
CS7960 L9 : Streaming | Heavy Hitters 
= Approximate Counts

Streaming Algorithms

Stream : A = <a1,a2,...,am>
  ai in [n]  size log n
Compute f(A) in poly(log m, log n) 
space

Let f_j = |{a_i in A | a_i = j}|

-------------------------

MAJORITY:  if some f_j > m/2, output 
j
           else,              output 
NULL

one-pass requires Omega(min{m,n}) 
space



Simpler:
FP-MAJORITY:  if some f_j > m/2, 
output j
              else,              
output anything

How good w/ O(log m + log n)  (one 
counter c + one location l)?
  ...

###########################
c = 0, l = X
for (a_i \in A)
  if (a_i = l) c += 1
  else         c -= 1
  if (c <= 0)  c = 1, l = a_i
return l
###########################

Analysis:  if f_j > m/2, then 
  if (l != j) then c decremented at 
most < m/2 times, but c > m/2
  if (l == j) can be decremented < m/



2, but is incremented > m/2
if f_j < m/2 for all j, then any 
answer ok.  

----- another view of analysis ------
Let f_j > m/2, and k = m - f_j.  
After s steps, let g_s = unseen 
elements of index j
               let k_s = unseen 
elements != index j
               let c_s = c if l!=j, 
and -c if l==j
Claim:  g_s > c+k_s
  base case (s=0, or even s=1) easily 
true.  
  Inductively 4 cases:
   a_i = l = j : (g_s decremented, c 
decremented)
   a_i = l != j: (c incremented, k_s 
decremented)
   a_i !=l != j: (c decremented, k_s 
decremented)
   a_i !=l = j : (k_s decremented, 



maybe c incremented)

Since at the end g_s = k_s = 0, then 
     0 > c + 0, implies c < 0, and 
l==j.
-------------------------------------

FREQUENT:  for k, output the set {j : 
f_j > m/k}
 also hard.  

k-FREQUENCY-ESTIMATION:  Build data 
structure S.  
For any j in [n], hat{f}_j = S(j) 
s.t.
 f_j - m/k <= hat{f}_j <= f_j

aka eps-approximate phi-HEAVY-
HITTERS:  
   Return all f_j s.t. f_j > phi
   Return no f_j s.t. f_j < phi - 
eps*m



  (any f_j s.t. phi-eps*m < f_j < phi 
is ok)

-------------------------

Misra-Gries Algorithm [Misra-Gries 
'82]

Solves k-FREQUENCY-ESTIMATION in 
O(k(log m + log n)) space.

Let C be array of k counters C[1], 
C[2], ..., C[k]
Let L be array of k locations L[1], 
L[2], ..., L[k]

############################
Set all C = 0
Set all L = X

for (a_i in A)
  if (a_i in L)  <at index j>



     C[j] += 1
  else           <a_i !in L>
    if (|L| < k)
      C[j] = 1
      L[j] = a_i
    else
      C[j] -= 1 forall j in [k]
  for (j in [k])
     if (C[j] <= 0) set L[j] = X
#############################
On query q in [n]
  if (q in L {L[j]=q}) return hat{f}
_q = C[j]
  else                 return hat{f}
_q = 0
#############################

------------------------------------

Analysis  

A counter C[j] representing L[j] = q 
is only incremented if a_i = q



  
   hat{f}_q <= f_q

If a counter C[j] representing L[j] = 
q is decremented,
  then k-1 other counters are also 
decremented.  
This happens at most m/k times.  
A counter C[j] representing L[j] = q 
is decremented at most m/k times.

  f_q - m/k <= hat{f}_q 

------------------------------------

How do we get an additive eps-
approximate FREQUENCY-ESTIMATION ?
i.e. return hat{f}_q s.t.
   |f_q - hat{f}_q| <= eps*m

Set k = 2/eps, return C[j] + (m/k)/2



Space O((1/eps) (log m + log n))

Also:  
eps-approximate phi-HEAVY-HITTERS for 
any phi > m*eps in 
space O((1/eps) (log m + log n))

---------------------------------

Can solve k-FREQUENT optimally in two 
passes w/ O(k(log n + log m)) space.  
Run M-G algorithm w/ k counters.  
For each stored location, make second 
pass and count exactly.  


