Meta-Clustering

Parasaran Raman
PhD Candidate
School of Computing

What is Clustering?

Goal: Group similar items together

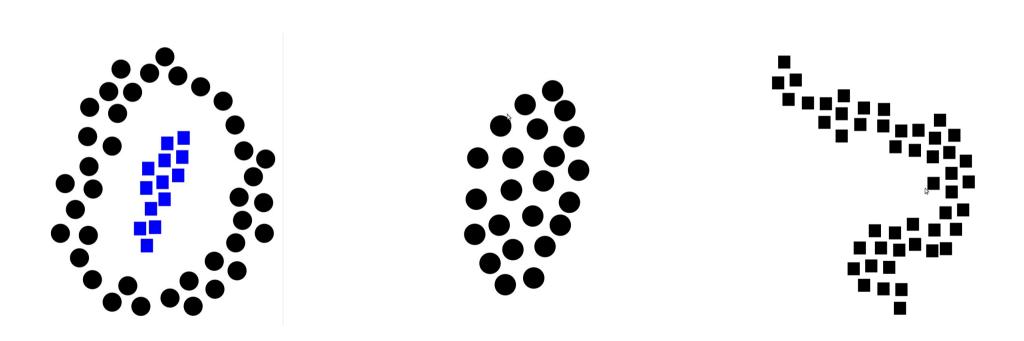
Unsupervised – No labeling effort

Popular choice for large-scale exploratory data analysis

Many algorithms to find the "right" clustering

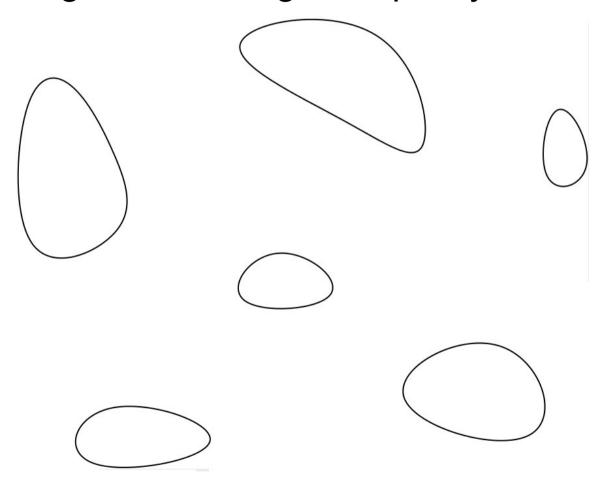
What is "right"?

"Right" kind of structures in data



What is "right"?

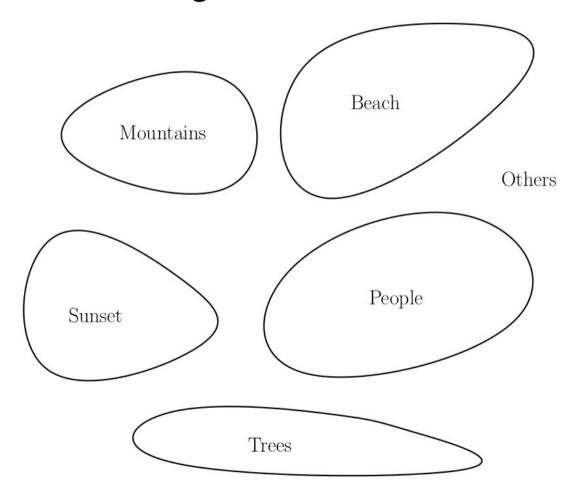
"Right" according to a quality measure



Tight chunks of far-away clusters

What is "right"?

"Right" for the user



Meaningful labels to each cluster

Meta-Questions on Clusterings

 Can we learn better by integrating different clustering techniques?

 Will a particular method will be successful against a specific kind of data?

Can we evaluate the quality of the clustering?

Can we compare the results of two clustering methods?

The What?

- Systematic study of various metaclustering problems
 - Organize different approaches to clustering data for robust data analysis
- Raw data → Clustering → Other data analysis activities
 - Important early step in data exploration
- Look at clustering as an exploratory tool
 - organizing clusterings in a way that helps us form robust opinions about the clusterings and the data
 - When faced with new kinds of data, we are unsure about the nature of structures present in it

The Why?

- Hard to find a clustering method that would cluster all kinds of data
 - according to any specific criterion (i.e. shape or color)
 - unless it is explicitly incorporated into the optimization objective
- A typical clustering method would construct a model that provides some signal both about the instances' shapes
 - For example, averaging such models might be useful
- Wide range of applications in the biology realm
 - Clustering Gene expression
 - Protein Sequences

Topic 1: Consensus Clustering

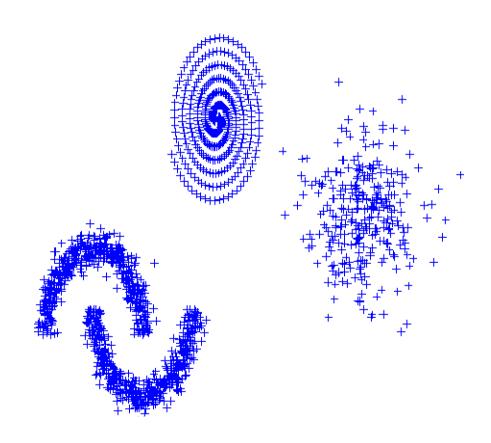
Spatially-Aware Comparison and Consensus for Clusterings Siam Data Mining (SDM 2011)

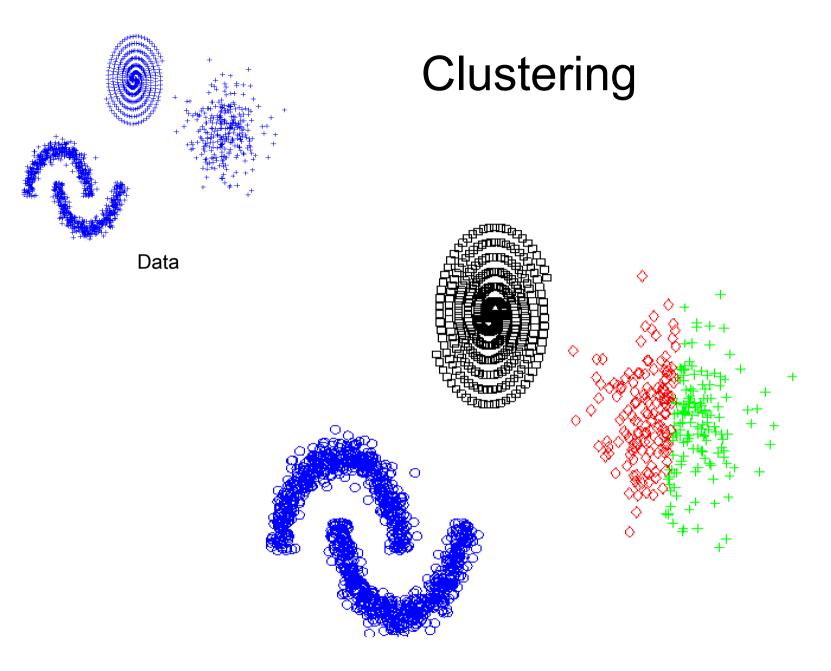
Joint work with:

Jeff M. Phillips, University of Utah

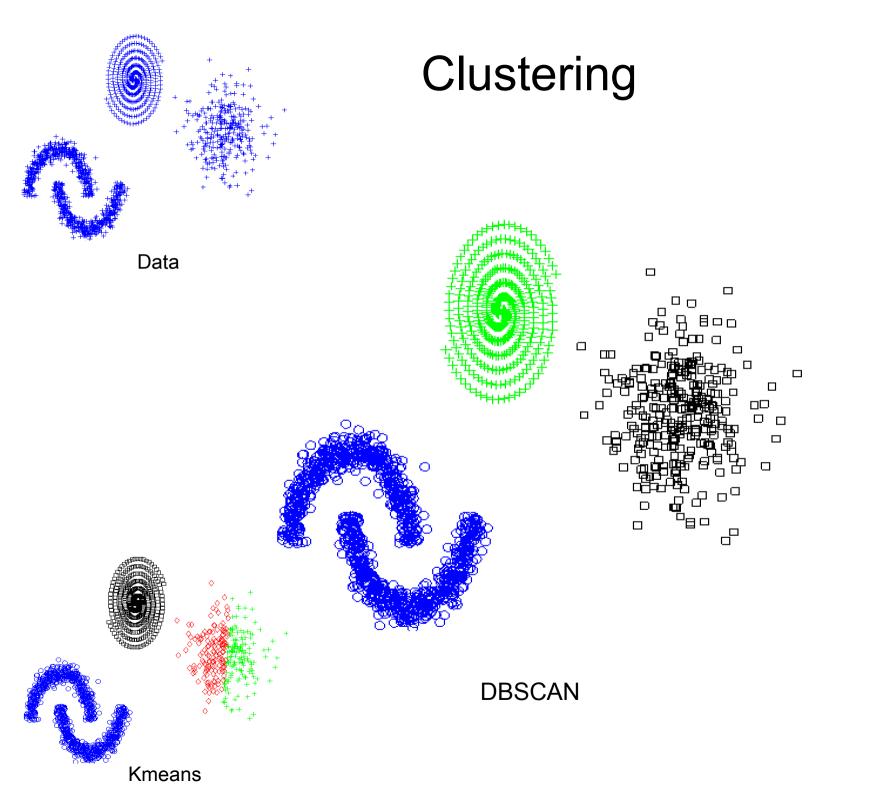
Suresh Venkatasubramanian, University of Utah

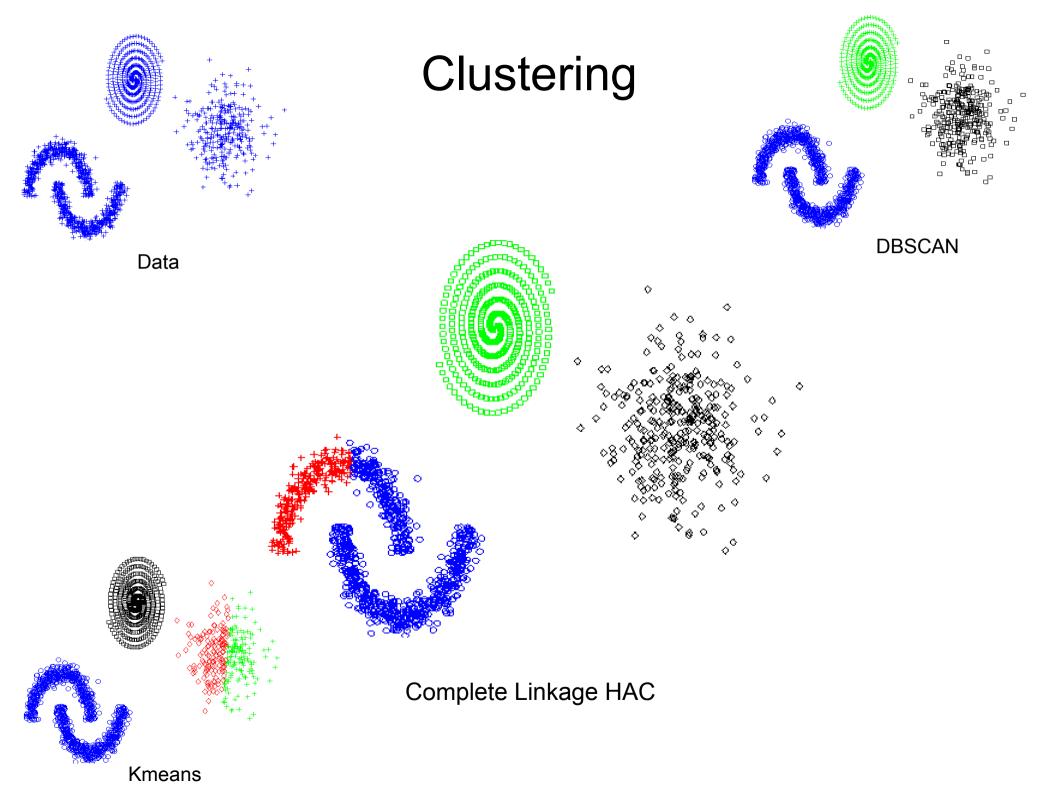
Clustering

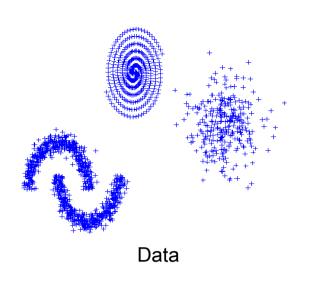




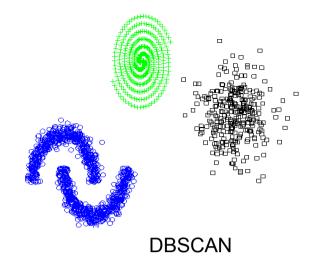
KMeans





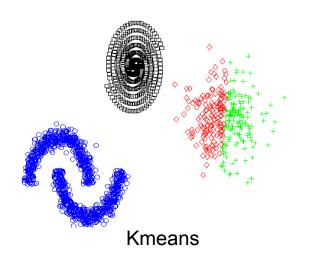


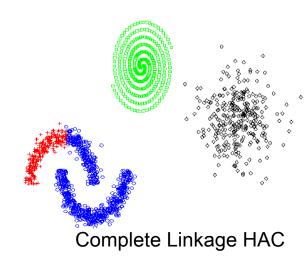
Clustering



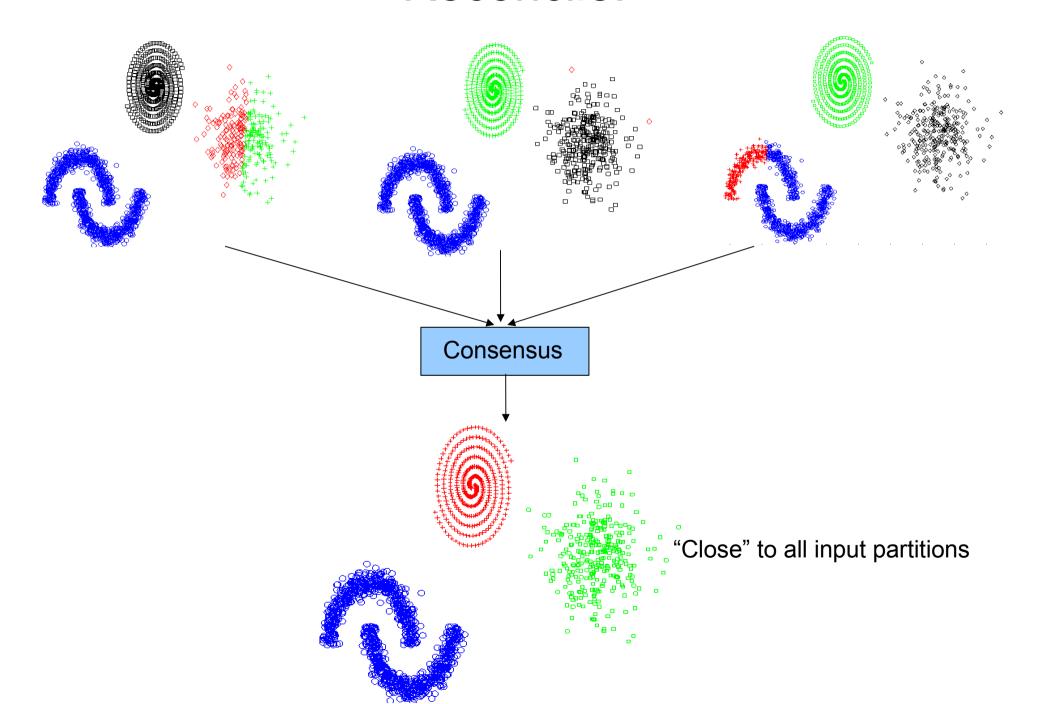
Different clustering methods output different partitions!

Which method do I pick?

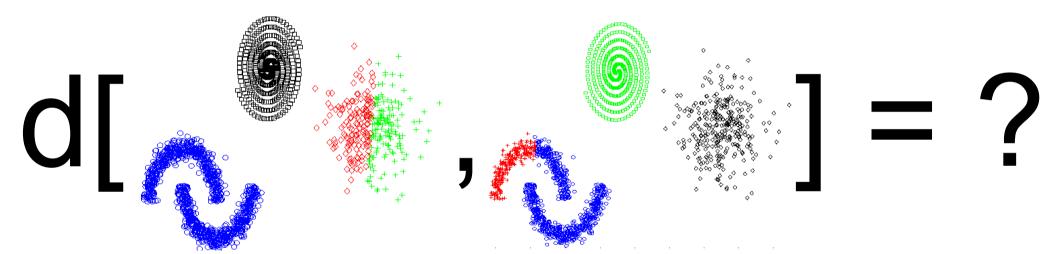




Reconcile!

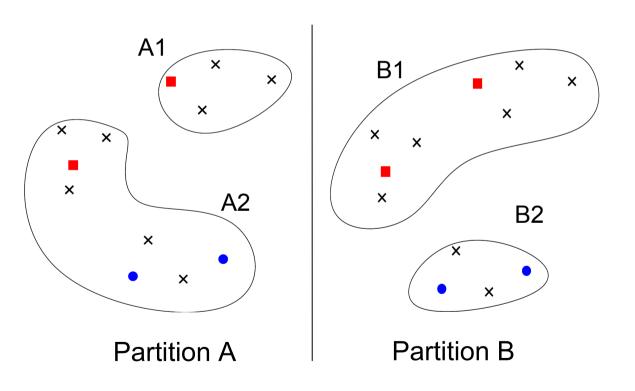


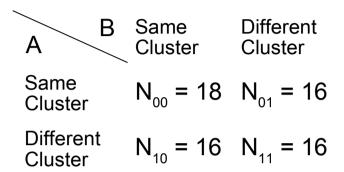
What is "close"?



Comparing Partitions: Combinatorial

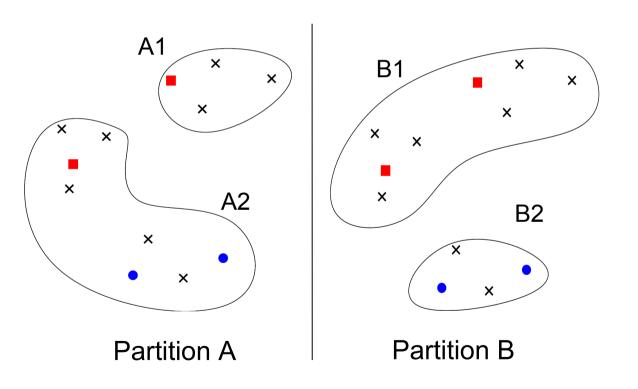
What objects are clustered together?

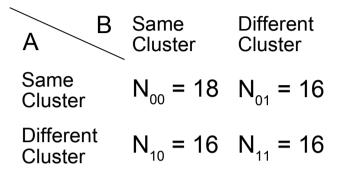




Comparing Partitions: Combinatorial

What objects are clustered together?





$$Rand Index = \frac{N_{00} + N_{11}}{nC2}$$
$$= 0.515$$

Variance of Information (VI)

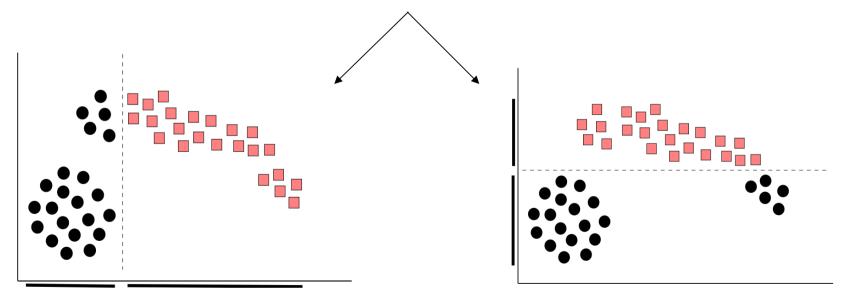
Normalized Mutual Information

Comparing Partitions: Spatial

How compact are the clusters?

Reference Partition (RP)

CDistance [Coen, Ansari, Fillmore]
CC [Zhou, Li, Zha]
D_{ADCO} [Bae, Bailey, Dong]



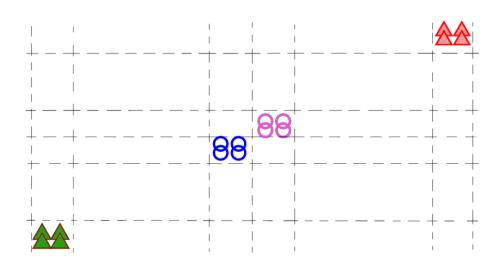
First Partition (FP)

Second Partition (SP)

- CDistance [Coen et. al.]
 - Earth Mover's between clusters
 - Expensive: O(n³)

- CDistance [Coen et. al.]
 - Earth Mover's between clusters
 - Expensive: O(n³)

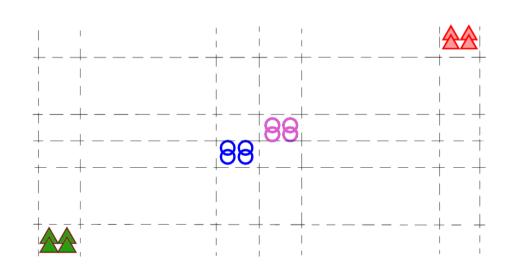
- D_{ADCO} [Bae et. al.]
 - Binning & Histogram



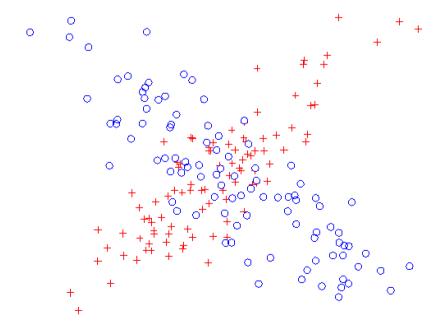
- CDistance [Coen et. al.]
 - Earth Mover's between clusters
 - Expensive: O(n³)

- D_{ADCO} [Bae et. al.]
 - Binning & Histogram

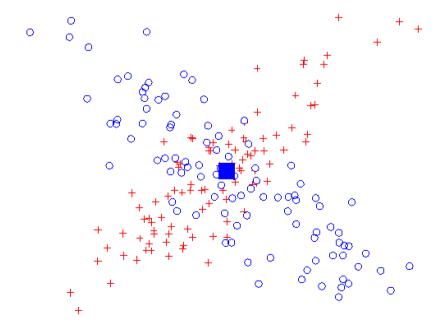
$$d[88,88] = d[44,44]$$



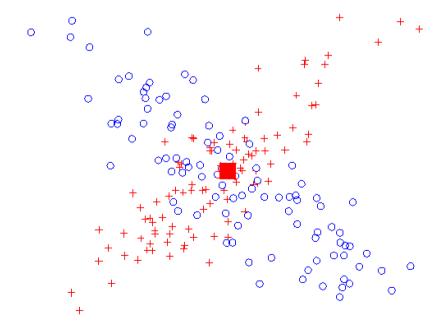
- CC [Zhou et. al.]
 - Measures distance between centroids
 - Lossy



- CC [Zhou et. al.]
 - Measures distance between centroids
 - Lossy



- CC [Zhou et. al.]
 - Measures distance between centroids
 - Lossy



Contributions

- LiftEMD
 - Distance metric between partitions
 - Spatial and combinatorial

Contributions

LiftEMD

- Distance metric between partitions
- Spatial and combinatorial

Consensus

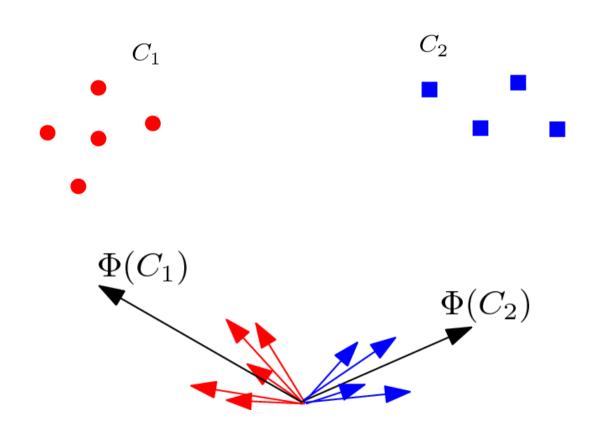
- Reduce problem to simple Euclidean clustering
- Fast
- Can handle large data
- Spatially-Aware

Key Idea

- Signature for clusters
 - A point set can be losslessly mapped to a target feature space
 - Cluster representative: Sum of feature maps of points

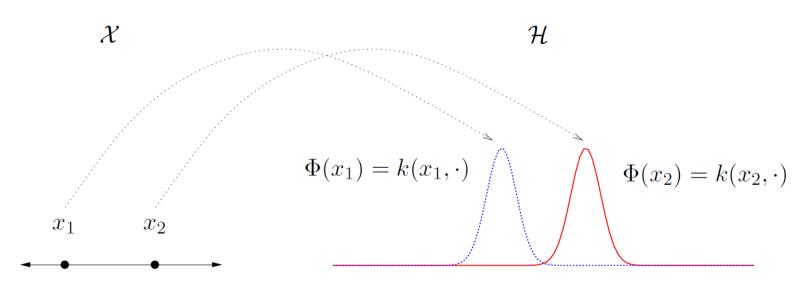
Key Idea

- Signature for clusters
 - A point set can be losslessly mapped to a target feature space
 - Cluster representative: Sum of feature maps of points



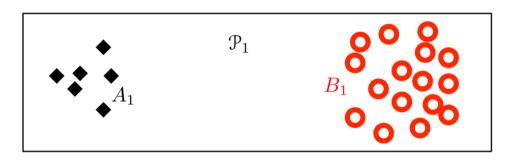
Reproducing Kernel Hilbert Space

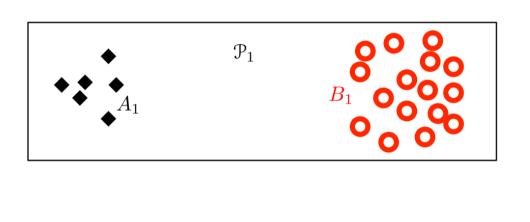
- Reproducing kernel $\kappa: X \times X \to \mathbb{R}$
 - Induces a Hilbert space \mathcal{H}_{κ}
- Lifting Map $\Phi:X o \mathcal{H}_\kappa$
 - Property: $\kappa(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\kappa}$ $\Phi(p) = \int_X \kappa(\cdot,x) dp(x)$

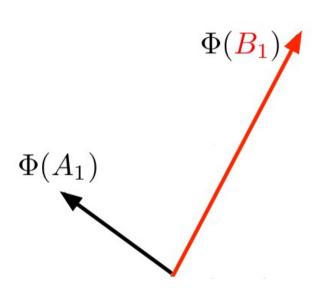


Reproducing Kernel Hilbert Space

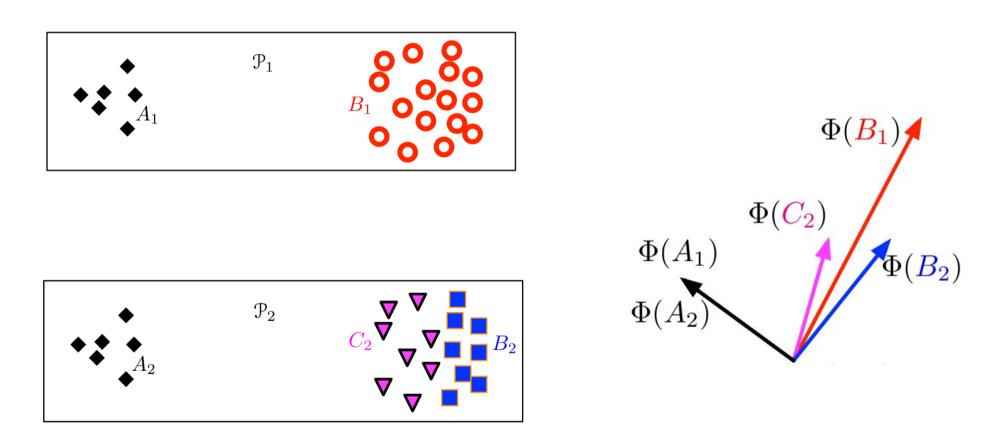
- Reproducing kernel $\kappa: X imes X o \mathbb{R}$
 - Induces a Hilbert space \mathcal{H}_{κ}
- Lifting Map $\Phi:X\to\mathcal{H}_\kappa$
 - Property: $\kappa(x,y) = \langle \Phi(x), \Phi(y) \rangle_{\kappa}$ $\Phi(p) = \int_X \kappa(\cdot,x) dp(x)$
- Approximate Representation
 - Random feature $ilde{\Phi}: X imes X o \mathbb{R}^{
 ho}$
 - Error: $\left| \|\tilde{\Phi}(x) \tilde{\Phi}(y)\|_2 \|\Phi(x) \Phi(y)\|_{\mathcal{H}_{\kappa}} \right| \leq \varepsilon$
- 1. A. Rahimi, B. Recht, NIPS 2007
- 2. S. Joshi, R.V. Kommaraju, J.M. Phillips, S. Venkatasubramanian, SoCG 2011



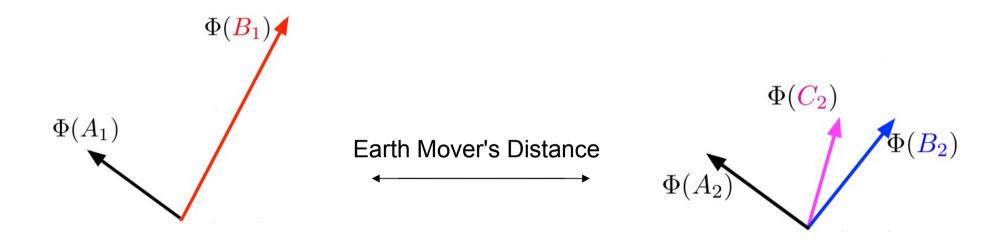




Step 1: Lift clusters to vectors in RKHS



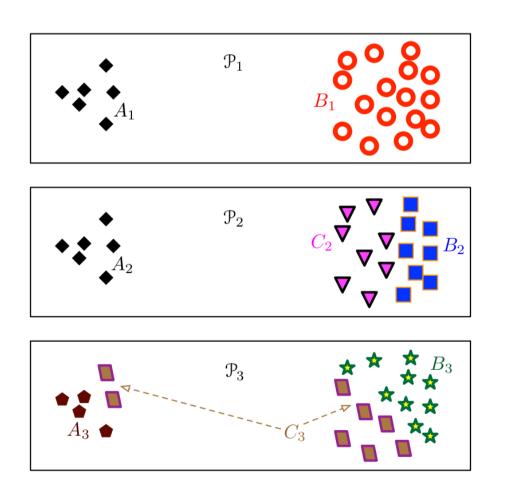
Step 1: Lift clusters to vectors in RKHS

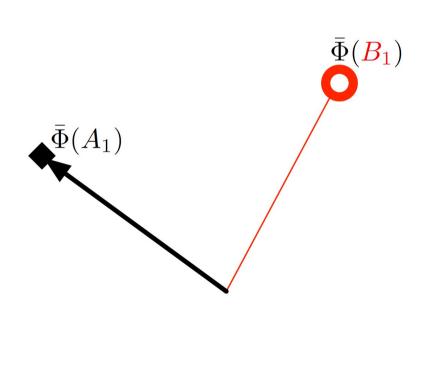


Step 2: **EMD** between RKHS vectors

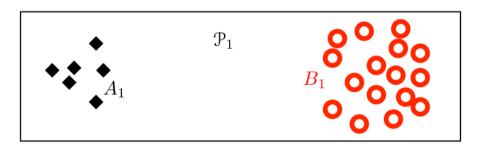
- Reduction to Euclidean clustering
 - Step 1: Lift clusters to vectors in RKHS
 - Step 2: Run any standard clustering algorithm on the vectors

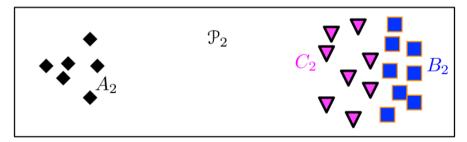
- Reduction to Euclidean clustering
 - Step 1: Lift clusters to vectors in RKHS
 - Step 2: Run any standard clustering algorithm on the vectors

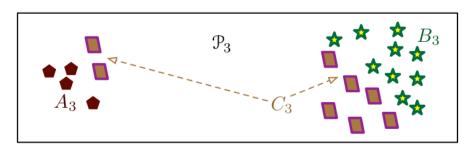


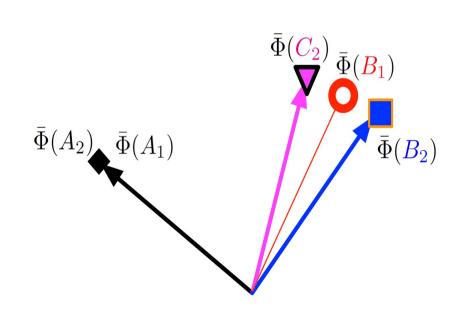


- Reduction to Euclidean clustering
 - Step 1: Lift clusters to vectors in RKHS
 - Step 2: Run any standard clustering algorithm on the vectors

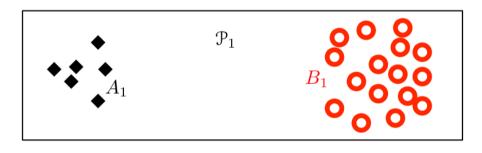


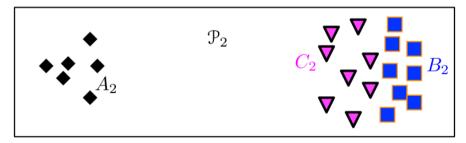


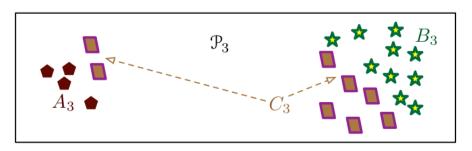


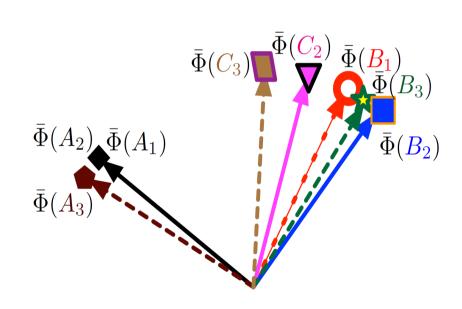


- Reduction to Euclidean clustering
 - Step 1: Lift clusters to vectors in RKHS
 - Step 2: Run any standard clustering algorithm on the vectors

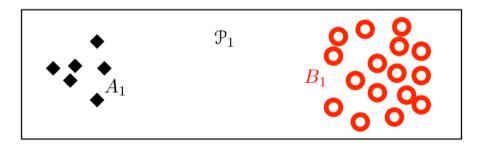




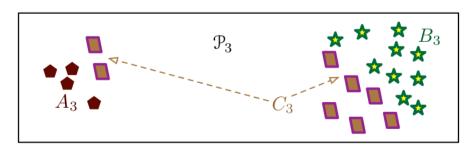


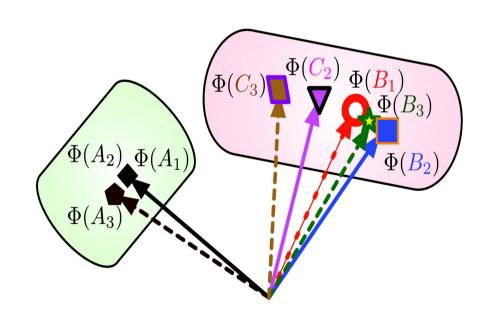


- Reduction to Euclidean clustering
 - Step 1: Lift clusters to vectors in RKHS
 - Step 2: Run any standard clustering algorithm on the vectors









Runtime Analysis

Consensus

```
Q: # of RKHS vectors
m: # of input partitions
n: # of points
```

 ρ : # of dimensions of the RKHS (\sim log n)

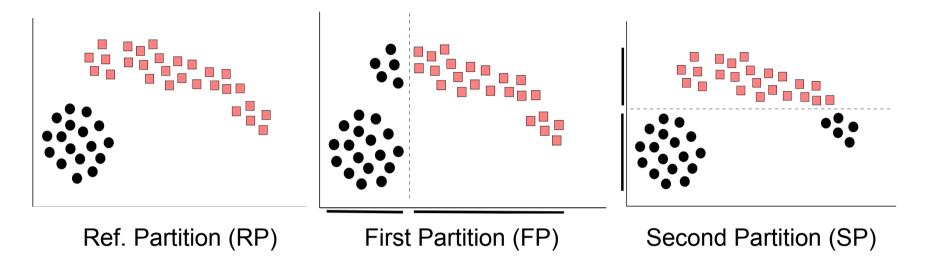
Runtimes

- RKHS Vector: O(mn log n)
- Consensus Iteration: O(|Q|k log n)
- Final partition: $O(n(\log n + k) + |Q|)$
- Usually k, $|Q| \ll n$. Assuming m is constant,
 - Consensus: O(n log n)

Experimental Setup

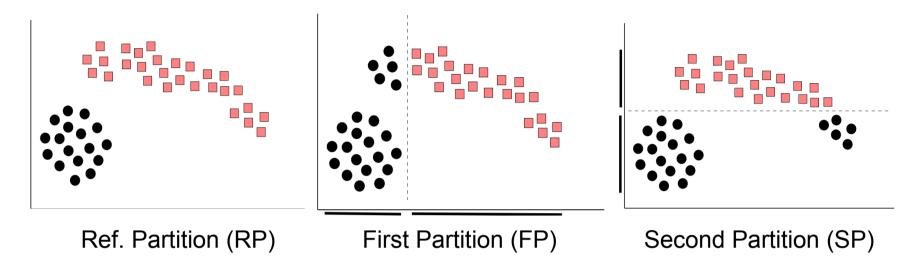
Dataset	# points	# dim	# clusters			
Synthetic Data						
2D2C	45	2	2			
2D3C	24	2	3			
UCI Datasets						
Wine	178	13	3			
Glass	214	10	7			
Ionosphere	351	35	2			
Soybean	307	35	19			
MNIST	60000	728	10			

Results: Spatial Awareness



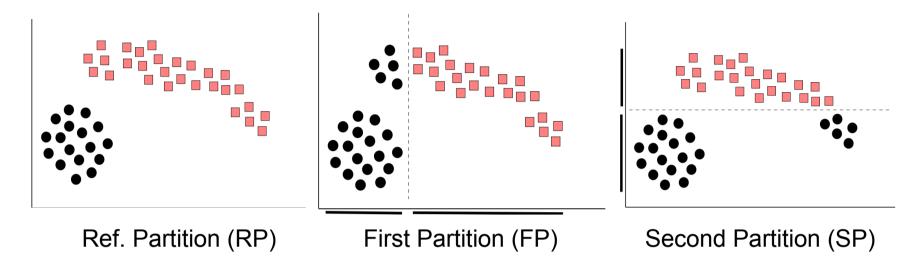
Technique	d(RP,FP) < d(RP,SP)		
D _{ADCO}	1.71	1.78	
Cdistance	0.24	0.35	
LiftEMD	0.43	0.512	
LiftKD	0.29	0.325	
LiftH	0.41	0.49	

Results: Spatial Awareness



Technique	d(RP,FP) < d(RP,SP)		
D _{ADCO}	1.71	1.78	
Cdistance	0.24	0.35	
LiftEMD	0.43	0.512	
LiftKD	0.29	0.325	
LiftH	0.41/	0.49	

Results: Spatial Awareness



Technique	d(RP,FP)	< d(RP,SP)
D _{ADCO}	1.71	1.78
Cdistance	0.24	0.35
LiftEMD	0.43	0.512
LiftKD	0.29	0.325
LiftH	0.41	0.49

Results: Runtimes

- LiftEMD vs CDistance
 - $O(n log n) vs O(n^3)$

Dataset	# points	# dimensions	Cdistance	LiftEMD
2D3C	24	2	2.03 ms	1.02 ms
2D2C	45	2	4.10 ms	1.95 ms
Wine	178	13	18.80 ms	6.90 ms
MNIST test data	10000	784	1360.20 s	303.90 s
MNIST training data	60000	784	202681 s	1774.20 s

Results: Consensus

- Consensus performance
 - Distance from true partition using LiftEMD metric
 - Compare against CSPA, HGPA and MCLA [Strehl et. al.]

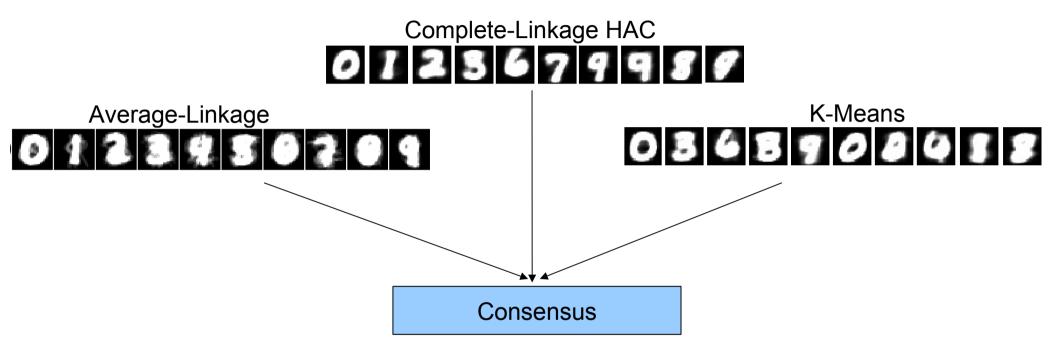
Dataset	CSPA	HGPA	MCLA	LiftKm	LiftHAC
IRIS	0.113	0.295	0.812	0.106	0.21
Glass	0.573	0.519	0.731	0.531	0.54
Ionosphere	0.729	0.767	0.993	0.731	0.72
Soybean	0.51	0.495	0.951	0.277	0.29
Wine	0.873	0.875	0.917	0.831	0.842
MNIST test data	0.182	-	0.344	0.106	0.112

MNIST digits data

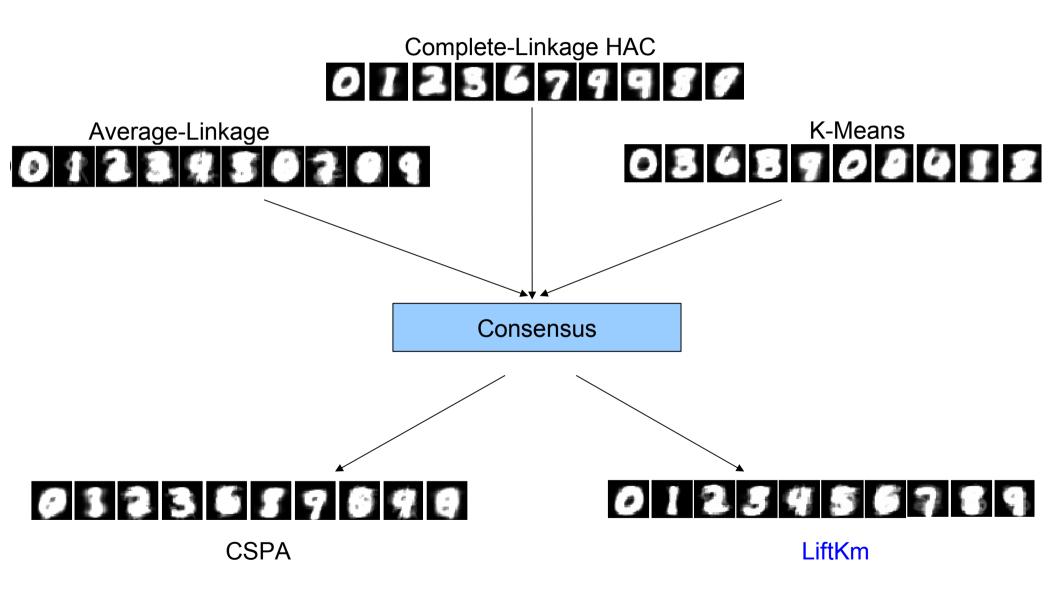
Complete-Linkage HAC

O I 2 3 6 7 7 9 9 7

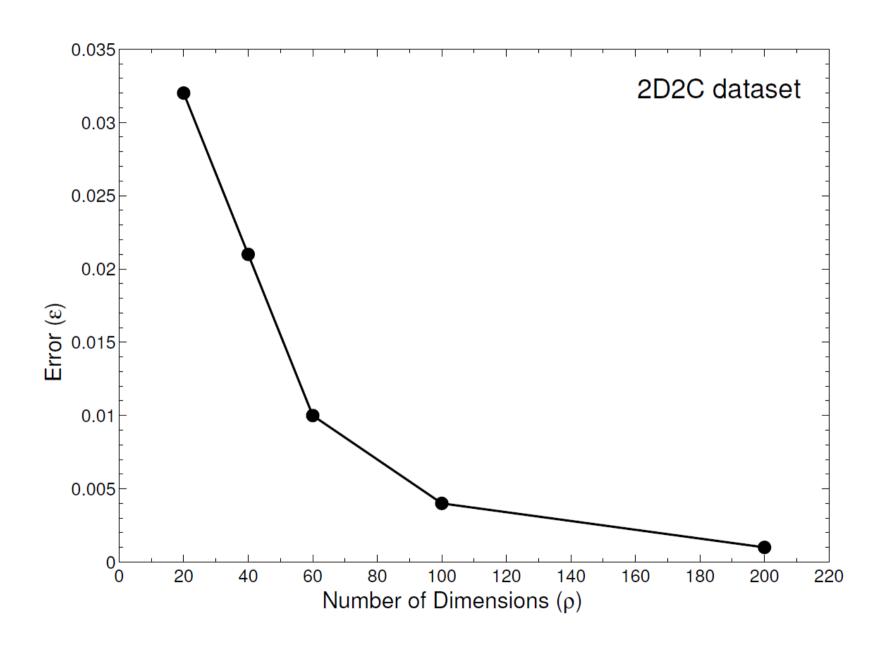
MNIST digits data



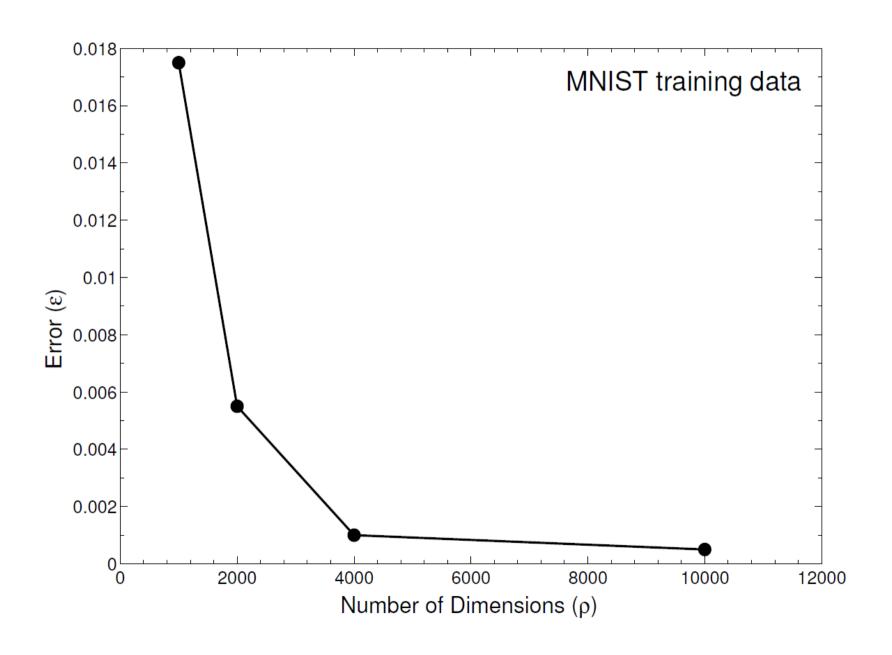
MNIST digits data



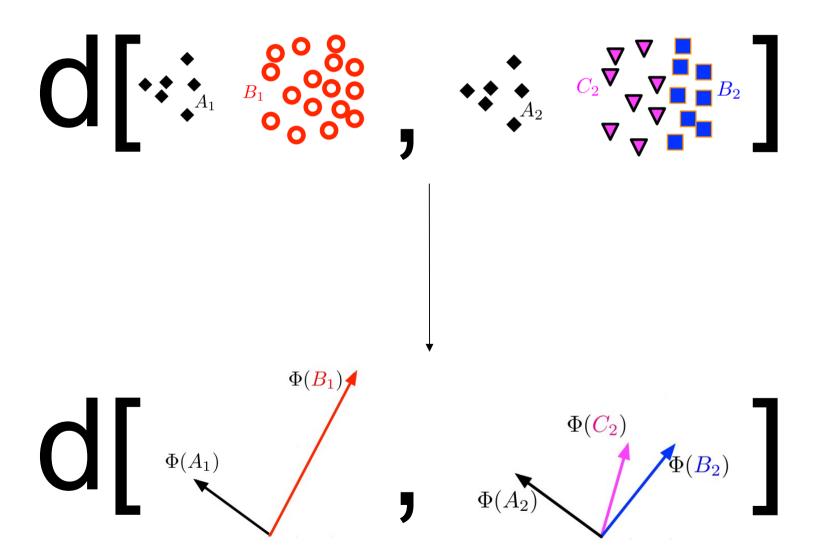
Error in LiftEMD



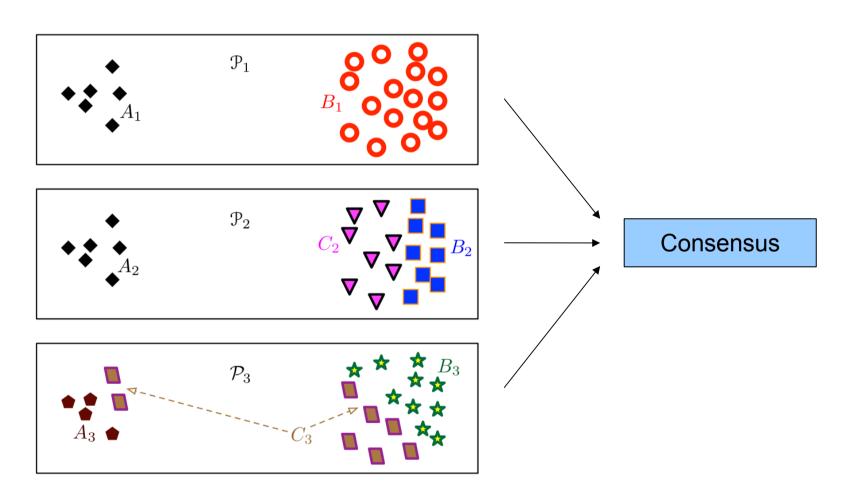
Error in LiftEMD



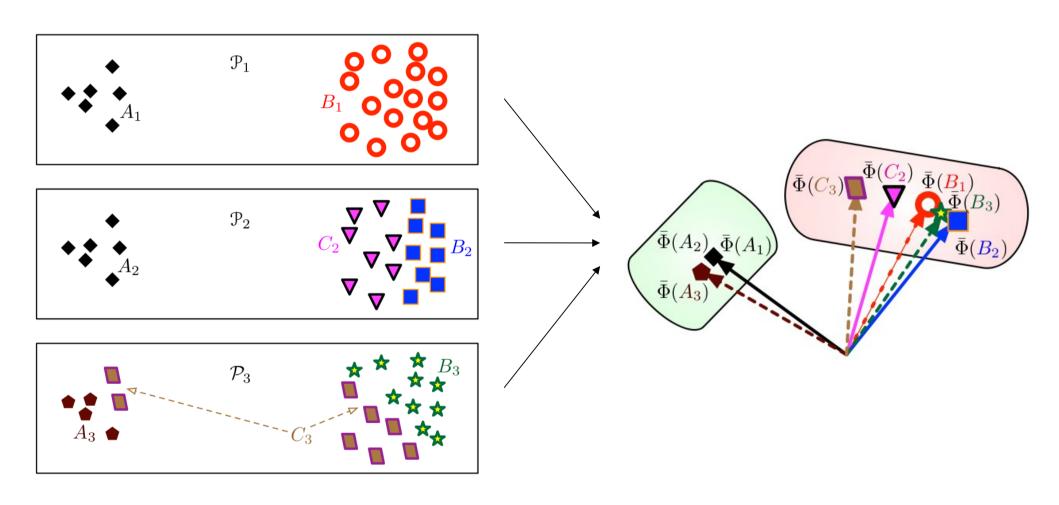
Recap



Recap



Recap



Topic 2: Alternate or Non-Redundant Clustering

Generating a Diverse Set of High-Quality Clusterings MultiClust 2011

Joint work with:

Jeff M. Phillips, University of Utah

Suresh Venkatasubramanian, University of Utah

Best Clustering Vs Choices

There might not be a "one-best" clustering

- User might need a variety of choices
 - Understand structures in data
 - Answer different types of questions on the data

Best quality partition might not be interesting to the user

Issues with finding many partitions

- Data exists in very high dimensions
 - Visualization to understand the structure: infeasible
- Criteria for clustering: Often unknown
 - Clustering precedes many data analysis processes
 - Users have limited idea of what they want
- Running multiple methods can fail
 - Partitions obtained may not be good quality and non-redundant

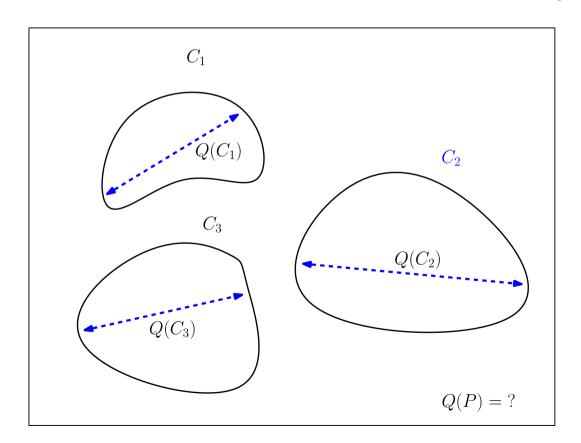
Issues with finding many partitions

- Data exists in very high dimensions
 - Visualization to understand the structure: infeasible
- Criteria for clustering: Often unknown
 - Clustering precedes many data analysis processes
 - Users have limited idea of what they want
- Running multiple methods can fail
 - Partitions obtained may not be good quality and non-redundant

Need a systematic approach to generating many partitions!

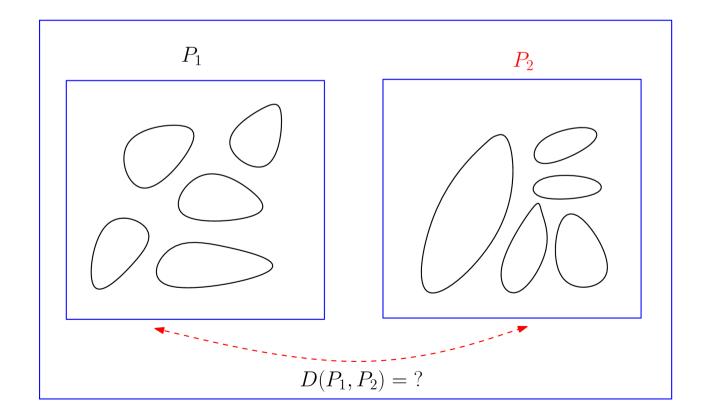
Ingredients

- Is my partition 'good'?
 - Why? [Need meaningful partitions]
 - Need a measure for quality of a partition
 - Degree to which the structures inside the data is captured



Ingredients

- Are my partitions 'non-redundant'?
 - Why? [Similar solutions are uninteresting]
 - Need a measure for distance between partitions
 - Dissimilarity between partitions



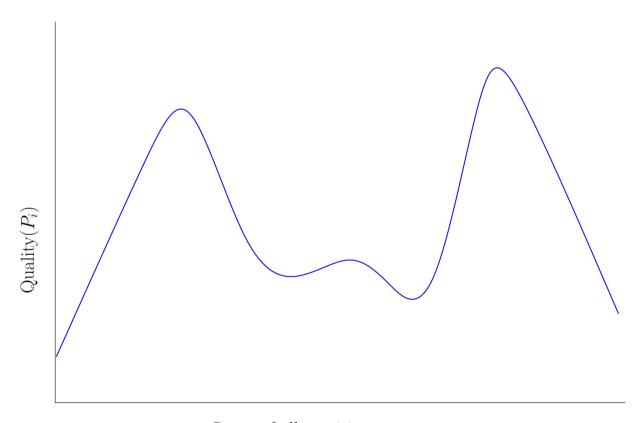
What we use?

- We need 2 quantities
 - Distance
 - Quality
- We use our previous measures
 - Lift clusters to a high-dimensional Reproducing Kernel Hilbert Space
 - Compute distance and quality in this space
- Pick your choice!
 - Our method is agnostic to the choice of distance and quality

- 1. A. Rahimi, B. Recht, NIPS 2007
- 2. S. Joshi, R.V. Kommaraju, J.M. Phillips, S. Venkatasubramanian, SoCG 2011
- 3. P. Raman, J.M. Phillips, S. Venkatasubramanian, SDM 2011

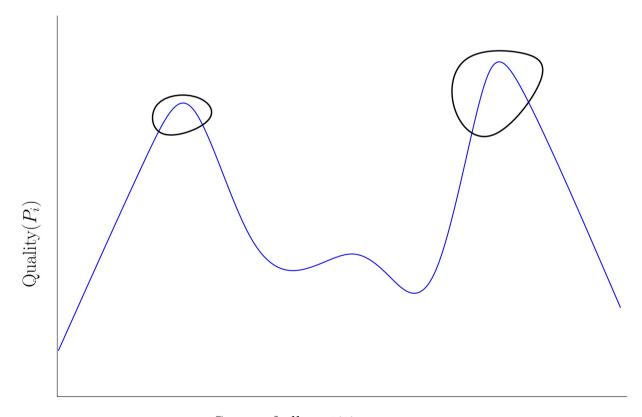
• Generate *k* partitions

- Generate *k* partitions
 - that best reflect the high-quality partitions



Space of all partitions

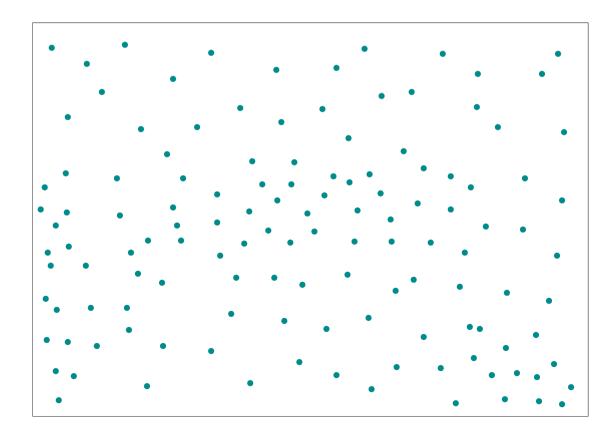
- Generate k partitions
 - that best reflect the high-quality partitions



Space of all partitions

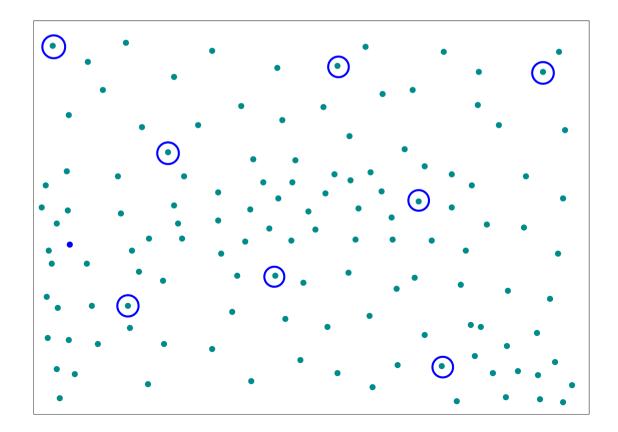
- Generate k partitions
 - that best reflect the high-quality partitions
 - and are non-redundant

2-d viz of the space of all partitions with k clusters



- Generate k partitions
 - that best reflect the high-quality partitions
 - and are non-redundant

2-d viz of the space of all partitions with k clusters



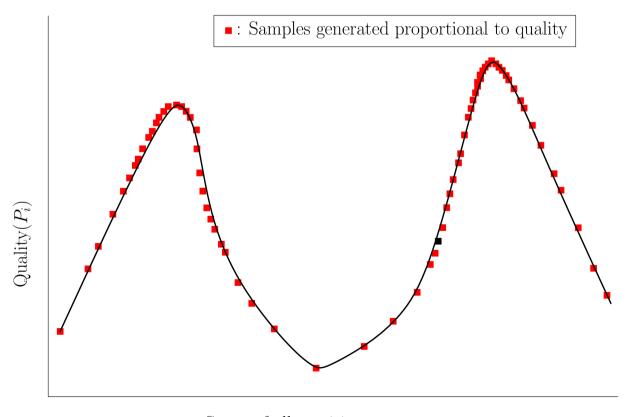
Related Work

- Generate one alternate partition
 - Usually a partition that maximizes function based on quality and distance
 - This might not be the most interesting partition

- Generate k partitions
 - Usually iterative
 - Maximize function: f(quality,distance)
 - Quality quickly degrades

1. Generation [What we do]

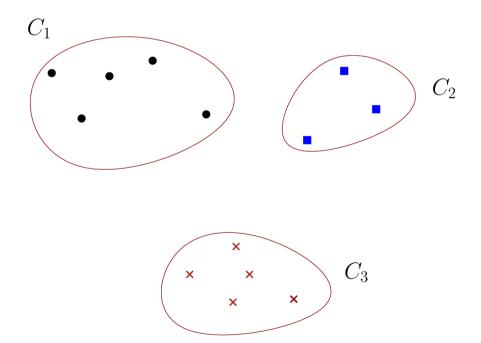
- Explore the landscape of partitions
 - Understand the peaks
 - Sample a lot of 'good' partitions from this landscape



Space of all partitions

1. Generation [How we do it]

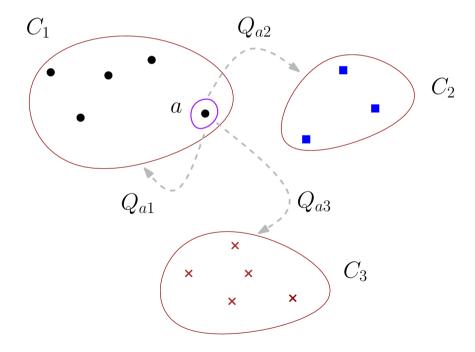
- Sample proportional to quality: Gibbs Sampling
 - Move points across clusters to get a new configuration
 - 'Move' is proportional to the quality



[Gibbs sampling – generates items proportional to a measure]

1. Generation [How we do it]

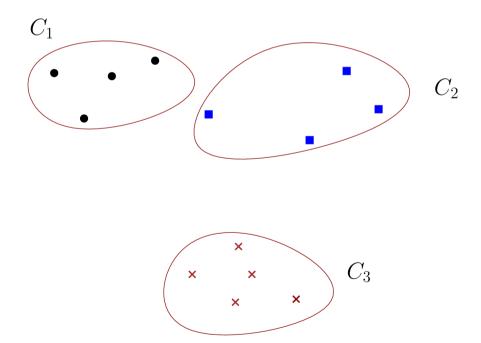
- Sample proportional to quality: Gibbs Sampling
 - Move points across clusters to get a new configuration
 - 'Move' is proportional to the quality



[Gibbs sampling – generates items proportional to a measure]

1. Generation [How we do it]

- Sample proportional to quality: Gibbs Sampling
 - Move points across clusters to get a new configuration
 - 'Move' is proportional to the quality

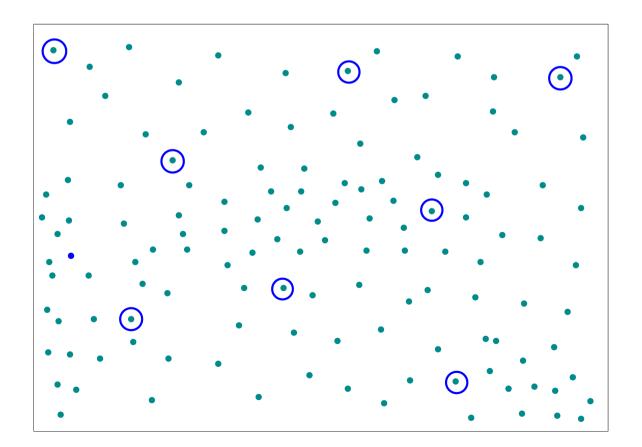


[Gibbs sampling – generates items proportional to a measure]

2. Picking [What we do]

- Pick representative partitions
 - This forms the alternate solutions
 - Pick dissimilar partitions to ensure variety

2-d viz of the space of all partitions with k clusters



2. Picking [How we do it]

K-Center

- Gonzalez method gives a 2-approximation to k-center
- Pick k far-away partitions iteratively
- Report the 'k-centers' as the k alternative partitions
- Progressive; pick next center when a new request comes in!

Pick your choice!

Discrete Kmeans?

Optional Assignment

- What did other partitions mean?
- Assign them to the closest alternative partition

Experimental Setup

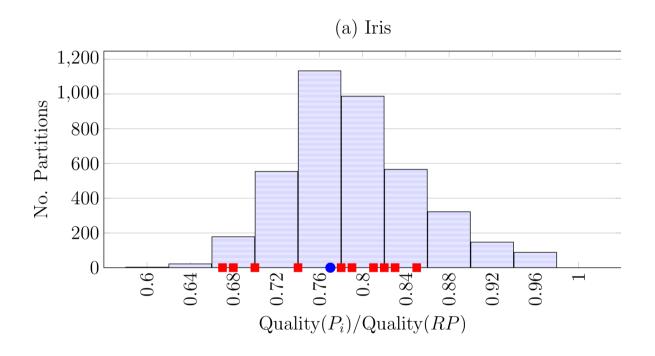
Data

- 2D5C [n = 100; d = 2]
- Iris [n = 150; d = 4]
- Subset of Yale Face Database B [n = 90; d = 1200]

What are we looking for?

- Quality: Did we span the landscape of all partitions?
- Diversity: Did we generate non-redundant partitions?
- Are the partitions visually appealing?

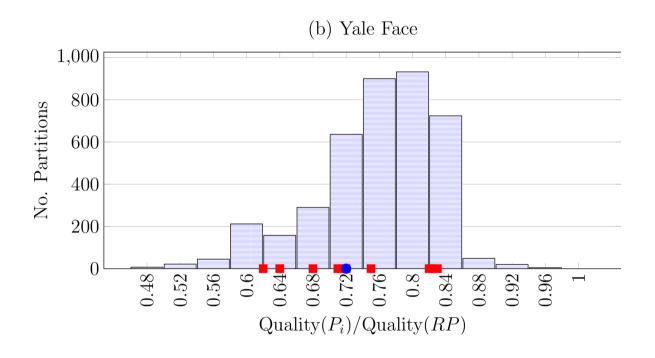
Good Quality Partitions



• : Alternative Partitions

•: Consensus Partition

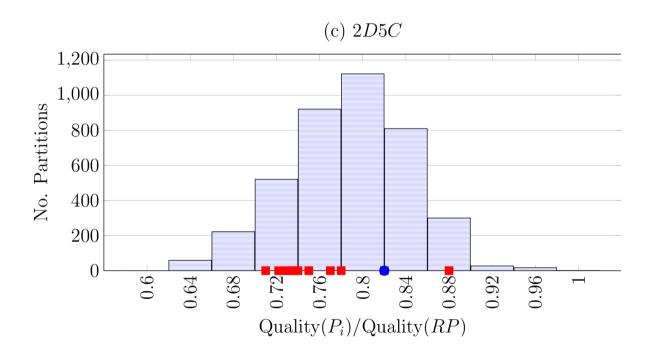
Good Quality Partitions



• : Alternative Partitions

•: Consensus Partition

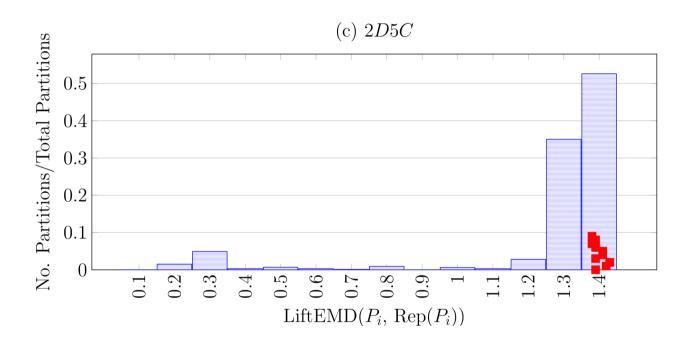
Good Quality Partitions



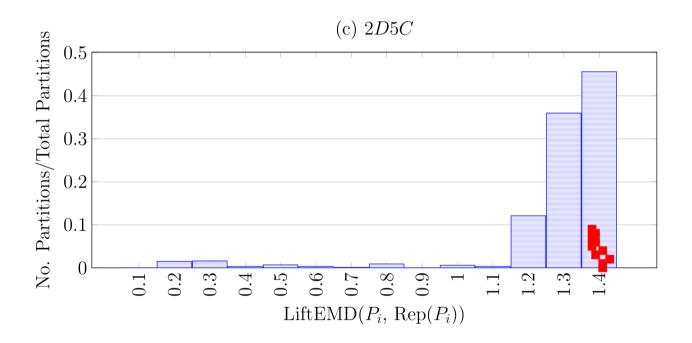
• : Alternative Partitions

•: Consensus Partition

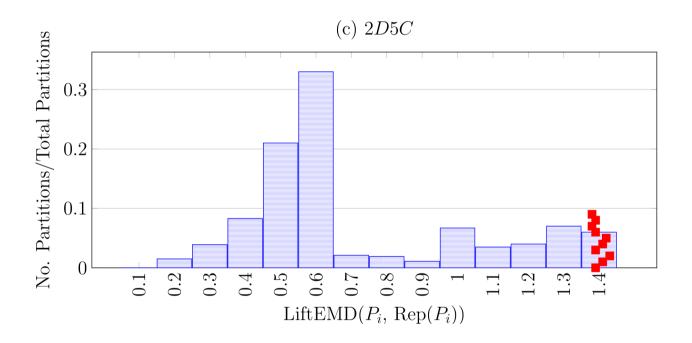
Quality = *Width* of a partition



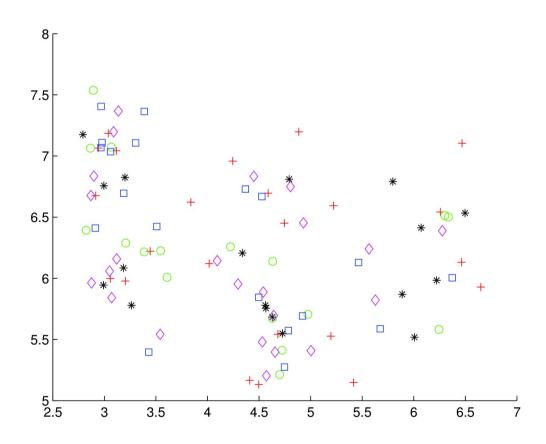
All partitions generated at random



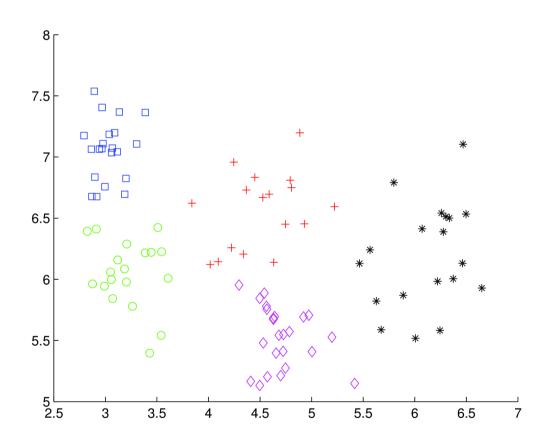
Quality = [Split + Width] of a partition

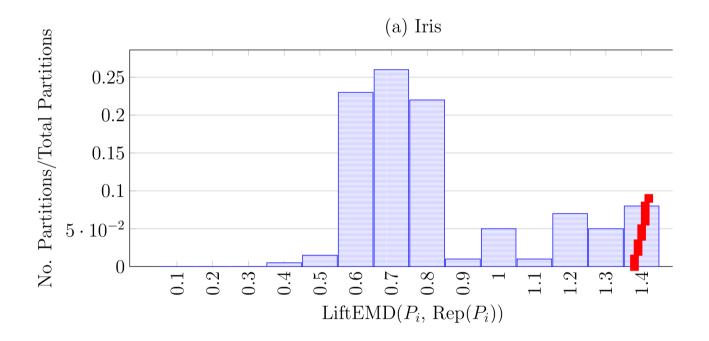


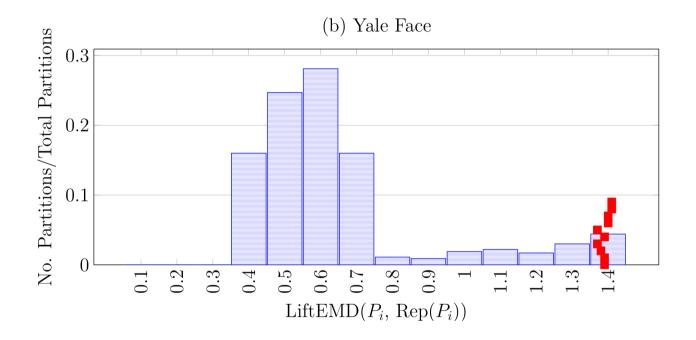
Sample Representative Partition generated using "Width" as quality



Sample Representative Partition generated using "Width + Split" as quality







Yale Faces

Clustering A [Similar to the ground truth 'by person']

Clustering B [Similar to the ground truth 'by pose']

Two different partitions generated on the Yale Faces data

Questions: Looking at the Big Picture

- We have the landscape now
 - Tell apart different quality functions
 - Can we give supply more knowledge than what we were able to do so far?
- Beyond Consensus / Alternate?
 - Should I generate alternate partitions?
 - Do I need a consensus solution?
- What other Multi-Clust questions can we answer?

Questions: Looking at the Big Picture

- We have the landscape now
 - Tell apart different quality functions
 - Can we give supply more knowledge than what we were able to do so far?
- Beyond Consensus / Alternate?
 - Should I generate alternate partitions?
 - Do I need a consensus solution?
- What other Multi-Clust questions can we answer?

Thanks!