
L9 -- Hierarchical Clustering
[Jeff Phillips - Utah - Data Mining]

What is clustering?
 one of the most ambiguous topics ever!
 - I'll ambiguously define it.
 - Then I'll formally define it.
 - Then I'll tell you why you maybe should *not* formally define it!

Let P be a data set. (perhaps in R^d, but maybe not)
let d : P x P -> |R be a metric distance on P

A cluster S is a subset of P.
Typically we find a set {S_1, S_2, ... S_k} subset P
 s.t. S_i disjoint S_j and union_i S_i = P

goal:
 - all for all points p_i, p_j in S
 d(p_i, p_j) is small
 "width"
 - all (most) points p_i in S_i, p_j in S_j and i!=j
 d(p_i, p_j) is large
 "split"

Want "split"/"width" large.

Draw points in plane.
Illustrate possible clusters.
Illustrate split/width.

Hierarchical/Agglomerative Clustering!

If two points are close --> put them in the same cluster.
Repeat.

Init: All points are 1 point clusters.
WHILE (2 clusters are "close enough")
 Find two "closest" clusters: S_i, S_j
 Merge clusters.

2 parts remain to be specified: "close" and "close enough"

What is "close"?
 - distance between "centers" of clusters
 "center" = mean, center-point (median), center of MEB,
 some representative = min distance to other points "Non-
Euclidean"
 - distance between closest points
 - distance between furthest points
 - average distance between all pairs of points in different clusters
 - lowest radius of MEB between joined cluster
 - smallest average distance between point and center

** there are often ties **

What is "close enough"?
 - diameter, radius of MEB, average from center beneath threshold?
 fixes scale (good/bad?)
 - density beneath threshold.
 "density" = # points/volume, # points/radius^d
 - joined density jumps too quickly since last time "elbow"
 - when we have k clusters

Hierarchy --> Phylogenic Tree

Efficiency: (specific: closest to centroid, never stop)
 O(n^3)
 - O(n) rounds
 - x O(n^2) each round, check all pairs to find closest
 - + O(n) to recompute centroid

can reduce to O(n^2 log n): maintain priority queue of O(n^2) distance
 - updates affect O(n) distances, each takes O(log n) time
 - O(n) rounds | updates

--

k-center clustering
 "Gonzalez Algorithm 85"
"HAC" one form of greedy. Different form of greedy.

 --> be greedy, but be smart and greedy :)

k-center clustering:
 Find k points C = {c_1, ..., c_k}, s.t.
 - each p \in P assigned mu(p) = arg min_{c in C} d(p,c)
 - minimize max_{p in P} d(p, mu(p))

(like k-means minimize sum_{p in P} d(p,mu(p))^2)
(k-median minimize sum_{p in P} d(p,mu(p)))

k-center cluster optimally is NP-Hard.
 better than 2-appox --> also NP-Hard !!!

Choose first c_1 arbitrarily
 C_1 = {c_1} (generally C_i = {C_1, C_2, ..., C_i} \\ goal C_k)

Let c_{i+1} = arg max_{p in P \ C_i} d(p,mu(p))
 "always pick point furtherest from set of centers C_i"

2-approx to optimal algorithm (worst case). Often much better.

O(k^2 n) O(k) rounds x O(kn) per round

O(kn) : maintain mu(p)
 O(k) rounds
 - maintain mu(P)
 - on new c_i, spend O(n) to check each point if closer,
 update t_j = max_{p \in P \ C_i} d(p,mu(p)) s.t. mu(p) = c_j
 for each c_j \in C_i
 update t = max_j t_j

*** Works for any metric.
*** Biases centers to "edge" of data set.
 - heuristic to recenter: after run, find "clusteroid" of mu^{-1}(c_j) as
new c_j

