
2 Column Sampling Algorithms

Column (Row) sampling techniques select a subset of “important” columns (or rows) of the original matrix,
often randomly (sometimes deterministically) with respect to a well-defined probability distribution; and
show that sampled matrix is a good approximation to original one.

Column sampling methods vary in the way they define notion of importance. Often importance of an item
is the weight associated to it, e.g. file records have associated weights as size of the file, and IP addresses
have weights as number of times the IP address makes a request. In order to give an intuition to why it is nec-
essary to sample important items, consider a set of weighted items S = {(a1, w1), (a2, w2), · · · , (an, wn)}
that we want to summarize with a small yet representative sample. Let’s define a representative sample as
the one estimates total weight of S (i.e. Ws =

Pn
i=1wi), in expectation. Clearly, this is achievable with

a sample set of size one also: we sample any item (aj , wj) 2 S with an arbitrary fixed probability p, and
rescales it to have weight Ws/p. This way sample set has total weight Ws in expectation, but has a large
variance too. To lower down the variance, it is necessary to allow heavy items (i.e. important items) to get
sampled with higher probability. This generic description is called “Importance Sampling”, and is described
in algorithm 2.0.1. Importance Sampling is a meta algorithm that once instantiated with different settings of
{pi}ni=1 and c adapts to many column sampling algorithms.

Algorithm 2.0.1 Importance Sampling
1: Input: A 2 Rd⇥n, 1  c  n
2: Output: B 2 Rd⇥c

3: B all zeros matrix 2 Rd⇥c

4: for i 2 [n] do
5: Compute probability pi for row A:,i

6: for j 2 [c] do
7: Insert (and rescale) A:,i into B:,j with probability pi
8: return B

Note most column sampling algorithms sample columns with replacement, i.e. every column of A can
get sampled more than one time. Below we describe two most common column sampling algorithms which
sample with different notion of importance, one achieves an additive error bound and the other achieves the
better relative error bound.

2.1 LinearTime SVD

Drineas et al. [2] proposed “LinearTime SVD” (LTSVD) which samples columns proportional to their
squared norm, i.e. pi = kA:,ik2/|Ak2F ; LTSVD is described in algorithm 2.1.1. The strategy behind
this algorithm is to pick c columns of A with replacement, rescale each by factor 1/

p
c pi to form ma-

trix B 2 Rd⇥c, then compute left singular vectors and corresponding singular values of B which will be an
approximations to left singular vectors of A.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Algorithm 2.1.1 Linear Time SVD
1: Input: A 2 Rd⇥n, 1  c  n, 1  k  min(n, d)
2: B all zeros matrix 2 Rd⇥c

3: for i 2 [n] do
4: Compute probability pi = |A:,i|2/kAk2F for column A:,i

5: for j 2 [c] do
6: Insert A:,i into B:,j with probability pi
7: Rescale B:,j by 1/

p
c pi

8: Compute BTB and its SVD, BTB = Y ⌃

2Y T

9: Compute H = BY T
⌃

�1

10: return Hk (first k columns of H)

At first glance, it might seem LTSVD needs two passes over data: one for computing sampling prob-
abilities (or in other words kAkF) and one for sampling actual columns, however in[1], authors showed
sampling proportional to |A(:,i)|2/

Pi
j=1 |A(:,j)|2 is equivalent to sampling from probability distribution

pi = |A:,i|2/kAk2F ; therefore LTSVD needs only one pass over data to sample columns. For more details,
look at “SELECT” algorithm in [1].

Authors proved if c � 4k⌘2/�"2 where ⌘ = 1 +

p
(8/�) log(1/�) and �  1 is a positive constant and

� 2 (0, 1), then LTSVD achieves Frobenius error bound

kA�HkH
T
k Ak2F  kA�Akk2F + "kAk2F

and if c � 4⌘2/�"2 it achieves spectral error bound

kA�HkH
T
k Ak22  kA�Akk22 + "kAk2F

with probability 1� �. Note HkHT
k A is equivalent to ⇡Bk(A) which is the projection of A onto best rank k

of B.

2.1.1 Error Analysis

Here, we demonstrate the proof for Frobenius error bound only. Let svd decomposition of A and B be
A = USV T and B = H⌃Y T , respectively. Note that column space of A and B are captured by U and H ,
respectively. We decompose left-hand side of the Frobenius error bound as following

kA�HkH
T
k Ak2F = Tr

�
(A�HkH

T
k A)

T
(A�HkH

T
k A)

�
due to kXk2F = Tr(XTX)

= Tr

�
ATA�ATHkH

T
k A� (HkH

T
k A)

TA+ (HkH
T
k A)

THkH
T
k A
�

= Tr

�
ATA� 2ATHkH

T
k A+ATHkH

T
k HkH

T
k A
�

= Tr

�
ATA� 2ATHkH

T
k A+ATHkH

T
k A
�

due to HT
k Hk = Ik

= Tr

�
ATA�ATHkH

T
k A
�

= Tr

�
ATA

�
� Tr

�
ATHkH

T
k A
�

due to linearity of trace

= kAk2F � kATHkk2F due to kXk2F = Tr(XTX)

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

In order to bound kATHkk2F , we can write:

��kATHkk2F � kBTHkk2F
�� 
p
k

kX

t=1

�
kATH:,tk2 � kBTH:,tk2

�2
!1/2

using Cauchy-Schwartz inequality

=

p
k

kX

t=1

�
HT

:,t(AA
T �BBT

)H:,t
�2
!1/2


p
kkAAT �BBT kF

Note Cauchy-Schwartz inequality states that
⇣Pk

i=1(xi � yi)
⌘2
 k

Pk
i=1(xi � yi)2.

Now in order to bound kBTHkk2F we write

��kBTHkk2F � kATUkk2F
�� 
p
k

kX

t=1

�
⌃

2
t,t � S2

t,t

�2
!1/2

due to kXk2F = Tr(XTX)


p
kkBBT �AAT kF

Where again first transition follows by Cauchy Schwartz inequality. Using triangle inequality on above
two bounds, we achieve:

��kATHkk2F � kATUkk2F
�� 

��kATHkk2F � kBTHkk2F
��
+

��kBTHkk2F � kATUkk2F
��

 2

p
kkAAT �BBT kF

Therefore we can simplify final error bound as

kA�HkH
T
k Ak2F = kAk2F � kHkH

T
k Ak2F  kA�Akk2F + 2

p
kkAAT �BBT kF

The only thing to left is to bound kAAT �BBT kF , for that we use the following theorem from [1].

Theorem 2.1.1. Let A 2 Rn⇥d, B 2 Rd⇥r
and c 2 Z+

such that 1  c  n and {pi}ni=1 be probability

distribution over columns of A and rows of B such that pi � �kA:,ikkBi,:kPn
j=1 kA:,jkkBj,:k for some positive constant

�  1. If matrix C 2 Rd⇥c
is constructed by sampling columns of A according to {pi}ni=1 and matrix

D 2 Rc⇥r
is constructed by picking same rows of B, then with probability atleast 1� �

kAB � CDk2F 
µ2

�c
kAk2F kBk2F

where � 2 (0, 1), µ = 1 +

p
(8/�) log (1/�).

Using theorem 2.1.1, we bound kAAT � BBT k2F 
µ2

�ckAk
2
F kAT k2F =

µ2

�ckAk
4
F , putting all these

together we get the final Fronebius error bound as

kA�HkH
T
k Ak2F  kA�Akk2F +

s
4kµ2

�c
kAk2F

Setting c = O(k/"2) gives an "-related bound as claimed by the algorithm.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

2.1.2 Space and Run Time Analysis

For constructing the sample matrix B, we need to read the data which takes O(nnz(A)) and sample columns
with replacement which takes O(cn). An additional O(c2d+c3) time is needed to construct BTB and takes
its svd. Thus, the total running time of LinearTimeSVD is O(cn + c2d + c3 + nnz(A)). The space usage
of the algorithm is O(cd + c) = O(cd), O(cd) for the sketch B and O(c) for maintaining the sampling
probabilities.

2.2 Leverage Score Sampling

In another line of work, people have tried to sample columns according to their leverage (or importance)
scores. Intuitively, leverage scores are statistics about matrix A that determine which columns (or rows) are
most representative with respect to a rank-k subspace of A. The formal definition of it is as follows:

Leverage Scores: Let Vk 2 Rd⇥k contain the top k right singular vectors of matrix A 2 Rn⇥d. Then the
rank-k leverage scores of the i-th column of A are defined as `(k)i = k[Vk]i,:k2 .

The history of leverage score sampling dates back to a work by Joliffe[4], in which he proposed a deter-
ministic approach for picking columns of A having largest leverage scores. In [3], Drineas et al. extended
Joliffe’s algorithm as to a randomized method, which allowed them to sample columns of A with a probabil-
ity proportional to leverage scores; this method is described in algorithm 2.2.1 and it’s often called Subspace

Sampling (SSS) as it samples columns with the probability proportional to their contribution to the best rank
k subspace of the matrix.

Algorithm 2.2.1 Randomized Leverage Score Sampling (SSS)
1: Input: A 2 Rd⇥n, 1  c  n, 1  k  min(n, d)
2: B all zeros matrix 2 Rd⇥c

3: Compute svd(A) as A = USV T

4: for i 2 [n] do
5: Compute probability pi = |Vk(i,:) |2/k, for each column A:,i

6: for j 2 [c] do
7: Insert A:,i into B:,j by sampling with replacement
8: Each column is rescaled by 1/

p
cpi

9: return B

This method samples c = O(k log k/"2) columns and achieve a (1+ ")-relative error bound as following

kA�BB†Ak2⇣  (1 + ")kA�Akk2⇣

Where ⇣ = {2, F} and " 2 (0, 1/2). Note BB†A is equivalent to ⇡B(A), i.e. projection of A onto the space
spanned by B. Unlike LTSVD which projects onto a rank-k subspace, BB†A projects onto B which might
be of rank upto k log k/"2.

Note that this algorithm needs to take the svd of A first to compute sampling probabilities, and that would
need a pass over data, O(nd2) time and O(nd) space to store the whole matrix. After that another pass is
needed to do the actual column sampling phase. The total running time of the algorithm is O(nd2 + cn)
since sampling is done with replacement, and the total space usage of the algorithm is O(nd+cd) = O(nd).

Table 2.2 summarizes run time, space usage and error bounds of above mentioned Column Sampling
methods.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

PASSES RUN TIME SPACE USAGE ERROR BOUND
O(k/"2(n+ kd/"2 + k2/"4) + nnz(A)) O(kd/"2) kA� ⇡BkAk2F  OPTF + "kAk2F

LTSVD[2] 1
O(1/"2(n+ d/"2 + /"4) + nnz(A)) O(d/"2) kA� ⇡BkAk22  OPT2 + "kAk2F

SSS[3] 2 O(nd2 + (nk log k)/"2) O(nd) kA� ⇡BAk2F,2  (1 + ")OPTF,2

Table 2.1: Comparing different Column Sampling algorithms. We define OPT2 = kA�Akk2 and OPTF =

kA�AkkF . B 2 Rd⇥c is the matrix algorithms sample from A.

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

CS 7931

��
6961: Matrix Sketching; Spring 2015; Instructor: Jeff M. Phillips, Mina Ghashami; University of Utah

Bibliography

[1] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

[2] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices ii:
Computing a low-rank approximation to a matrix. SIAM Journal on Computing, 36(1):158–183, 2006.

[3] Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Relative-error cur matrix decompositions.
SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

[4] Ian T Jolliffe. Discarding variables in a principal component analysis. i: Artificial data. Applied statis-

tics, pages 160–173, 1972.

7

