mechanism is exposed to external disturbances. Sec-
same torque. However, the problem which stands in the wﬁ?” lllis the main c_ontrlbuno_n of this work. Dep_endmg Whether
of compensating the load torques exactly is the actuator dg;_not Ioaq torque is dynamic, there are two different solu_t|ons
namics (which in the sequel is understood to include the serifhthe optimal torque feedback problem. If the torque distur-
amplifier dynamics as well as feedback loop delay) which hf@nce is not correlated with the output, optimal joint torque
a finite bandwidth and therefore may not respond fast enou dback maximizes disturbance attenuation of a motion con-
to the load torque. As a result, a complete compensation ! System (Section 1lI-B). In the case of dynamic load, op-
disturbance torque or complete decoupling of load dynamieg‘al torque_feedback minimizes the e.ffect of load perturpatlon
cannot be achieved in the presence of actuator dynamics. Tfisthe nominal rotor dynamics (Section 1Il-C). Alternatively,
can deteriorate the performance of the motion control systdff toraue feedback can be optimally designed to achieve robust
and even lead to instability. This is demonstrated in this papaRPility. Section I1I-E reformulates and solves the problem of
via experimental results. The central contribution of this wor@" OPtimal torque filter to comply with model uncertainty and
is the formulation and design of positive joint torque feedbadRaXimum filter gain specifications. Section IV extends the ana-

by taking the actuator's dynamics and uncertainty into accouhtical results for the multivariable case. Implementation issues
Our strategy in the design of torque feedback, then, is to mifdre addressed in Section V where we describe the development

mize the effect of load perturbation or of external torque distu®f & hydraulic dynamometer testbed to measure the disturbance

bance. To this end, we seek an optimal filter for positive jo"ﬁensitivity of a motion control system. A direct-drive motor in-

torque feedback control which takes the actuator’s dynami@rated with torque sensor is also described briefly. Further-
more, we introduce a new method for indentification of acu-

into account and minimizes, in tHE*> sense, the sensitivity ; . o
to load torque disturbance. We show that finding optimal torq@0r dynamics upon disturbance sensitivity of the system cor-

feedback is equivalent to the model-matching problem [12], u@spondmg to two different torque feedback laws. Finally, Sec-
that has an exact solution. tion VI evaluates the performance of the proposed torque feed-
Often the load torques are generated by a dynamical syst&Ck On our prototype when the motion control system deals
as is the case in robot manipulators. In this case, we derive yjth random disturbance or dynamic loads. The experimental
entire system transfer function, under torque feedback. We shi!!ts validate the developed theory and demonstrate the supe-
that the effect of the load dynamics enters as a perturbationr_'fBr performance of our optimal torque feedback over conven-

the nominal system, comprised of rotor and actuator dynam;&gnal torque feedback.
The optimal torque feedback minimizes the perturbation, makes
the actual system close to the nominal system, and yields od—'-
timal robust stability when the motion controller deals with an The general block diagram for a motion servo loop is shown
uncertain load. Itis important to note that the desigi6f po- in Fig. 1 where the controlle€'(s) is cascaded with the plant
sition feedback for motion control is well known and has SU@P(s) = H(s)M(s), comprised of the actuatd (s), and the
cessfully been applied for some applications [22], [19] whef@echanical system/ (s). Usually, the actuator dynamid#(s)
the design is based on a nominal model comprised of actuaionot considered in the design of motion controllers, siviie)
and load dynamics. In this paper, we introduce the design of p@sthe dominant dynamics. Lét be the actuator angle which
itive feedback in the framework 6> to optimally compensate should track the reference inputin the presence of external
the effect of load dynamics while the nominal model dynamiasrque disturbances,. 7,(s) is the net torque acting on the
becomes the dynamics of the actuator’s rotor to be controllatbchanical system
effectively by a simple feedback loop. We also present a novel
method based on the measurement of disturbance sensitivity for Tn(s) = 7a(s) — 75(s) 1)
the identification of the actuator dynamics on which the optimal .
control is based. whereTy(s) denotes the torque developed by the actuator with
Accurate joint torque measurements encounter several dediy transfer functio (s),
?r:lallenges. We de_vgloped atorque sensor pro?otype used herein ra(s) = H(s)C(s)[r(s) — 0(s)] @)
at can measure joint torque accurately even in the presence of
strong overhang forces and bending moments [6], [2]. and
This paper is organized as follows. Section Il analyzes the
inherent limitation of feedback control to attenuate load torque 8(s) = M(s)7,(s). (3)

FEEDBACK LIMITATION IN DISTURBANCE ATTENUATION
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The input-output (I/O) behavior of the closed-loop system is
described by

Ts

0 =[T(s) G(s)] { " } @)

whereT(s) and G(s) show how the set-point and disturbancgig. 2. Positive JTF system.
signals are transmitted to the system output at different frequen-

cies. The transfer functions are related to the so-called senﬁi{e minimum of maximum disturbance sensitivity is achieved
tivity transfer function,(s), by I'(s) = 1 — 5(s) called com- when the disturbance sensitivity function is flat ozer the band
plementary sensitivity transfer function, and y

width (0, w.], i.e., for an optimal solution we have |G(jw)| =

G(s) = —S(s)M(s) = _C*Ti (5) 2- In(Jw?) = constant. Therefore,
(s)H(s) 7389
where CI?}B) |GG || oo =~ 'wg for0 < w < we. (12)

S(s)=[1+L(s)| (6) The right-hand side of (11) decreases monotonically with

andL(s) = C(s)H(s)M(s) is the open-loop transferfunction.Th'S |mpI|_es that the hlgher the system bandww_ith, the lower
. ; X he magnitude of the disturbance transfer function. However,
The primary concern in the design of the feedback transfer

) . . o " the maximum admissible bandwidth is restricted by the physical
function C(s) is to achieve or maintain stability of the - X
closed-loop system. Additional performance requirements Cc%pap|l!ty of the ?Ct“ator- Thereforg , It can be goncluded that
: e minimum achievablg7(jw)| within the bandwidth over all

be a specified tracking bandwidth,, and disturbance rejection . : L
X : c?ntrollers is merely determined by the system inertia.
over a certain frequency range. However, there is a conflic

between these two requirements. Specifically, the feedback o

system in Fig. 1 is not able to attenuate external force distur- lll. 7% Posimve JTF

bances over all frequencies within the closed-loop bandwidth.In this section we formulate JTF in the presence of actuator
Since H(s) and M (s) are proper transfer functions, as theylynamics and seek a dynamical torque feedback to minimize
do not have any response at infinite frequency, and the caussiernal torque disturbance or to minimize effect of load per-
controller C(s) is at least a strictly proper transfer functionfurbation. A single variable case is considered herein, yet the
then the minimum relative degree of the open-loop transfanalytic solution will be extended for a multivariable case in
function must be two. Moreover, sind®s) = H(s)M(s)isa Section IV.

stable plant, we can apply the Bode sensitivity integral [12]

/0 In |$(jw)|dw = 0. (7) In the following, we examine the ability of the control system

In motion control systems, inertia dominates the plant dyinder positive joint torque feedback to eliminate the effect of
namics M which is typically a double integrator. Hence, thélisturbance. The general block diagram is shown in Fig. 2. The
magnitude ofd/ (jw) rolls off at high frequency. Moreover, asexternal disturbance, is measured via a torque sensor between
shown, L has a higher degree thad. ConsequentyL(jw)| the rotor and the load and is fed back for compensation through
must roll off even faster tham\/(jw)|. As a result,|S(jw)| @ filter Q(s). _ _ _
is close to 1 at frequencies sufficiently beyond the cutoff fre- Letu(s) be the actuator input. We introduce a new input
quencyw... Equation (5) shows thet?(jw)| = [S(jw)[| M (jw)| wt(s) = u(s) — Q(s)7.(s) (12)
leading to the following approximate relationship:

|Gjw)| = |M(jw)| for|S|=1atw > w,. (8)

A. Model-Matching Formulation

which is the compensated control input under positive JTF. Now

define the disturbance sensitivity function
By splitting the interval of the integrals in (7) into two subinter-

valsasf;~---= [, ---+ [ ---and considering (8) x(s) = T"((Si =—1+H(s)Q(s) (13)
. e Ts(8
/ In |G(jw)|dw ~ / In [M(jw)|dw = constant. (9) which shows how the disturbance torqueis transmitted into
0 0 the system—note that = —1 in the absence of feedback.

Equation (9) reveals that there is little room to improve the di?)ur criterion to design the filter)
turbance sensitivity7(jw) within the system bandwidth by de'worst-case transmissivity of the disturbance, il(s)|oo,

sign. In fact, any attempt to decrease the disturbance sensiti\ﬂmt is we seek an optimal filter in the sensg 5. Typically,

over some frequency range amplifies inevitably the magnitude,, sical system like an actuator is strictly proper because it

over the remainder of the bandwidth. As an illustration of thi&oes not have any response at infinite frequeiibjoc) = 0
fact consider the plant dynamics as a double integrator fo j

. ! s : "afld hencey(joo) = —1. This implies that the disturbance
simple mechanical systed/(s) = 1/(Js?), where.J is rotor  4u0nuation by positive torque feedback may not be achieved

polar ine_rtia. Then the right-hand side _(RHS) of (9) can be cgf+q frequency is not restricted. Indeed, the argument of the
ried out in terms of an arbitrary bandwidth as min—max problem is one, and by selecting triviadfs) = 0
RHS = w, (2 —In (Ju?)) . (10) the minimum oo norm is achieved. This implies that the

(jw) is to minimize the
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disturbance sensitivity may get worse by any kind of torque Theorem 1: The maximum magnitude of the disturbance

feedback if the frequency is not restricted. transfer function of a position control system combined
Let Wi(s) € H* be a weighting function that shapes thevith positive torque feedback is minimized, when the torque
disturbance gain over frequency feedback filter)(s) is the model-matching solution of the

(s) = W . 14 weighted disturbance sensitivity in (15) where the mag-
xw () I(S)X(S). (14) nitude of the weighting function is chosen as that of the
Note that|W:(s)| should roll-off at high frequency wherenormalized disturbance transfer function of position feedback,
|x(s)| = 1. Since the torque feedback is not able to attenuatg/, | = |G|/||@|oo-

high-frequency disturbance®y, (s) is used to determine the  proof: Equation (13) shows how the external disturbance
frequency band of interest. Furthermore, the maximum gain igftransmitted into the control system with positive joint torque

Wi(s) plays no role in finding the optimaP, because it can feedback. In this case the system output is
be always be factorized in (14). Hence, for convenience we i
0 =M (s)[x(s)7s +u™]

normalizeW (s) such thaf| W, (s)||.. = 1. Letp represent the
maximum disturbance corresponding to an arbitrary fiés), =M(s)x(s)7s + M(s)H(s)C(s)[r — 0]
i.e., # = |[xwlle- Now, the problem is to find a stable and =Gt (s)r, + T(s)r
reallz_able f||t_erQ(s) < RH (R7L™ denotes the_ class (HCTO v@ereGJr is disturbance transfer function of the motion control
functions which are rational) such that the maximum weighte ith itive torque feedback defined as
sensitivity of the system is minimized, that is formulateayStem with posi q
mathematically GH(s) £ G(s)[1 — H(s)Q(s)]. (16)
op = inf  sup |Wi(s)(1— H(s)Q(s 15) Therefore
pop = o ink - swp [Wi(s)(1 = H(s)Qs)|  (19) ol ot
wherepo, < p. This is a model-matching problem, and algo-
rithms to compute the optimé}.,,(s) are readily available [12], =G lloolxwr (s)]- 1)
[13]. In the abovexy is the weighted sensitivity where the weight
How much can the disturbance sensitivity be reduced by joifainction is chosen a¥; (s)| = |G|/||G]|co- Sincep < fiop,
torque feedback? Suppogés the maximum disturbance sensiand knowing thaf| G*||o. = 1]|Gl|~0, We can say
tivity corresponding to an arbitrary filt€p(s). Hankel operation G [l < |G|
is an elegant solution for the maximum attainable attenuation opliee = oo
on the disturbance.,. The attenuation which determines thd herefore, the optimal torque feedbagk; (s) is the solution of
efficiency of the torque feedback method completely depentite model-matching problem in (15) where the weight function
on the location of right half-plane zeros of the actuator transftf1(s) is chosen as the normalized position disturbance sensi-
function H(s). For a minimum phase system the solution ifivity G(s).
trivial and the disturbances can be attenuated at will. But whenlt is worth noting that the disturbance sensitivity of the posi-
H(s) has a single zero in the right half-plasg Re so > 0, tion feedback(7(s), has a large amplitude at low frequency and
according to the maximum modulus theorem [12] we can s&gcreases with frequency. Conversely, the magnitugd gfis
top > |[Wi(s0)| andQ(s) has a unique solution. Since usuallygmall at low frequency and it increases with frequency. There-
W1(s) is typically a low-pass behaved function, it can be corfore, it can be concluded from (16) that the combined position
cluded, in general, that the right half-plane zero near the origifid torque feedback makes disturbance attenuation over a wide
adversely restricts the functionality of joint torque feedback. liiequency range feasible.
other words, the location of actuator right half-plane zeros is a . - _
rough indication of the frequency range of the disturbance rejée: OPtimal Robust Stability for Dynamic Load
tion which can be achieved by any torque feedback. A suitableThe above optimal positive torque feedback is well suited for
choice of the weight function depends on the application, whiglystems in which no correlation exists between the torque dis-

is addressed in the sequel. turbancer, and the system outp#t However, for industrial
. _ . applications such as in robotics, is produced by the load dy-
B. Optimal Disturbance Attenuation namics, and there is a dynamical relationship between the dis-

In applications with significant external torque disturbancdyrbance torques;, and nettorquer,,. We assume that the struc-
(e.g., machine tools for metal cutting, slow robots for contodi#re of the load dynamics is unknown, leading to an uncertain
grinding, precision index machines, or tracking radar antenngnamical relationship between andr,. This means there is
disturbance attenuation is critical. Therefore, it is reasonafle nominal dynamical model defined for the load. However, the
to define the disturbance sensitivityt which describes the maximum bound over the ratio of the two signals at each fre-
input 7, to outputé relationship in the frequency domain. Thiiuency is assumed known. The formal way to represent that un-
is equivalent to the previous model-matching problem (15), ¢ertainty mathematically is
M(s)ischosenas Fheweightfunctidzﬁl(s). HoweverM (s) ¢ Ts _ Alw)A, Y|A[ <1, Yw (18)

H becauséV/(s) is unbounded at zero frequency, and hence Tn

there is no optimal solution i1 (s) = M (s). Next we investi- where A is any transfer function which at any frequency is
gate the disturbance attenuation with combined torque and fess than oneA(s) is a rational transfer function ("rotor-load”
sition feedback, that is™ (s) is dictated by a position feedback.transfer function) whose magnitude envelopes the ratio of the
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two signals. Our strategy then is to minimize the effect of thiie worst-cas¢A| = 1, we have the robust stability condition
load dynamics perturbation. Note that, sitige) is the I/O rep- as

resentation of a physical system, it is reasonable to assume that RS &1 —wp+L]>0 Y

it is bounded.
Now, we show that the effect of the load dynamics on a system <1+ L] = |wp| >0
with JTF enters in the form of an inverse-multiplicative pertur- < |Swp| =[xy IISAle < 1

bation to the nominal planP(s) = M(s)H(s). Referring to

Fig. 2 and (18) we obtain where the corresponding weight function is chosen as

[W1(s)| = [SAI/||SA|lee fOr x5, andp” = ||x% |loo- Then

= H(s)u + x(s)7s. (19) the above condition for robust stability can be written as
By replacingr; in the above from (18) 1 ||SA |0 < 1. (26)
[1— x(s)A(s)Alr, = H(s)u™. (20)

In summary, optimal robust stability of the closed-loop mo-
Finally, multiplying the both sides of (20) hy/(s), and using tion control system with positive JTF can be achieved if the
P=MH torque filter is the solution of the model-matching formulation

0 . with the weight functiorf W1 (s)| = |SA|/||SA|sc.
- [ —wp(s)A]7 P(s), V|Al<1 (21) " Since the nominal open-loop systdifis) is stable, we have
WhereUIP(S) is defined as |S| < 1, and[,L/ >.[,L//—n01-:e- that|)(/‘£v = |S||X/VV| This -im'
plies that the earlier condition (24) is more conservative than
wp(s) = x(s)A(s). (22)  the latter one (26). Indeed, in (21), we attempted to minimize

Equation (21) describes a perturbed system in whighs)A  |wp(s)| uniformly over all frequencies by the positive JTF. Nev-
enters as a inverse-multiplicative perturbation to the nomingitheless, the condition in (26) implies that to achieve optimal
plant P(s). The worst-case magnitude of the perturbation otebustness performance of the closed-loop systepis) must
curs whenA| = 1, hence we have be minimized at frequencies whe$gs) is large.

, It is also important to note that, inequality (26) implies

fwr| = xw Al (23) that either low attenuation of the weighted disturbapéeor
where the weight function, analogous to the previous sectidieavy load, i.e., highA|, can potentially lead to instability.
is chosen asWi(s)| = [A(s)|/||A(s)||eo- HeNCe|lw,|loo =  Yet, in practice,;”” is substantially reduced by optimal JTF
W ||Alloo, Wherep' = ||x3y |loo. Note that||A||. is the max- providing robust stability. Roughly speaking\(s)|| increases
imum magnitude of the rotor-load transfer function which is inby increasing the ratio of the rotor to load inertia. Therefore,
dependent of the control.’ is the maximum weighted distur- the robust stability of the motion control system with positive
bance sensitivity that can be minimized by the optimal torqUaF deteriorates with heavy loads.
feedback (15). Moreover, since is stable, the condition for
robust stability of the nominal open-loop transfer (21) is thdd. Selecting the Weighting Function

|1 —wp(s)A| > 0. This condition can be satisfied if The purpose of the weighting functid#i, (s) is to shape the
1A oo < 1. (24) power spectrum density of the JTF disturbance functios).
L . . herefore, only the magnitud#@/; (jw)| of the weighting func-
The load perturbation is minimum by applying the Opt'm%-[on plays a role, not the phase. The last two sections suggest

filter Q.p Which minimizesy’. That is equivalent to solve thehOW the weighting functiori¥’,(s) should be selected. In gen-

model-matching problem when the weight function is chosen . : . .
W1 (5)] = |A()]/][A(s)]loo. Hence, the design requires an eng§a|’ a suitable choice of the weight function depends on the

: application and can be selected as follows:
velope of the magnitude-frequency of theto 7, transfer func- . i i
tions which are load dependent. To this efad,can be approx- 1) [W1| = |G|/||G]|o minimizes torque disturbance sensi-

imated by any transfer function whose magnitude envelopes all__ tV: _ AUIIA e bation of & d
empirical transfer functions representing different load case sce—z) Lz/rlrl'c_logd'/n [l minimizes the perturbation of a dy-
| )

narios obtained from experiments. This will be described in Sec- . . .
tion V-D. 3) [W1i| = |SA|/|ISA||~ Yields optimal robust stability

Alternatively, the torque feedback can be designed to when dealing with a dynamic load.

achieve optimal robustness of the motion control systerE. Two-BlockH™

Assuming that the perturbed open-loop transfer function

Lp(s) = [1 — wy(s)A]"1L(s) is stable, i.e.jwp(s)] < 1, The JTF approach described so far requires an actuator

and assuming stability of the nominal closed-loop system,tignsfer function. However, in most real-world systems, at high

follows that S(s) is a stable transfer function. The Nyquisfrequencies the structure and model order of the actuator is

criterion specifies that the robust stability is then guaranteedifiknown. Since the plant dynamics at high frequency can be

encirclements by.(s) of the point—1 are avoided, or very complex and/or nonlinear, it is preferable to work with a

simpler plant model approximation to reduce the order of con-

1+ 1 —wp()A) L) >0, VIA[ <1, V. (25) trollgr. T?\e Worst-casepgeviation from the nominal dynamics is
Sincel + wp(s)A is always positive, it can be multiplied torepresented by the>—norm of the “model uncertainty” which

the left-hand side of the above inequality. Moreover, consideringderlies the subsequent JTF development.

Formulation
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Suppose the real actuator torque dynanticis described in T identity matrix;
the form of a multiplicative uncertaintyf = H(l +wyA) D isastrictly upper triangular matrix whose elements are
where the nominal transfer functioﬁ(s) is accompanied by dependent of the robot’s twist angles (refer to [1] for
the uncertaintyA’ that can be any transfer function provided more details).

|A’(jw)| < 1. Then, the optimization problem leading to thén addition, letG(s) € R"*" represent the multivariable dis-
solution ofQ.,(s) in the presence of actuator modeling unceturbance sensitivity function corresponding to the plsfis)

tainty is and the position controlle€(s). GT(s) € IR™*" represents
the torque disturbance sensitivity under composite position and
Hop torque feedback loops in the same fashion as defined for the

= inf sup  sup ‘Wl(l — HQ)+ W Hwy A'Q| single variable case. Also, suppoQés) € IR™*™ is a matrix
QERH™ |a7(5)| <1 Re 5>0 corresponding to a multichannel joint torque feedback, and

. Wil - HQ)
< .
= \/QQ(S)ICI%HOO b { WaQ - (27) H(s) = diag [H1(s), H2(s), ..., Hu(s)]
where is a diagonal transfer function matrix representing the dynamics
. of the joint actuators. Analogously to the single output case, we
Wy = WiHwg. (28) attempt to minimize the worst-case weighted sensitivity func-

tion of positive torque feedback, i.ec;r = W1y, by applying

n optimal multichannel torque feedback. By using the defini-
Sion of the infinity norm for multivariable transfer function and
;Susing properties of singular value, we have

Therefore, we reformulate our original problem (15) in th
two block form(27) from which an optimal feedback can b
obtained. To solve this problem, one can be transform (27) i
the standard model-matching problem by changing variables
described in Appendix . - xiwlleo < sup (W1 (jw)a (T -~ H(jw)Q(jw))  (30)

Some interesting observations can be made at this point. Due w
to its simplicity, our _rr_10d_e|-match|n”g°° JTF fqrmulatlon does wherez () denotes the maximum singular value of a matrix via
not allow any specifications for the torque filté€}(s). Never- 5(A(5) =  man(A(—5)A(5)), and Amax(-) is the max-
theless, the magnitude of the torque filtgs) should roll off ., ) eigenvalue. Equation (30) involves solving a multivari-

at high frequencies. The torque response resembles a loW-R4S8 1o del-matching problem. In general this is a challenging
filter which makes a high-pass behaved optimal torque filtgf,,sical problem [13]. Yet, in this case, the optimal solution
because, roughly speaking, the solution of the model-matchifg “has a diagonal form like the actuator transfer function ma-
problem is equivalent to inverting a given transfer function, - By virtue of the Lemma given in Appendix |1, one can show

Consequently, in practice, the amplitude of the torque filtgh ¢ e optimal form of the second term on the RHS of (30) must
Q(s) increases unboundedly at high frequency. The high g8l i 5 diagonal form. Therefore, the optimal torque filter in

produces a large control effort which causes overheating of ) must be decoupled, i.€)(s) is a diagonal matrix. This re-

power amplifier and the actuator. Therefore, it is reasonal Bices the multivariabl& > problem of the single-variable case,

o roII_ off the to‘rqu_e feed_b_ack at high frequency where _th§‘olved in the previous sections. Hence, the following holds for
magnitude ofG(jw) is sufficiently low. On the other hand, it the RHS of (30):

can be inferred from (27) that since the optimization procedure
suppresses the infinity norm ¢#,(s)Q(s)|, the magnitude RHS < inf  maxsup a(Wy(jw))(1 — H;(jw)Qi(jw))
of the torque filter@ is shaped by the magnitude-frequency QEs)CRH™ 1w (31)

of the second weight functiof,. Since |wp(s)| is almost . . S .
zero at low frequenciedy, reassembles a high-pass behaves ggesting that the design of JTF for each joint involves solving

system penalizing the magnitude of the torque feedbacktaF single-variable model-matching problem where the scalar

) . . . weight function is the singular value of the matrix weight func-
high frequency. This causes the magnitude of the torque mtt%n Following the same arguments as for the single axis case
Q)(s) is rolled off at high frequency. Nevertheless, the torqu% : '

feedback is redundant at high frequencies where the inertia;p? W_elght_funcno_n matrix is chosen depending on application
) escribed in Sections III-B and III-C.
the system naturally attenuates torque disturbances.

IV. THE MULTIVARIABLE CASE V. IMPLEMENTATION ISSUES

t_This section describes the implementation of JTF for a single
é js joint. To this end, a hydraulic dynamometer was built that
ows us to measure the disturbance sensitivity of a motion con-

ol system. We also developed a novel procedure for the iden-
ification of the actuator dynamics based on disturbance sensi-
M(s) = %(I +D)LI; e R (29) tivity measurements. The ability of JTF to decouple the effect

s of load dynamics is assessed by using an arm whose counter-

where balance weight can be changed. An envelope over the rotor-load
J, diagonal matrix whose elements are the polar inertiaansfer function is obtained experimentally and is used to de-

of the joint’s motors; sign the JTF.

So far we have considered single joint system. Yet, the anal
ical results can be extended for a multivariable case, applica
to robot manipulators. It has been shown [1] that the coupl
rotor dynamics of am joint manipulator can be represented b
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Fig. 3. Direct-drive motor on the hydraulic dynamometer testbed.

A. Hardware Description

Fig. 3 illustrates the experimental setup which consists of the
McGill/MIT Direct-Drive electric motor [4], [16] mounted on
the dynamometer, instrumented with our custom torque sensor
[2], and coupled to a hydraulic rack and pinion rotary motor
(Parker 113A129BME). The hydraulic motor’'s shaft is con-
nected to the direct-drive motor by means of two couplings
(Gam/Jakob KSS-450), via an additional commercial reference
torque transducer. The role of the hydraulic motor is to gen-
erate a random disturbance torques. To achieve this goal, the
solenoid-valve of the hydraulic motor is interfaced to computer
by a binary high-voltage isolation amplifier, thereby a simple
open-loopoN-OFF control is possible. The solenoid is activated
by a random sequence generated by computer.

The system architecture is briefly described in the following.
The analog torque signal is processed by antialiasing filters and
digitized through a multichannel 16-bit A/D converter. Digital
position data from a custom-built counter is read into the com-
puter through the digital 1/0 port of the data acquisition board.
The three desired phase current output commands, determined
by a minimum ripple commutation law [5], [3], are convertedfig. 4. The single joint direct drive system.
to analog signals via D/A converters for the inputs to the power
amplifiers which operate in current control mode (see Fig. 4.gror. According to (5), the steady-state position error is

The sixth-order optimal filter was converted to thelomain . — _ - 7(0)/H(0)C(0), wherer,g is the torque sensor
equivalent via the Tustin transformation, and implemented @f¥set. Since the complementary sensitivity must be one at zero

a 66-MHz 80 486-based IBM compatible microcomputer. Thgaquency (due to the interpolation constraint for stability),
time to apply thisH** filter to the torques was only 13s, which T(0) = 1, andH(0) = 1, we have

is small compared to the 106 taken up by I/O tasks.

Toll
Coll = — .
B. Position Controller C(0)

In the course of our experiments, it became evident th&his offset is eliminated by the integral term in our PID position
joint torque feedback introduces a bias in position trackirgpntroller
due to the torque sensor offset. Strain gauges are notorious K

. e . . I

for their sensitivity to temperature. Theoretically, it should not C(s)=Kp+ — + Kps (32)
affect the Wheat-stone output because of symmetry. However, 5
the gauges do not have identical characteristics and a bmsereC(0) = co. In our application a PID position controller,
voltage appears frequently. The sensor bias acts as a constant= K pe + K; [ edt + K pé, is used whose gains are tuned
disturbance on the position controller resulting in a steady-stagthe followingsK» = 40 Nm/deg,K; = 200 Nm/degs, and
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Kp = 0.8 (Nm - s/deg). The bandwidth of the position servo ! =
with the corresponding gains is close to 10 Hz. - emelrical
: 0.8 __ parametric
‘g
C. Identification of Actuator Dynamics sl
The performance of joint torque feedback critically relies on
the knowledge of actuator dynamics—the larger the modeling ~ ** o e ' o
uncertainty, the lower ability of JTF to suppress load torque. The Frequency (Hz)
first step in identification process involves the determination of ' '
the empirical (nonparametric) transfer function based on spec- wo(’o; """ varaton
tral analysis of the stochastic 1/O signals [10]. Our early experi- éo:%_ — uncertainty model
ments to extract the torque frequency response based on a direct €, !
measurement of an actuator’s I/O have not been successful. The o002} .. . S
main obstacle is the interference of mechanical dynamics, due o T

. 10!
to motion of rotor, that cannot be excluded even when the motor Frequency (H2)
shaftis locked. The flexibility of the mechanical locking device
and the torque transducer accompanied with the rotor inertia fjig: 5-  Frequency responses of the actuator (top); dash¢ (s)| and

d dvnamical svstem cascaded with the toraue d r]amsohd is |H (jw)|. Structured uncertainty (bottom); dashed is deviation from
troduce a y Y a . Yy {ﬁé'nominal dynamicg,H (w)/H (jw)|, and solid is uncertainty model by a
The dynamical system causes the observed torque signal beisgorder functionw z(jw).

the filtered version of the actuator torque. Therefore, in order to

identify the actuator’s dynamics accurately, the stiffness shouyightion. Recall from (27) that a conservative model for the struc-
be high enough such that the modal frequency of mechaniggled uncertainty is required to synthesize # joint torque

system is at least ten times that of the actuator cutoff frequengyedback. The graph shows that the modeling uncertainty is
This is difficult to achieve in praCtice. growing with frequency_

We used an alternative method to derive the torque transfer
function accurately. The method is based on measuremént Rotor-Load Transfer Function
of the disturbance sensitivities when different joint torque

feedbacks are applied. Assurag;, () denotes the disturbanceyq, e feedback in the case of dynamic load, we need to know

transfer function under unity gain positive JTF, i.€,= 1. ho \yorst-case magnitude of the net torque to sensor torque,
As will be shown in Section VI-A, the disturbance sensitivity, ) canted byA(jw)|. Similar to Section V-C, we performed
test descrll_aes thi amplitude and phase r_elated frequeg ctral analysis of the stochastic I/O signals to determine the
corresponding td,,(w) and G(w). Then, by virtue of (16), anfer function. The input signal is a small white noise signal

one can obtain the empirical (nonparametric) transfer func“%’ﬂided to the reference input that excites all mechanical modes.

H(w) via The control input signal is known because it is issued by the
a+ computer, while the output signalis measured by the torque
~ GhWw) i
e . (33) sensor. Suppose the empirical transfer funcfida) represents
() the control effort signal: to torque sensor signal. Then, the

The next step of the identification involves a numerical proc&otor-load transfer function can be reconstructed fiéw) by
dure to represent the complex function (33) by a rational transfer IAW)| > |H(w)Z(w) — 1|71 (35)
function as close as possible. To this end, the coefficients of ) ) ] ) )
the numerator and denominator of a fixed order rational func- 1 N€ magnitude ofA| obtained from experiment is shown in

tion were calculated to fit the complex frequency responses it 6 for two extreme loads corresponding to 0.7 Kgmd 1.9

the least squares sense. Several parametric models were oX@Ry - The graphs show that the mechanical modal frequencies
ined, and it turned out that a second-order systems is suffici@gcur Petween 20 and 40 Hz, and the maximum amplification

to match the 1/0 behavior adequately. The empirical and pa@-the net torque to sensor torque is 12. The solid line shows
metric representation of the actuator dynamics is shown in Figlgsonservative envelope, used as the weight fundfiags) to

(top) which demonstrates graphically the validation of the pardeSign JTF. Note that a tighter envelope requires a higher order
metric system model. The deviation of the parametric mod&nsfer function, leading to a more complex controller.

from the actual system response can be measured quantitatively

As discussed in Section III-C, in order to design the optimal

Hw)=1

by VI. EXPERIMENTAL VALIDATION
This section evaluates the performance of the proposed JTF
. H(w) experimentally in terms of torque disturbance attenuation and
lwg(jw)| = |- — 1. (34) e - :
H(jw) position tracking accuracy under varying payload. In order to

measure the torque disturbance sensitivity, torque disturbances
Fig. 5 (bottom) shows the magnitude of the deviation. A comare injected into the direct-drive system by the hydraulic dy-
servative bound for the uncertainty is estimated by a first-ordeamometer. An arm with adjustable payload is mounted on the
rational functionwpy (jw) which also extrapolates the uncermotor’s shaft to investigate the load decoupling and robust sta-
tainty at high frequency where there is no experimental infobility properties.
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Fig. 6. Graph ofA| with two load cases. Fig. 8. Experimental disturbance attenuation with different JTF.

the attenuation effect of position feedback itself, because the
position disturbance sensitivity weighs the torque feedback
disturbance sensitivity. The unity gain JTF has its maximum
disturbance sensitivity at 15 Hz with a relatively high peak
value. As it shall be shown in the next section, this resonance
can cause instability when the system encounters a dynamical
load. The optimal feedback lowers the system sensitivity to
disturbance remarkably over the whole frequency range. This
! optimal JTF validates the superior performance of the proposed JTF.
! It is worth nothing that, since the actuator and position
\ sensor are co-located, the joint angle is slightly different from
. the sensed angle. The difference is due to the compliance of
E the torque sensor. The sensor compliance has been measured
e T s s experimentally to b&.1 x 10~* deg/Nm [2]. It is almost one
Time (sec) order lower than the value of the controller compliance. This
fact clarifies that any improvement on lowering the disturbance
sensitivity lies on reducing the disturbance sensitivity of the
motion controller rather on incorporating a stiffer torque sensor
A. Disturbance Attenuation Measurement or compensating its effect.

sy
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Fig. 7. Tracking error with different joint torque feedback.

In this section, we compare the disturbance attenuation of B )
conventional unity gain positive JTF with that of the proposed: Robustness Stability Under Dynamic Load
H> JTF (Section IlI-B). To this end, we command a ramp ref- This section presents some results for robotics application
erence signal through the PID position controller (Section V-BYhere there exists a relationship between the load disturbance
while the hydraulic motor injects random torque disturbancesnd the system output. The main objective is to investigate the
Fig. 7 shows applied the torque disturbances and the resultpgrformance and stability of positive joint torque feedback as
position tracking errors for three different torque feedback lawderived in Section IlI-C, under dynamical load. To this end, a
The system exhibits high disturbance sensitivity without arink with a 7.2 kg mass is mounted on the motor’s torque sensor
JTF. The conventional unity gain JTF is able to reject the slofifig. 4). The mass plays the role of an uncertain payload. The
varying part of torque disturbances, but is sensitive to the fageight can be mounted at different distances from the rotation
torque variation. The figure clearly shows that the tracking erraxis to change the link’s inertia and gravitational torque. The
is substantially reduced witH= JTF. counterbalance weight produces a nonlinear gravity torque to be

Next, we perform a spectral analysis on the time seriesmpensated with positive joint torque feedback. To investigate
output—input data, to obtain the complex frequency resportee tracking performance of the control system, we command a
[23], disturbances transfer functions, shown in Fig. 8. Asinusoidal reference position trajectort) = 45sin0.18t de-
expected, the position servo system without torque feedbagiees to the PID controller.
exhibits high sensitivity to disturbance within the loop band- First, no JTF is applied. Since the nonlinear link dynamics
width. It is also apparent that the system with the unity gaifdue to the gravitational term) are not compensated by a JTF
JTF, Q(s) = 1, performs better than without any JTF, espezontroller, the tracking error resulting from the PID controller
cially at low frequencies. However, at higher frequencies theatone is large, as shown in Fig. 9 (top). Next, we apply unity gain
is little improvement. This can be explained by the low-passd the>° JTF in addition to the PID position controller. As
characteristics of the actuator dynamics. At low frequenciesscussed earlier in Section IlI-C, the performance of JTF dete-
where the actuator dynamics are negligible, it is able to produderates with heavy loads as it produces a stronger disturbance
exactly the required torque. However, at higher frequencigsrque. Thus, we chose the heavy load (1.9 Kgfor demon-
the produced torque appears in different amplitude and phaseation. Indeed, it turned out the optimal JTF has little merit
from that of torque disturbance depending upon actuatover the conventional unity gain JTF for relatively light loads.
dynamics. Thus the net torque increases with frequency and-smwever, with the heavy load, the conventional unity gain joint
does the disturbance sensitivity. Nevertheless, at sufficientbrque feedback exhibits unstable behavior as shown in Fig. 9
high frequency, the disturbance sensitivity drops again due(taiddle). Yet, when the optimal joint torque feedback is applied
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s T with payload. Both conventional unity gain ard> torque
8 o feedback substantially reduced the tracking error for small
§_o°' loads. However, the conventional unity gain torque feedback
‘50 destabilizes the system for larger loads while i@ feedback
i maintains stability and tracking accuracy.
g 0.5
5 o APPENDIX |
w
'°'5° Let K (s) = Wy(s)H(s), and define the vectdf(s) as
. 1r T:|:W1_K1Q:|
§ ost W2Q
g_og For a real valued function we hay&(s)|* = T ()7 (s) where
B B S S St T (s) = TT(—s). The objective function to be minimized is
Time (sec) NQ — T(S)T(S),
Fig. 9. Position tracking error trajectories with (top) no JTF, (middle) unity ’j’(s)']’(s) =W, W, — W, KiQ— QKlWl
ain JTF, and (bottom) optimal JTF. =, =
g (botiom) op + QURLKL + WaW)Q. (36)
the tracking error is reduced significantly while maintaining st-0" @ny positive semidefinité/(s), the spectral factorization is

bility, Fig. 9 (bottom). defined as
G(s) = G4(s)GQ.(s) G(s) > 0.
Now if K(s) andG(s) are defined as
In this paper, we formulated the problem of optimal positive - o ~

JTF in the presence of actuator’s finite bandwidth dynamics to K(s)K(s) = K1(s)K1(s) + Wa(s)Wa(s) (37)
compensate the effect of load torque. We showed analyticadind
and demonstrated experimentally, that the conventional unity -
gain torque feedback is not appropriate for the compensation. G(s) = K () Ki(s)Wa(s), (38)

This is because in practice actuators and their power amplifigige oo show that the RHS of the following equation is positive

have finite bandwidth and hence cann_o_t re_spond fast enouQ@é(?nidefinite, therefore a spectral factorization exists, i.e.,
the load torque. We designed & positive joint torque feed-

VII. CONCLUSION

back which can optimally suppress the effect of load torque dis- R(s)R(s) = Wi(s)W1(s) — G(s)G(s). (39)
turbance on a motion control systems in the presence of actualgyy py substitutingk (s), W1 (s) andWa(s) from (37)—(39)
dynamics. into the RHS of (36), we have

The optimal torque feedback can be designed to minimize the. . . . . -
magnitude of the disturbance sensitivity or to minimize the per-T(S)T(S) = GG+ RR-GKQ - QKG+QKKQ. (40)
turbation caused by a dynamic load. The theory of JTF basgte RHS of (40) is equal t&’(s)T’(s) where||7(s)]|oo =
the framework ofH{>* was further developed to address uncet7”(s)||., and
tainty in the actuator model itself, and to solve the MIMO case
as well. T(s) = | G - (5)Q0s) | (41)

An experimental setup comprised of a direct-drive electric ()
motor, torque-sensor, and hydraulic motor was constructed3tce the second row in vectdr’(s) does not depend upon
measure disturbance sensitivity of a motion servo mechanis@{.s), the optimal solution underlies the solution of the standard
A novel method based on the measurement of disturbance s&@del-matching problem in the first row of vectdr(s).
sitivity is also introduced for the identification of the actuator
dynamics on which the optimal control is based. APPENDIX I

To demonstrate the performance of the proposed t0rqu§ emma 1: Let A andB be square diagonal and nondiagonal
feedback, a typical motion controller for the direct-drive motamatrices respectively, wherk andB have identical diagonal
was implemented while the torque disturbances were injectgdments. Then their maximum singular values are related as
by a hydraulic motor. The performance of the joint torqugiows:
feedback to decouple a dynamic load was also investigated by
using a single link. The results demonstrated that the unity gain 7(A) < 7(B). (42)
positive torque feedback has poor disturbance attenuation at
high frequencies where the actuator dynamics becomes impor- Proof: Suppose thenth element has the largest absolute
tant. However, when the actuator was cascaded with the optitf@iue among all diagonal elements, hence
filter, a significant reduction in sensitivity was achieved. In our (A) = |Gmm| = |[brm]- (43)
second experiment, a single link with adjustable inertia W%T){ he definiti f the infini f . h
attached to the motor. In the absence of any torque feedback, et e definition of the Infinity norm of matrices, we have
tracking error increased due to load nonlinearity, and increases (B) = ||Bl|- > ||Bx|l2 wherex : ||x|]2 = 1. (44)
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Now choose all components of vectarin (44) zero except [24] G.Zhangand J. Furusho, “Control of robot arms using joint torque sen-

Zm = 1. Then sors,”IEEE Contr. Syst. Magvol. 18, no. 1, pp. 48-54, 1998.
2 2 2 1/2
||Bx||2:(|blrn| +|b27n| +"'+|brnrn| +)
>|b . 45
Z[brmm | (45) Farhad Aghili received the B.Sc. and M.Sc.
degrees in mechanical engineering and biomedical
(42) can be concluded from (43)_(45)' engineering from Sharif University of Technology,
- Tehran, Iran, 1988 and 1991, respectively. He
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