```
Data Mining Seminar : Sampling
```

Jeff M. Phillips

What Properties are Maintained by Random Sampling

```
Sept 05, 2012
```

What properties can be recovered from random sampling? What cannot?

- if data is from much bigger distribution, only the first type interesting !

```
==== density based estimates ====
```

 + what fraction of points satisfy this property?
 + do more that \(X\) fraction of points satisfy this property?
 + what objects have high frequency?
 ==== shape estimates ====
+ what is most extreme point?
+ score of k-means clustering?

```
Let P be the phenomenon we are sampling from.
    Q subset P is sample.
R = class of subsets of P "ranges"
    ~ geometric ranges (balls, rectangles, half-spaces) | intervals
    ~ kernels (weighted subsets)
    ~ "dual" P is rectangles and r in R is point "stabbing"
    ~ simple combination of these ranges
```

---- density -------
for r in R let
$r(P)=|r \operatorname{cap} P| /|P|$
be fraction of objects from P in range r
"density"
want property:
** for any range r in $\mathrm{R}^{* *}$
$|r(P)-r(Q)|<e p s$
for some parameter eps in $[0,1] \quad$ (think of eps $=0.01=1 / 100$)
Q1: Can we do this?
Q2: How big does Q need to be?
A1: Yes, if R is "reasonable"

```
basically if \(|P|=n\), finite, then \(|R|<n \wedge v\)
bounded VC-dimension (basis of learning theory)
balls \(\quad v=d+1\)
axis-aligned rectangles \(\quad v=2 d\)
half-spaces \(\quad v=d+1\)
\(P=\) rectangles \(\quad v=2 d\)
        v ~ description complexity
        ~ degrees of freedom
most important:
    intervals \(\mathrm{v}=2\)
```

A2: $|Q|=(1 / e p s \wedge 2)(v+\log (1 /$ delta $))$
eps = maximum error
delta = probability of failure (success w.p. > 1-delta)
$\mathrm{v}=\mathrm{VC}$-dimension
[Vapnik-Chervonenkis 1971 --> Li, Long, Srinivasan 2001 (via Talagrand
1984)]
eps-sample aka eps-approximation aka agnostic sampling
Chernoff Bound:
r independent events $\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xr}$
$\mathrm{A}=(1 / \mathrm{t})$ sum_i Xi
Xi in $[0,1]$
$\operatorname{Pr}[\mathrm{A}-\mathrm{E}[\mathrm{A}]<\mathrm{eps}]<2 \exp (-2 \operatorname{eps} \wedge 2 \mathrm{t})<\operatorname{delta}$
X_i is 1 if sample i in r, 0 if X_i not in r (contribution to $r(Q)$)
solve for $|Q|=t>(1 / 2)(1 / e p s \wedge 2) \ln (2 / d e l t a)$

Frequent Objects

Let R_eps subset R such that $r(P)>e p s$
R_eps $=\{r$ in $R \mid r(P)>e p s\}$
Want Q such that
** for all r in R_eps **
$r(Q)>0$
we "hit" all large enough ranges.
Q1: Can we do this?

Q2: How large does Q need to be?

```
A1: Clearly yes if R satisfies above (v is bounded)
if eps-sample
    |r(P) - r(Q)| < eps
    -> if r(P) > eps -> r(Q) > 0
```

Small discrete sets (only m possible values) also work. Here also $v=1$ since at most $n+1$ distinct ranges with different subsets.

A2: $\quad|\mathrm{Q}|=(\mathrm{V} / \mathrm{eps}) \log (\mathrm{v} / \mathrm{eps} * \operatorname{delta})$
eps = maximum error
delta = probability of failure (success w.p. > 1-delta)
$\mathrm{v}=\mathrm{VC}$-dimension
[Hausler + Welzl 1986]
eps-net aka heavy-hitters aka noiseless-learning
discrete sets: heavy-hitters are all sets which occur more than eps*n times.
Note: We might accidentally hit the small sets, or over-sample large sets.
.... proof from Chernoff bound - small sets are easier class
.... similar to Coupon Collectors problem
extreme points:
max value of set. Will sample recover?
Average value. <sometimes, if variance is low / bounded>
k-means cluster. Can you sample Q subset P
run $\quad C=k$-means (Q)
compare average cost | |P|/IQ| cost(C,Q) $-\operatorname{cost}(\mathrm{C}, \mathrm{P})$ | ?
No?

Trick: don't try to recover density, since won't work.
Sample C directly:
basic: for max, just choose maximum point.
No need to sample.
approx-convex hull:
Let u be a unit vector in some direction

```
    wid(u,P) = max_{p in P} <u,p> - min_{p in P} <u,p>
eps-kernel Q:
    for **any** u : (wid(u,P) - wid(u,Q))/wid(u,P) < eps
(other forms, but this settled upon)
1. normalize so P fits in [-1,1]^d
2. place (1/eps)^{(d-1)/2} points G evenly on each side of [-2,2]^d
3. Select to Q the closest point in P to each g in G
or
2b. Take one point from each [eps]^d grid cell
k-means clustering:
let phi_C : P -> C
    phi_C(p) = argmin_{c in C} ||p - c||
construct C_1 = c_1 at random (q in P)
    C_{i+1} = C_i cup c_{i+1}
        choose c_{i+1} proportional to (phi_{C_i}(p))^2
cost(C,P) is 8-approximation to optimal centers
    cost(C,P) = sum_{p in P} phi_C(p)
more general:
    phi(p) = sensitivity of p
            ~ phi(p) proportional to how cost(Q) changes to cost(Q / p)
                where Q is random subset
            ~ "extreme" have higher phi(p)
            ~ points near many other points have lower phi(p)
    complicated to describe in some specific settings
```

